Today we are faced with numerous ill-understood ecological, evolutionary or biological phenomena. Examples are global warming, amphibian disappearances, birds as descendants of theropods, and ethnobotany: medicines found by tribal civilizations. Pattern recognition, a field rooted in understanding how computers can act in situations where human decision-making is central, offers methods that can assist in dealing with such topics. For this abstract we summarize the range of phenomena to which we seek to apply our skills by using the term "Biosphere" as a shorthand symbol.
The fundamental issue in pattern recognition is set membership. In the Biosphere it is common to rely on a means for grouping that has dominated thought for more than two centuries, the system of Linnaeus. "Carl Linne', better known to the scientific community by his Latinized name Carolus Linnaeus, is often called the Father of Taxonomy. His system for naming, ranking, and classifying organisms is still in wide use today (with many changes). His ideas on classification have influenced generations of biologists during and after his own lifetime, even those opposed to the philosophical and theological roots of his work. ... specific details of Linnaeus's plant classification have largely been abandoned. Later systems of classification largely follow John Ray's practice of using morphological evidence from all parts of the organism in all stages of its development. What has survived of the Linnean system is its method of hierarchical classification and custom of binomial nomenclature." [1]
The nature of set membership was explored via an unusual method in work by the Russian mathematician Bongard. His one hundred problems [2] present a logical set exemplifying the complexity of human thought about grouping. In just six of the hundred two of us found these modes of organization: proximity, inclusion, size similarity/difference, quantity, number of inclusions, location of a general feature at top or bottom. All three collaborators are fully aware of the impact of Bongard's work. It has been one central consideration in the work of Douglas R. Hofstadter [3]. The issue that Bongard highlighted is of concept formation: in other words, grouping is associated with thought. For the collaboration we need to place this notion within pattern recognition and theory of classification.
Classification plays an important role in all fields of science. That process involves systematization of scientific information. It makes such information well-suited for human understanding, application, and transmission. Indeed accepted classification schema are the basis of specific scientific laws [4]. However, there is a vast wealth of human cultural experience from which pre-scientific thought distilled principles close to or identical with such laws.
There are two basic kinds of classification problems: direct, aimed at construction of an appropriate classification for a given set of data objects, i.e., a partition into sets or fuzzy sets; and inverse. In inverse classification the goal is to assign a given object to some class in a previously-established classification. Bongard extended Shannon's theory of information and communication to problems of pattern recognition. His fundamental achievement based information utility on more than probabilities, specifically using the nature of the problem under consideration. In applying this approach an essential component is an information measure. In [5] we propose spatially-oriented measures of information. This work will involve inverse classification problems coincident with biological sensing pattern recognition.
In our work we will focus on three issues. The first is how to build on the
two elements in the binomial nomenclature without accepting bias from past
analyses. Here the idea is to accept computations based on a multiplicity of
factors without first fitting them into the hierarchical Linnean system. The
second involves a key aspect of pattern recognition that Bongard used in
his pioneering work. This can be put most simply by observing that
statistical methods are clearly quantitative but that many recognition
decisions involve structure. That means that relation is as important as
quantity. Hence we will investigate the following question. "What combination
of relational and quantitative items best characterizes classification in the
biosphere?" Our third activity involves pattern sensing in nature, both
involving evolutionary/survival and cultural activities. We will work on
environmental awareness of frogs in physiological and operational aspects
of their ability to recognize audio patterns [6]. We will investigate
multisite computing to deal with
involving human cultural evolution [7] issues ranging over several
disciplines. The focus will remain on survival (e.g., food production)
enhancement through communications. We will consider human patterns and
use computer systems to amplify specialist models to account for
interdisciplinary views based on the overall model set membership
classification and recognition theory.
Working Across Discipline Boundaries
The work is inherently interdisciplinary: it includes fundamentals in
theoretical aspects of pattern recognition; two of us (Klinger and Bergin)
are involved in ongoing research that relates to human genome mapping.
Specifically, the location of a 65-digit number satisfying certain binary
constraints where until 1999 only one 10-digit numeral was known to do that.
For detail on this issue please see [8].
Recent joint activity by Allen Klinger, Professor of Engineering and
Applied Science, UCLA and Nikos Salingaros, Professor of Mathematics at
UTSA (University of Texas at San Antonio) concerning information and
order in spatial fields will be used to start an experimental process.
This process involves a diversity measurement called life introduced by
Salingaros and applied by him to many cultural areas of human endeavor.
Please see [9].
Peter Narins, UCLA Professor of Physiological Science has an active program
investigating the physiology of response to audio signal by biological
entities. The electrical measurements of sound patterns is a fundamental
topic in the UCLA Computer Science Department graduate course 276A
Pattern Analysis and Machine Intelligence offered annually by Allen Klinger.
Mark Burgin, Professor of Mathematics is capable of teaching and
contributing to both this course and the audio signal research through
his past activity. He and Allen Klinger began a recent effort to
investigate the cultural and physical reasons for the importance of
triad [10].
Evolutionary and survival relationships of species have been thoroughly described from a multidisciplinary viewpoint in [7]. We know that sensing and communication abilities were an essential step in human evolution. Further the ability to locate key information such as the availability of a food resource was an ultimate cause (term used in [7]) of the survival path leading to cultures becoming dominant. We seek to investigate signals' role in supporting domestication of plants and animals using pattern recognition and classification methodologies.
In [7] survival is described in terms of a culture making the best choice among different means of obtaining some overall success in garnering food resources. For example, low success rate from large animal hunting which yields a huge bounty on some days and nothing on others. This is compared with a comparitively conservative gathering strategy that yields on the average an aggregate amount of food great than that from hunting. Making a best choice between essentially random outcomes is similar to the pattern recognition and classification systems that use probability to place an unknown-category instance. Equally striking with these abstract issues are the range of human activities where pre-scientific societies accurately estimated numeric quantity in geometric (including astronomical event) and stochastic domains (such as card game poker hand probabilities)
We propose to utilize a new computing mode, multisite coordinated calculation, to simulate cultural evolution of fundamental mathematical concepts. That work is inherently interdisciplinary with computing and mathematics comprising a bit over half the effort, divided roughly equally between the former, essentially an engineering discipline, and the "queen of the sciences." The remainder of this effort involves historical, linguistic and art/architectural issues. Such matters constitute one of the key backgrounds of Allen Klinger and Nikos Salingaros. Such UCLA faculty as Jared Diamond and Peter Ladefoged in physiology and linguistics, respectively, have contributed to the knowledge of the author of this pre-proposal. Related references include [11-13]. Images play an important role in the evolution of human cultures from seeking to govern natural forces by magic to understanding them through science. See e.g., the image from [14] (also reproduced in [13]) [15]. But as [16] so convincingly demonstrates, computer-generation of designs like the [15] mandala-like instance, is an engineering reality today.
Finally, the issues we will cover are notably well-suited to multisite
computing. UCLA is currently pursuing a patent following a disclosure by
Allen Klinger and Byron Darrah. This involves innovations involving coding and
software that enable cooperative and coordinated computing activities,
and provides a means for enabling greater
functionality in networked computers. We have new
methods for incorporating multi-site computing in programs without
requiring special administrative activity that would be particularly
valuable in a multidisciplinary investigation. An instance of that is
the issue of carbon-dating of human-settlement remains to determine
domestication of food resources. For example, the Inca culture with only
knots for number-records maintained a tax system over vast distances.
Their food supply included the pepper known as chile manzana, the
only domesticated variety known which does not now have a wild
precursor. We will be able to bring multiply-skilled computer
professionals into the process of investigating carbon-dating,
number-system, and biological-relations among plants simultaneously
using our multi-site computing methodology.
Packard Foundation Pre-Proposal Research Plan
This draft responds to material presented at
http://www.packard.org/html/interdisciplinary_science_prog.html . The effort
would use multisite computing based on new computer software technology
developed in the UCLA Computer Science Department in 1998 by Byron
Darrah and Allen Klinger, with support from Bezu Arega, and fundamental
mathematical concepts in pattern analysis, classification, set
theory, and number theory, by individuals listed below, including Peter
Montgomery, Mark Burgin, Mikhail M. Bongard, and Douglas Hofstadter.
The research would begin by developing four-person teams that include
at least one computer-knowledgeable graduate student and
two faculty. Selection of a cultural, historical, or physiological issue
related to biosphere evolution or simply change is the first task
for each team. The next stage involves establishing a simulation using
multisite methods to replicate what could have occurred in situations
where varied influences compete on a statistical basis. Finally a
classification scheme would be constructed to model the eventual
outcomes. That scheme and data yielded by the computational experiments
would be presented to the entire participant group, first through weekly
electronic exchanges, then through quarterly research meetings, and
finally via circulation of a report publication.
Name | Web Page | University |
Burgin, Mark | http://www.math.ucla.edu/~mburgin/ | UCLA |
Klinger, Allen | http://www.cs.ucla.edu/~klinger | UCLA |
Narins, Peter M. | http://www.lifesci.ucla.edu/physci/html/narins.htm | UCLA |
Salingaros, Nikos | http://sphere.math.utsa.edu/sphere/salingar/ | UTSA |
Name | Department/Area | Title |
Jared Diamond | Physiology | Professor |
Peter Ladefoged | Linguitics | Professor |
Name | Email Address | Department | ||
Veronica Egan | egan@chem.ucla.edu | Chemistry | ||
Mounitra Chatterji | mounitra@ucla.edu | Electrical Engineering | ||
Chris Furmanski | furmansk@ucla.edu | Psychology/Neuroscience | ||
Joe Albert Garcia | jagarcia@ucla.edu | Clinical Psychology | ||
John Gianvittorio | johng@ee.ucla.edu | Electrical Engineering | ||
Tiffany Glassman | glassman@astro.ucla.edu | Astronomy | ||
Heather Lin | hlin@ess.ucla.edu | Earth & Space Science | ||
Derek Stevens | dstevens@chem.ucla.edu | Chemistry | ||
April Tse | aktse@janet.ee.ucla.edu | Electrical Engineering | ||
Byron Darrah | darrah@cs.ucla.edu, bdarrah@earthlink.net | Computer Science | ||
Eskandar Ensafi | ensafi@spacecomputer.com, esky@marathon.cs.ucla.edu | Computer Science | ||
Shervin Farivar | sfariv@ctp.com | Computer Science | ||
Bezu Arega | bezu@ucla.edu | Computer Science | ||
Navid Aghdaie | navid@seas.ucla.edu | Electrical Engineering | ||
Zhen Gu | zgu@ucla.edu, zhengu@seas.ucla.edu | Computer Science |