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Pattern Recognition Applied to Monitoring Waveforms

WILFREDO RAMOS VALENZUELA, ALLEN KLINGER, MEMBER, IEEE, AND JOHN S. McDONALD

Abstract-This paper demonstrates that fetal heart rate (FHIR)
patterns can be classified by algorithmically determined linear
discriminants. A nonparametric learning algorithm was applied to
17 samples of five-vectors. The coordinates of each sample vector
were visual features derived from the FHR curve and the simul-
taneous uterine contraction pressure data in accord with medical
training-literature. Data were obtained from strip-chart recordings
from the Cedars-Sinai Medical Center, Los Angeles, where an
FHR monitoring and on-line computer processing system based
on an IBM System/7 is being installed. The algorithm converged
to linear discriminants that correctly classified all the 17 training
samples under four different combinations of initial weights, training
sequence, and correction increment. Each of the four linear decision-
rules so obtained was applied to 14 new sample vectors. Three
classified 11 samples correctly and one classified 13 samples cor-
rectly. Medical anomalies (atypical data) were present in all three
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misclassified patterns. A perfect success record was found in
classifying all seven medically ominous new sample vectors.

1.0 INTRODUCTION

THE principal role of fetal monitoring is to provide
more accurate information on the fetal condition so

the obstetrician can determine the best course of action
during labor and delivery. Fetal monitoring refers to two
techniques:

1) Observation of the fetal heart rate (FHR) and
its changes throughout the course of labor with
particular attention to the effect of uterine con-
tractions (UC's);

2) Measurement of the acid-base changes which occur
during the course of labor through the evaluation
of fetal scalp blood samples [1].

This paper is concerned with showing that the first
technique can be automated. That is, as a loing-range
bioengineering objective, our work involves development
of. computer programs for the interpretation of FHR
changes in relation to UC's. Although we do not use
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on-line data, instrumentation for continuous FHR moni-
toring can be obtained and this paper shows that computer
algorithms for processing such data can be developed from
existing pattern recognition theory [2].
There are two principle objectives and three techniques

which are employed in this paper. The objectives are:

1) The development of a working classification algo-
rithm for detection of a nonnormal medical condi-
tion.

2) The demonstration that encoding laboratory records
in accord with the medical training-literature yields
data which satisfy the pattern recognition field
"linear-separability" condition.

The following techniques are used:
1) Quantitative representation of text-described prop-

erties of two waveforms (records of time variations).
2) Repeated correction of a linear decision-rule until

it stabilizes and correctly classifies an initial set of
data.

3) Test of our classification rule on a new set of data.

All the techniques are algorithmic or are described by a
flow chart showing how hand-derived data can be de-
veloped algorithmically. Several alternate starting values,
data sequences, and increment rates were studied in the
computations. Specific medical ambiguities were noted
in the few anomalous cases.
The paper is organized into four other major sections.

Section 2 describes the biomedical problem and draws
upon the medical training-literature. Section 3 applies
and summarizes the patterii recognition theory and
explains how the numerical data ("patterns") were
derived from Cedars-Sinai strip-chart recordings. Section
4 presents our computational results. This section explains
in detail how the mathematical pattern recognition theory
summarized in Section 3 was applied to the derived data
set. In addition, computer experiments with the pattern
recognition algorithms we used and test results from
classifying new data are presented here. Section 5 presents
conclusions regarding the suitability of these techniques
for on-line FHR monitoring.

2.0 BIOMEDICAL CONSIDERATIONS
FHR patterns may be classified as either periodic or

baseline. Periodic FHR changes are those which occur
with contractions. Baseline changes are those which occur
be'tween periodic, FHR changes or between contractions
if no periodic FHR changes are present or When the patient
is not in labor. Periodic FHR patterns are classified
further as:

I) normal
2) early deceleration (ED)
3) late deceleration (LD)
4) variable deceleration (VD)
5) acceleration [3], [4].
A normal FHR pattern has the range 120 to 160 beats

per minute (bpm), and there is no FHR-slowing asso-
ciated with contractions. (See Fig. 1.)
The ED pattern is characterized by an onset of de-

celeration that begins early in the contracting phase of
the uterus. The heart rate returns to normal before the
end of the contraction. Usually, the FHR does not go
lower than 100 bpm and the deceleration has a duration
of less than 90 sec. The baseline FHR is in the normal
range. Clinically, ED is associated with head compression.
It is considered innocuous. (See Fig. 2.)
LD has an onset late in the contracting phase of the

uterus. The heart rate recovers well after the contraction
has ended. It usually ranges from 120 to 180 bpm but
may drop as low as 60 bpm in severe cases. Like ED, LD
usually has a less than 90 sec duration. The baseline
FHR, however is in the high normal range. The LD
pattern is attributed to uteroplacental insufficiency. It is
considered ominous. (See Fig. 3.)
VD has an onset that bears a variable time-relationship

to the beginning of the associated UC. It usually falls
below 100 bpm and frequently drops as low as 50 to 60
bpm. The deceleration has a duration that varies from a
few seconds to minutes. The baseline FHR associated
with it is in the normal or low normal range. It is thought
to be caused by umbilical cord compression. VD is asso-
ciated with about 90% of the patients where a clinical
diagnosis of fetal distress is made [3]. (See Fig. 4.)
The two major types of FHR acceleration are:
a) a consistent uniform FHR acceleration which re-

flects the shape of the associated UC. This type of ac-
celeration may merge to cause a rise in baseline FHR.

b) transitory, variable FHR acceleration which pre-
cedes and follows VD [4].

Accelerations have not been associated with fetal
distress.

Slight irregularities are an integral part of the normal
FHR: The FHR curve is not a smooth one (see Fig. 1).
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Fig. 1. Fetal heart rate and u-terine contraction data (from Cedars-
Sinai Medical Center strip-chart recordings).
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The transitory fluctuations reflect the momentary balance
of the systems which provide nervous control of the
heart. Cardiac rate is controlled by a cardio-inhibitor
and a cardio-accelerator center which are located in the
medulla. Control is exerted through different autonomic
nervous pathways; parasympathetic via the vagus nerve
and sympathetic via the cervical ganglia and cardiac
nerves. The end result of the interaction of the two systems
is minor irregularities in beat-to-beat heart rate which
reflect the reactivity of each system at that moment.
Factors which affect the central or peripheral portions
of the system therefore alter the degree of variability
of the heart rate. For example, the beat-to-beat FHR
pattern of an irmmature fetus, where the autonomic nerv-
ous system is less developed, is less irregular than that of a
term infant [5].

3.0 MATHEMATICAL PATTERN RECOGNITION
This section applies the theoretical tools of mathe-

matical pattern recognition to pairs of fetal heart rate
and uterine contraction time-series data (strip-chart
recordings obtained from Cedars-Sinai Medical Center).
The objectives of this section are:

1. To develop a useful encoding of the data (i.e., one
which facilitates computer processing for a representative
biomedical classification problem).

2. To describe how the proposed encoding can be
obtained by computer processing of digitized data (i.e.,
sampled FHR and UC data which could be obtained in
an on-line system).

3. To derive a test set by hand methods from strip-
chart data. This set is to be (arbitrarily) divided into
two parts: training and evaluation data.

4. To describe the application of the pattern recognition
theory to the test data for a representative biomedical
classification task (here, the monitoring decision "omi-
nous/questionablel or innocuous?")
The last objective includes the following subsidiary

goals:
1. To bring a wider appreciation of the simplicity and

utility of the pattern recognition algorithms. (These are
generically described as nonparametric learning methods;
they provide a means for deriving a decision rule from
several instances of multivariate data without requiring
any statistical assumptions.2)

2. To demonstrate sufficient classification accuracy
on the evaluation data for the given task. to warrant
further investigation leading to an on-line system.

Ominous and questionable data were grouped together as a
single alternative.

2 However, some noteworthy similarities* to traditional dis-
criminant analysis method occur in theory and practice.
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The following subsections are entitled with the corre-
sponding mathematical pattern recognition terminology.
"'Features" are the useful data encoding and represent
the visual properties perceived by an observer (physician)
in the actual record. "Feature extraction" concerns
organization of numerical data (typically that obtained
from an analog to digital converter) to obtain the more
useful feature values. "Pattern vectors" are sets of the
different features obtained from a single instance (or
individual). "Pattern classification" describes the general
process of incorporating the individual pattern vectors
into a decision rule (sometimes called "learning," "train-
ing," or "algorithmic adaptation"). This subsection
reviews the theoretical methods which were applied to
derive the detailed computational results presented in
Section 4.

3.1 Features
In the preceding section, the different FHR-UC pat-

terns were brieflv described. From the characterizations
of FHR-UC patterns [2] [4] the followving seem to be
natural choices of features that describe the FHR type:

1) fl th - tc, the time that elapses between the
start of the UC and the beginning of the deceleration
(see Fig. 5).

2) f2 = the FHR at time th. This gives an indication
of the baseline FHR (see Fig. 6).

3) f3 = the minimum FHR (see Fig. 6).
4) f4 t2 t1,lwhich indicates how long the FHR

remains less than or equal to 100 bpm (see Fig. 7).
5) f5 = te - th, the duration of the deceleration (see

Fig. 7).
A significant problem in FHR pattern recognition is

the selection of an appropriate set of features. The prob-
lem is to obtain features which characterize the different
patterns so that they can be classified correctlV solely
from feature-measurements. At the same time, the cost of
extracting these features from each sample should be
reasonable.
The simultaneous use of features is essential. A monitor-

ing system wherein an alarm is signaled only when the
FHR falls below (or above) certain levels, say 100 bpm
and 180 bpm, respectively, is insufficient. For example,
LD which is an ominous pattern that usually ranges from
120 to 180 bpm cannot be detected. The level to which
the FHR falls (or rises) is only one of the features used in
classifying FHR patterns. Features like fi to f5 must be
taken into consideration for more accurate FHR pattern
classification.
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3.2 Feature Extraction
The following discussion describes a method for auto-

nmatic extraction of the features to f5. Suppose that the
FUHR data have been digitized. To find the point where
the contraction starts, the crossing-level method [6] can

be used. Approximate the beginning of the UC by To
(see Fig. 8), the time at which the intrauterine pressure
exceeds the meanually chosen level PO, and sample the
FHR, r, (bpm), at To.
Without any loss of generality, suppose that the digit-

Fig. 8. Obtaining features from the crossing-level method.

ized sample points come at the rate of 1/sec. Then ri
will denote the FHR i seconds after r, and ri i =
0J1,2,-*-* will be the sequence of FHR sanmple points.

In a personal communication with S. Y. Yeh, M.D., it
was pointed out that the FHR curve is not as well-behaved
and predictable as the UC curve. Hence the method of
manually choosing an FHR crossing level to find the
point where the FHR starts decelerating does not work
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as well as setting up P0, does in finding To to approximate
the beginning of the UC.
The crossing-level method can be used to determine

fA [6] the total amount of time that the FHR is less than
or equal to 100 bpm. The following flowchart (Fig. 9)
sununarizes a suggested procedure for extracting the
features fi, f2, f3, and f,.
3.3 Pattern Vectors

Consideration of FHR strip-chart recordings from the
Cedars-Sinai Medical Center and [7] and [8] led to
measurement of the features fi to f5 for each of 17 FHR
patterns associated with a UC and expression of the data
as 5-component vectors of the forrn (ft, f2, fs, f4, f5). The
17 classified pattern vectors are as follows:

I. Acceleration
(0, 140, 140, 0, 0)

II. Normal
(0, 135, 135, 0, 0)
(0, 130, 125, 0, 12)

III. Early Deceleration
(0, 139, 126, 0, 72)
(0, 1a0, 140, 0, 72)
(6, 138, 127, 0, 60)
(0, 140, 120, 0, 72)

IV. Late Deceleration
A. Mild

(58, 148, 130, 0, 78)
(36, 140, 118, 0, 84)

B. Severe and Severe with Variable Deceleration
(40, 135, 85, 34, 96)
(48, 180, 145, 0, 84)

V. Variable Deceleration
A. Mild

(24, 139, 80, 10, 24)
(12, 140, 80, 16, 90)

B. Severe
(12, 120, 60, 20, 36)
(18, 160, 70, 40, 72)
(18, 135, 5, 48, 66)
(0, 150, 60, 42, 72).

The 17 patterns were grouped into two classes. Class 1
consisted of the ominous and the questionable (and, there-
fore, requiring closer observation) patterns, namely,
LD and VD. Mild VD is considered questionable while
mild and severe LD and severe VD are considered omi-
nous. Class 2 consisted of the innocuous patterns, namely
normal, acceleration, and ED.

3.4 Pattern Classification
This section summarizes standard pattern recognition

techniques and materials from [2] and [9]. In particular,
a onie-at-a-time algorithm [2] for generating a linear
discriminant3 is presented.

Let there be two classes C1 and C2 such that Si and S2
are sets of classified samples4 from C1 and C2, respectively,
i.e.,

Si = {x'(1),x22, * ,XIX C C1

3In spite of the use of a statistical term, no assumptions regard-
ing the statistics of pattern vectors or features are made. (It is con-
ventional in pattern recognition theory to use the statistical term
"discriminant" in this way.)
4Sometimes called the "'learning set" or "training data" in the

pattern recognition literature.
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and
S = {XP(2)2X2)I. *Xm(2)} C C2

where each xi(i) is a pattern vector whose components are

features of the sample it represents. If there are n features,
i.e., if each xi() has n components, then, ideally, what is
wanted is a hyperplane separating SI and S2 such that
for any element xi() C S1,

w xi(l) + Wn,1 > 0

and for any elementX,(2) E S2,

W-Xi(2) + Wn+1 <

where w = (wI,w2,..- Wn).
It is now possible to formulate the decision rule that

for any pattern vector y of unknown classification
w-y + Wn+1 > 0 ==>Y C Cl

and
Way + Wn+1 < =:y E C2.

If w-y + wn+l = 0, the decision will usually depend
upon the particular application. Usually, it is more dan-
gerous to misclassify an element of one class than the
other. For example, in the medical monitoring problem,
misclassifying an innocuous pattern as belonging to class
1 and sounding an alarrm is preferable to letting an omi-
nous pattern belonging to class 1 pass unnoticed. Hence, if
w y + w1+, = 0, for some FHR pattern vector y, it is
preferable to conclude that y E class 1.

Consider now the sets of augmented samples, (n + 1)-
vectors:

S1A { (x(1),1) xj'EM SI}

and

S2A = {(x,(2),1) I Xi(2) C S21.

Let W = (w,w.+i) and Y = (y,l). Using this augmented
notation yields the following decision rule which is equiva-
lent to the one stated earlier:

W-Y> O=>y E C0
and

W-Y<O>yC C2.

It is easy to see that if xi(2) is one of the classi-
fied samples from C2, then W. (x(2),1) < 0, and hence
W. (- (x,(2),1)) > 0. It will be convenient to define the
set 8 = S1A U (-S2A), where -S2A consists of the nega-
tive of the elements of 82A.

Consider the following one-at-a-time algorithm [2],
also referred to as the fixed-increment error-correction
procedure [9]:

W(U) if W(t). Y(i) > O

w(i+l)
WUi) + CY(i) if W(i) * y(t) < 0}

Nvhere c is a positive constant, Y(i) e S, and as i increases
Y(i) cycles through the elements of S. (For S as the "train-
ing set," let an infinite sequence of elements of S which
has any one element infinitely often, be called a training
sequence, and denote it by 8).
That this algorithm yields the desired weight vector W

after a finite number of steps is justified by the following
theorem [9]:

Let the training subsets Si and S2 be linearly separable.
Let S. be the weight vector sequence generated by a
training sequence obtained using S. If the fixed-increment
error correction procedure beginning with some initial
weight vector W(°) is used, then for some finite index
k, W(k) = W(k+l) = W(k+2) =...

This theorem, together with a corresponding one for
the N-class problem, are proven in [9].
The heuristic justification is that if W() - Y(i) < 0 and

we set W(i±1) = W(i) + cY(i), then W(i+±)-y(i)=W= -

Y(i) + cY(i) Y)Y. Therefore, W(i+l). Y(i) > W(i) y(i) and
the sample Y(i) E S is more likely to be on the positive
side of the hyperplane W(i--) -X = 0 than of W -X = 0,
and the goal is a hyperplane W.X = 0 with all elements
of S on its positive side.

4. RESULTS
Three training sequences 81, S2 and 83, were generated

from the set of 17 FHR pattern vectors. These are shown
in Table 1.

Starting with W(°) = (1,.5,-1,0,0) using the sequence
81, and the correction increment c- .1, we found that
the weight vector W = (88.8,4.7,-43,6,28.2,-.1) sepa-
rated the two classes of patterns perfectly, after 45
steps. That is, 45 weight vectors were generated by the
algorithm as it cycled through 81 until determining a hyp-
erplane which separated classes 1 and 2.
Table II shows four values of W obtained by using

different training sequences and different values of W(0)
and c. The number of steps in finding each weight vector
W is also indicated. Fewer steps were needed for each
of the other three combinations of Sj, W(o), and c (8, 6,
and 6 compared to 45).
The weight vectors W1, W2, W3 and W4 (see Table II

for numerical values) were used to classify 14 new samples,
of which 9 belonged to class 1 (7 ominous and 2 question-
able) and 5 belonged to class 2 (innocuous). Table III
shows the results.

All four weight vectors W1, W2, W3, W4, misclassified

TABLE I
TRAINING SEQUENCES

Si = Y(); k = 1,2,..., i = k MOD 17},j = 1,2,3

Order for Order for Order for
Pattern Vectors Y(i) 8 83

1 (0 -140, -140, 0, 0, -1) 1 11
2 (0, -13a5 -135, 0, 0, -1) 3 12
3 (0, -130, -125, 0 -12 -1) 5 13
4 (0, -139, -126, 0, -72, -1) 7 14
5 (0 -150, -140, 0, -72, -1) 9 1.5
6 (-6, -138, -127, 0, -60, -1) 11 16
7 (0, -140, -120, 0, -72, -1) 1.3 17
8 (58, 148, 130, 0, 78, 1 ) 2 1
9 (36, 140, 118, 0, 84, 1) 4 2
10 (40, 135, 85, 34, 96, 1) 6 3
11 (48, 180, 145, 0, 84, 1) 8 4
12 (24, 139, 80, 10, 24, 1) 10 5
13 (12, 140, 80, 16, 90, 1) 12 6
14 (12, 120, 60, 20, 36, 1) 14 7
15 (18, 160, 70, 40, 72, 1) 15 8
16 (18, 135, 55, 48, 66, 1) 16 9
17 (0, 150, 60, 42, 72, 1) 17 10
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TABLE II
VALUES OF WEIGHT VECTOR W CORRESPONDING TO DIFFERENT
VALUES OF C, INITIAL WEIGHT VECTORS, AND TRAINING SEQUENCES

Number
Training of

W c W(°) Sequence Steps

W = (88.8, 4.7, .1 (1, .5, -1, 1, 0, 0) Si or 83 45
-43, 6, 28.2,
- .1)

W2 = (12.4, 4.7, .1 (1, .5, -1, 1, 0, 0) 82 8
-10.5, 3.6, 6.6,
0)

Ws = (11.2, 4.5, .1 (0, 1, -1, 0, 1, 0) 82 6
-9.1, 4.4, 5.8,
0)

W4 = (56, 18.5, .5 (0, 1, -1, 0, 1, 0) 82 6
-41.5, 22, 25, 0)

TABLE III
CLASSIFICATION ERRORS OF W1, W2, W3, W4, ON 14 NEW SAMPLE

PATTERN VECTORS

Number of Misclassified Number of Misclassified
Weight Vector Samples from Class 1 Samples from Class 2

Wi 1 0
W2 1 2
W3 1 2
W4 1 2

the same pattern vector out of 9 from class 1. The mis-
classified pattern vector (14, 138, 100, 1, 20) represented
an FHR pattern of mild variable deceleration ("ques-
tionable").

W2, W3, and W4 also misclassified the same two new

samples from class 2, both of which were early deceleration
patterns represented by the vectors (6, 132, 95, 30, 66)
and (6, 116, 85, 43, 78).
The sample (14, 138, 100, 1, 20) had a minimum of

100 bpm and stayed there for about a second only. On
the other hand, the pattern vectors (6, 132, 95, 30, 66)
and (6, 116, 85, 43, 78) both dropped below the 100 level
for several seconds. (6, 116, 85, 43, 78) represented a

pattern with a baseline FHR that is slightly out of the
normal range. Thus, each of the three misclassified samples

was actually atypical of the class to which it belonged.
None of the 7 ominous patterns was misclassified by any
of the weight vectors W1, W2, W3, W4.

5. CONCLUSIONS
The results indicate the potential applicability of

algorithmically adapted pattern analysis (nonparametric
learning of linear discriminants) in on-line FHR monitor-
ing. This paper has demnonstrated that FHR patternis
can be classified by combining features derived from
uterine contraction and heart rate data, and that such
features can be derived from moniitoring signals bv cur-
rently available technology (hardware exists, software is
proposed here). Although actual conmputations involved
the IBM 360/91, the progranm could be implemented on a
small computer. Hence, the techniques presented could
be applied in general clinical situations for relatively
modest expense, considering the amount of technical
sophistication involved, i.e., tlle simnultaneous use of
manv parameters to make a clinical decision. The medical
anomalies found in the relatively few misclassified pat-
terns and the perfect record of success in classifying
medically ominous test cases support the applicability
of these techniques to on-line monitoring.
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