
UNIVERSITY OF CALIFORNIA

Los Angeles

Decomposition Techniques for Learning Graphical
Models

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Khaled Refaat

2015

c© Copyright by

Khaled Refaat

2015

ABSTRACT OF THE DISSERTATION

Decomposition Techniques for Learning Graphical
Models

by

Khaled Refaat
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2015

Professor Adnan Youssef Darwiche, Chair

Probabilistic graphical models are ubiquitous tools for reasoning under uncertainty that

have been useful to many fields. Despite their importance, learning these models from

incomplete data remains a challenge, due to the high non-convexity of the correspond-

ing optimization problem. Iterative algorithms, such as Expectation Maximization

(EM), are typically used for learning from incomplete data, yet these approaches tend

to exhibit behaviors that are independent of the degree of incompleteness in the data.

We argue in this thesis that the degree of incompleteness is a main indicator of the diffi-

culty of a learning problem. As such, we investigate a number of learning approaches,

which are driven and motivated by this degree. In particular, we show that by exploit-

ing certain patterns in the dataset, the learning problem can be decomposed into smaller

and independent learning problems, which can lead to orders-of-magnitude speed-up in

learning time. Moreover, we propose a new class of algorithms for learning graphical

models, whose learned parameters and running time improve as the data becomes less

incomplete.

ii

The dissertation of Khaled Refaat is approved.

David Heckerman

Lieven Vandenberghe

Richard Korf

Stott Parker

Adnan Youssef Darwiche, Committee Chair

University of California, Los Angeles

2015

iii

To my mother. . .

iv

TABLE OF CONTENTS

1 Introduction . 1

2 Technical Preliminaries . 6

2.1 Bayesian Networks . 6

2.2 Markov Random Fields . 9

2.3 Learning Graphical Models . 10

2.3.1 Learning Parameters in Bayesian Networks 11

2.3.2 Learning Parameters in MRFs 13

2.3.3 Soft Evidence . 14

3 EDML: A Method for Learning Parameters in Bayesian Networks . . . 16

3.1 Introduction . 16

3.2 Technical Preliminaries . 18

3.3 An Overview of EDML . 19

3.3.1 Estimation from Soft Observations 20

3.3.2 Examples as Soft Observations 21

3.4 Estimation from Soft Observations . 22

3.5 The Origin of EDML . 23

3.5.1 Introducing Generators . 25

3.5.2 Deleting Copy Edges . 26

3.5.3 Parameter & Example Islands 27

3.5.4 Child-To-Parent Compensation 28

3.5.5 Parent-To-Child Compensation 28

v

3.6 Some Properties of EDML . 30

3.7 More on Convergence . 32

3.8 Related Work . 35

4 Advances and Theoretical Insight into EDML 39

4.1 Introduction . 39

4.2 Multivalued EDML . 40

4.2.1 Examples as Soft Evidence . 41

4.2.2 Learning from Soft Evidence 42

4.3 Simple EDML . 43

4.4 EDML Fixed Points . 46

4.5 Hybrid EDML/EM . 48

4.6 Experimental Results . 49

4.6.1 Experiments I . 50

4.6.2 Experiments II . 51

5 Generalized EDML for Learning Parameters in Directed and Undirected

Graphical Models . 55

5.1 Introduction . 55

5.2 An Approximate Optimization of Real-Valued Functions 56

5.3 EDML for Bayesian Networks . 58

5.3.1 Form . 59

5.3.2 Semantics . 59

5.3.3 Properties . 61

5.3.4 Finding the Unique Optima 61

vi

5.3.5 Connection to Previous Work 62

5.4 EDML for Undirected Models . 63

5.5 EDML under Complete Data . 65

5.6 Experimental Results . 66

5.7 Related Work . 68

5.8 Conclusion . 69

6 Decomposing Parameter Estimation Problems in Bayesian Networks . . 71

6.1 Introduction . 71

6.2 Decomposing the Learning Problem 72

6.3 Soundness . 76

6.4 The Computational Benefit of Decomposition 79

6.5 Related Work . 84

6.6 Conclusion . 85

7 Data Compression in Learning MRFs 86

7.1 Introduction . 86

7.2 Learning Parameters . 87

7.3 Motivation . 88

7.4 Data Decomposition . 90

7.5 Experimental Results . 92

7.6 Soundness . 96

7.6.1 Parameter Terms . 97

7.7 Related Work . 100

7.8 Conclusion . 100

vii

8 Summary of Contributions . 102

A Proofs of Chapter 4 . 103

B Proofs of Chapter 5 . 107

C Proofs of Chapter 6 . 112

C.1 Decomposing Stationary Points . 113

Bibliography . 114

viii

LIST OF FIGURES

2.1 A Bayesian network for the Burglary problem 8

2.2 An MRF for the Burglary problem . 11

2.3 A Bayesian network for the Burglary problem with soft evidence on

Earthquake . 15

3.1 Estimation given independent observations. 22

3.2 A meta network induced from a base network S←−H−→E. The CPTs

here are based on standard semantics; see, e.g., (Darwiche, 2009, Ch.

18). 24

3.3 Introducing generators into a meta network and then deleting copy

edges from the resulting meta network, which leads to introducing

clones. 25

3.4 An edge-deleted network obtained from the meta network in Figure 3.2

found by: (1) adding generator variables, (2) deleting copy edges, and

(3) adding cloned generators. The figure highlights the island for ex-

ample d2, and the island for parameter θs|h. 27

3.5 A pruning of the meta network in Figure 3.2 given H1 = h̄, H2 =h and

H3 = h̄. 29

3.6 Quality of parameter estimates over iterations (left column) and time

(right column). Going right on the x-axis, we have increasing itera-

tions and time. Going up on the y-axis, we have increasing quality of

parameter estimates. EDML is depicted with a solid red line, and EM

with a dashed black line. 36

ix

3.7 Quality of parameter estimates over iterations (left column) and time

(right column). Going right on the x-axis, we have increasing iterations

and time. Going up the y-axis, we have increasing quality of parameter

estimates. EDML is depicted with a solid red line, and EM with a

dashed black line. 37

3.8 Quality of EDML estimates over 74 networks (3 cases each) induced

from binary haplotype data. Going right on the x-axis, we have increas-

ing iterations. Going up the y-axis, we have an increasing percentage

of instances where EDML’s estimates were no worse than those given

by EM. 38

4.1 Learning from independent, hard observations X1, . . . , XN . The dis-

tribution of variable X is specified by parameter set θX 42

4.2 Learning from independent, soft observations η1, . . . , ηN . The distribu-

tion of variable X is specified by parameter set θX 43

4.3 MAP Error of parameter estimates over iterations. Going right on the

x-axis, we have increasing iterations. Going up on the y-axis, we have

increasing error. EDML is depicted with a solid red line, and EM with

a dashed black line. The curves are, in pairs, for the networks: andes,

asia, diagnose, and alarm. Each pair of curves represents a selection of

two different datasets of size 210. 49

4.4 MAP of parameter estimates over time. Going right on the x-axis, we

have increasing time (ms). Going up on the y-axis, we have increasing

MAP. Hybrid EDML is depicted with a solid red line, EM with a dashed

black line, and EDML with a blue dotted dashed line. The curves are

from left to right for the following problems: alarm with hiding 25%,

win95pts with hiding 35%, and water with hiding 50%. 51

x

5.1 Estimation given independent soft observations. 60

6.1 Identifying components of network G given O = {V,X,Z}. 73

6.2 The sub-networks induced by adding boundary variables to compo-

nents. 74

6.3 Speed-up of D-EM over EM on chain networks: three chains (180,

380, and 500 variables) (left), and tree networks (63, 127, 255, and

511 variables) (right), with three random datasets per network/observed

percentage, and 210 examples per dataset. 80

6.4 Left: Speed-up of D-EM over EM as a function of dataset size. This

is for a chain network with 180 variables, while observing 50% of the

variables. Right Pair: Graphs showing the number of iterations required

by each sub-network, sorted descendingly. The problem is for learning

Network Pigs while observing 90% of the variables, with convergence

based on parameters (left), and on likelihood (right). 82

6.5 Effect of dataset size (log-scale) on learning time in seconds. 83

7.1 The process of identifying graph sub-networks given observed nodes:

2, 3, 4, 5, 7, and 9. Left: 3 × 3 MRF grid. Middle: A graph of

factors, where an edge between two factors exists if they have common

variables. Right: The sub-networks obtained by deleting every edge

between two factors if all their common variables are always observed

in the data. 90

7.2 The speed-up obtained by data decomposition on different percentages

of always observed variables, for 4 different network structures: 9x9

grid, alarm, chain (50 variables), tree (63 variables). 95

xi

7.3 The speed-up obtained by data decomposition on different dataset sizes

in log-scale, for 4 different network structures: 9x9 grid, alarm, chain

(50 variables), tree (63 variables). 96

7.4 Speed-up of Gradient and EM methods (respectively) that use data de-

composition, (allowed 100 iterations) over FastInf EM (allowed 2 iter-

ations) on different dataset sizes in log-scale. Network alarm was used;

20% of the nodes have missing values in the data. 97

7.5 Speed-up of Gradient and EM methods, that use data decomposition,

over different FastInf algorithms on 212 data examples. Network alarm

was used; 20% of the nodes have missing values in the data. 97

xii

LIST OF TABLES

4.1 Speedup results (iterations) . 52

4.2 Speedup results (time) . 53

5.1 Speed-up results of EDML over CG and L-BFGS 70

6.1 Speed-up of D-EM over EM on UAI networks. Three random datasets

per network/observed percentage with 210 examples per dataset. 81

7.1 The execution time taken by the gradient method (without and with

data decomposition), together with the speed-up achieved when data

decomposition is used. 94

xiii

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Adnan

Darwiche, who worked hard with me throughout my PhD, giving me freedom when

appropriate and guidance when necessary. I much appreciated the freedom he gave me

to spend time studying all the mathematical topics I am curious about, even though

many of them were not directly related to our research. I learned from Adnan how to

turn theory to practical algorithms, and how to present my work. Adnan set the bar

very high and always helped get our research in the best possible form. I always felt

that Adnan was a key member in the team before being an advisor.

I was fortunate to work with Arthur Choi throughout my PhD. I always enjoyed

discussing research problems with him. I found Arthur to be a valuable resource to our

research team.

I was lucky to have an outstanding PhD committee including: David Heckerman,

Lieven Vandenberghe, Richard Korf, and Stott Parker. Lieven has introduced me to the

field of optimization and has indirectly contributed to the work in this thesis.

I would also like to thank all the great people I worked with at Google since 2011

in Santa Monica, Mountain View, Zurich, and London; and especially my outstanding

mentors. Furthermore, I am very grateful to my masters advisor, Amir Atiya, for the

great things he taught me throughout the years.

Last but not least, I would like to thank my family and friends for their endless

support.

xiv

VITA

2015 Northrop-Grumman Outstanding Research Award.

2010–2015 Research Assistant, Automated Reasoning Group, UCLA.

2012–2015 Teaching Assistant, Computer Science Department, UCLA.

2011-2014 Research Intern, Google Research.

2010–2012 MSc: University of California, Los Angeles, USA.

2007–2010 MSc: Cairo University, Egypt.

2007–2010 Teaching Assistant, Cairo University, Egypt.

2009 Research Intern, LAAS-CNRS, Toulouse, France.

2007–2009 Research Engineer, IBM, Egypt.

2003–2007 BSc: Cairo University, Egypt.

PUBLICATIONS

Khaled S. Refaat, Adnan Darwiche, An Upper Bound on the Global Optimum in Pa-

rameter Estimation. Conference on Uncertainty in Artificial Intelligence (UAI 2015).

Khaled S. Refaat, Adnan Darwiche, Data Compression for Learning MRF Parameters.

xv

International Joint Conference on Artificial Intelligence (IJCAI 2015).

Khaled S. Refaat, Arthur Choi, Adnan Darwiche, Decomposing Parameter Estimation

Problems. Advances in Neural Information Processing Systems (NIPS 2014).

Khaled S. Refaat, Arthur Choi, Adnan Darwiche, EDML for Learning Parameters in

Directed and Undirected Graphical Models. Advances in Neural Information Process-

ing Systems (NIPS 2013).

Khaled S. Refaat, Sugato Basu, Deirdre O’brien, Liadan O’Callaghan, Large-Scale

Query Understanding. Big Learning Workshop (NIPS 2012), Lake Tahoe, Nevada,

USA, 2012.

Khaled S. Refaat, Arthur Choi, Adnan Darwiche, New Advances and Theoretical In-

sights into EDML. Proceedings of the 28th Conference on Uncertainty in Artificial

Intelligence (UAI 2012), Catalina Island, USA, 2012.

Khaled S. Refaat, Arthur Choi, Adnan Darwiche, EDML: A Method for Learning Pa-

rameters in Bayesian Networks. Proceedings of the 27th Conference on Uncertainty

in Artificial Intelligence (UAI 2011), Barcelona, 2011.

Khaled S. Refaat, Pierre-Emmanuel Hladik, Efficient Stochastic Analysis of Real Time

Systems via Random Sampling. Proceedings of the 22nd Euromicro Conference on

Real-Time Systems (ECRTS 2010), Brussels, 2010, pp. 175-183.

xvi

CHAPTER 1

Introduction

The world is full of uncertainty. Computer systems in many applications need to take

decisions and reason under uncertainty. For example, an autonomous robot explor-

ing Mars may encounter unexpected obstacles, and may need to take critical decisions

while partially observing the environment.

Probability theory has been around for centuries and can be used to effectively

provide answers to probabilistic questions. However, storing probability distributions,

which are required to answer these probabilistic questions, can be problematic for real-

world problems. For example, in an application where we have 100 binary random

variables, the computer needs to store 2100 numbers. This calls for an efficient way

to store probability distributions compactly, and do automated reasoning directly using

such compact representations.

Fortunately, in some cases, there is a way to compactly store a distribution in the

form of a graphical model, which exploits conditional independence assumptions, and

stores the distribution as a graph structure associated with some probabilities, called

parameters. The number of parameters required to populate the graph structure can be

modest compared to the size of the represented probability distribution.

Indeed, graphical models are powerful tools for reasoning under uncertainty, and

have been used in many fields including computer science, cognitive science, statistics,

and philosophy. In particular, graphical models have benefited applications in computer

vision, bioinformatics, natural language processing, and statistical physics; for exam-

ple see (Li, 2001; Yanover, Schueler-Furman, & Weiss, 2007; Lafferty, McCallum, &

1

Pereira, 2001; Marinari, Parisi, & Ruiz-Lorenzo, 1997).

The creation of useful graphical models for real-world problems has been a chal-

lenge. Domain experts crafting models and parameters usually fail to cope with large-

scale problems. Fortunately, due to the wide availability of data, one attractive method

of determining graphical model parameters is to learn them from data.

Learning graphical model parameters from data is typically reduced to finding the

maximum likelihood estimates, which are the estimates that maximize the probability

of observing the data. Such estimates are attractive as they are asymptotically consis-

tent, which means that as the size of the data goes to infinity, the maximum likelihood

estimates converge to the true unknown parameters (Fisher, 1922).

When the data is complete, i.e. has no missing values, learning can be viewed as

solving a convex optimization problem. However, for some types of graphical models,

every step of the optimization requires inference which is #P-hard (Roth, 1996). As

a result, commonly used convex optimization algorithms, such as gradient descent,

conjugate gradient (CG) (Hestenes & Stiefel, 1952), L-BFGS (Liu & Nocedal, 1989),

and Iterative Proportional Fitting (IPF) (Jirousek & Preucil, 1995) can be very slow,

due to the many function evaluations, and therefore inferences, they require.

When the data has missing values, the problem is generally non-convex. In that

case, Expectation Maximization (EM) (Dempster, Laird, & Rubin, 1977; Lauritzen,

1995) has been widely used to get a locally optimal solution. While EM enjoys the

monotonic enhancement property, it can be very slow for large models as it requires

inference at every iteration.

Due to the complexity of learning maximum likelihood estimates, other simpli-

fied methods have been proposed in the literature such as ratio matching (Hyvarinen

& Dayan, 2005), composite maximum likelihood (Varin, Reid, & Firth, 2011), and

contrastive divergence (Hinton, 2000). For relational Markov networks or Markov net-

works that otherwise assume a feature-based representation (Domingos & Lowd, 2009),

2

evaluating the likelihood is typically intractable, in which case one typically optimizes

instead the pseudo-log-likelihood (Besag, 1975). The efficiency gains of these methods

are however counterbalanced by less attractive statistical properties. For more on pa-

rameter estimation in graphical models, see (Koller & Friedman, 2009; Murphy, 2012).

We argue in this thesis that the degree of incompleteness is a main indicator of

the difficulty of a learning problem. As such, we investigate a number of learning

approaches, which are driven and motivated by this degree.

We have proposed the Edge Deletion Maximum Likelihood (EDML) algorithm,

which is used for learning Maximum a Posteriori (MAP) parameters of a Bayesian

network from incomplete data (Choi, Refaat, & Darwiche, 2011; Refaat, Choi, &

Darwiche, 2012). EDML is procedurally very similar to Expectation Maximization

(EM) (Dempster et al., 1977; Lauritzen, 1995), yet it has certain advantages, both theo-

retically and practically. Theoretically, EDML can in certain specialized cases provably

converge in one iteration, whereas EM may require many iterations to solve the same

learning problem. Some empirical evaluations further suggested that EDML and hy-

brid EDML/EM algorithms could find better parameter estimates than vanilla EM, in

fewer iterations and less time. Furthermore, the learned parameters and running time

of EDML improve as the data becomes less incomplete.

EDML was originally derived in terms of approximate inference on a meta-network

used for Bayesian approaches to parameter estimation. This graphical representation

of the estimation problem lent itself to the initial derivation of EDML, as well as to the

identification of certain key theoretical properties, such as the ones we just described.

The formal details, however, can be somewhat tedious, as EDML draws on a number

of different concepts.

Later, we discovered a new perspective on EDML, giving new insights (Refaat,

Choi, & Darwiche, 2013), by relating it to coordinate descent for continuous optimiza-

tion, where sub-problems are parameterized by inference. This new perspective has

a number of advantages. First, it makes immediate some results that were previously

3

obtained for EDML, but through some effort. Second, it facilitates the design of new

EDML algorithms for new classes of models, where graphical formulations of param-

eter estimation, such as meta-networks, are lacking. In particular, we derived a new

parameter estimation algorithm for Markov networks, which is in many ways a more

challenging task, compared to the case of Bayesian networks. Empirically, we find

that EDML is sometimes capable of finding better parameter estimates, under complete

data, in less time than more popular approaches like conjugate-gradient and L-BFGS

methods, and in some cases, an order-of-magnitude faster.

In addition to this, we proposed a method to exactly decompose the problem of

learning Bayesian network parameters from incomplete data into independent learning

problems, which can lead to orders-of-magnitude speed-ups in learning time, without

sacrificing quality (Refaat, Choi, & Darwiche, 2014). In particular, we exploit vari-

ables that are always observed in the dataset to decompose the learning problem. We

show that as a result of this decomposition, the dataset can be compressed and the

decomposed problems can converge independently. Moreover, we show that similar

decomposition techniques can be used to compress the dataset when learning Markov

random fields (MRFs) from incomplete data. We show that compressing the dataset

may allow learning MRFs from large datasets hundreds of times faster.

We next give an overview of each chapter.

In Chapter 2, we give an introduction to graphical models, define our notation, and

discuss the problem of learning graphical model parameters from data.

In Chapter 3, we propose EDML for learning MAP parameters in binary Bayesian

networks under incomplete data. The method assumes Beta priors and can be used

to learn maximum likelihood parameters when the priors are uninformative. EDML

exhibits interesting behaviors, especially when compared to EM. We introduce EDML,

explain its origin, and study some of its properties both analytically and empirically.

In Chapter 4, we provide a simple characterization of EDML that enables us to

4

prove that its fixed points are exactly the stationary points of the likelihood (MAP) func-

tion. Furthermore, we modify EDML to guarantee improving the likelihood (MAP), at

every step. In addition to this, we generalize EDML to support multivalued variables.

We also propose a simple iterative method for solving its optimization problems. Fi-

nally, we provide experimental results suggesting that the modified EDML can be faster

than EM.

In Chapter 5, we propose a greatly simplified perspective on EDML, which casts

it as a general approach to continuous optimization. The new perspective simplifies

some proofs and facilitates the design of EDML algorithms for new graphical models,

leading to a new algorithm for learning parameters in Markov networks. We derive

this algorithm in this chapter, and show empirically that it can sometimes learn esti-

mates more efficiently from complete data, compared to commonly used optimization

methods, such as conjugate gradient and L-BFGS.

In Chapter 6, we propose a technique for decomposing the parameter learning prob-

lem in Bayesian networks into independent learning problems. Our technique applies

to incomplete datasets and exploits variables that are either hidden or observed in the

given dataset. We show empirically that the proposed technique can lead to orders-

of-magnitude savings in learning time. We explain analytically and empirically the

reasons behind our reported savings, and compare the proposed technique to related

ones that are sometimes used by inference algorithms.

In Chapter 7, we propose a technique for decomposing and compressing the dataset

in the parameter learning problem in Markov random fields. Our technique applies to

incomplete datasets and exploits variables that are always observed in the given dataset.

We show that our technique allows exact computation of the gradient and the likeli-

hood, and can lead to orders-of-magnitude savings in learning time. We summarize our

contributions in Chapter 8.

5

CHAPTER 2

Technical Preliminaries

In this chapter, we give an introduction to Bayesian networks and Markov Random

Fields as probabilistic graphical models. After that, we discuss the problem of learning

graphical model parameters from data, and briefly discuss the notion of soft evidence.

2.1 Bayesian Networks

Consider the following scenario, which is due to (Pearl, 1988). Suppose that we have

an alarm in our house that triggers when there is a burglary. However, the alarm could

also trigger if an earthquake occurs. Our neighbor who has a hearing problem will give

us a call in case she hears the alarm. One day we are at work and we receive a call from

our neighbor saying that she heard the alarm. Given that we received this phone call,

what is the probability that there is a burglary?

To answer this and other similar questions, we first need to specify the random

variables of interest in this problem. There is Alarm (A), Burglary (B), Earthquake (E),

and Call (C). Each variable can take one of two values: true or false. For example, E =

true means that an earthquake occurred, whereas E = false means that it did not occur.

Once the variables are known, we need to know the probability of every assignment for

those variables. For example, what is the probability of E = false, B = false, A= false,

C = false? If we are living in a safe place with no earthquakes, and both the alarm and

our neighbor are reliable, then the probability of such an assignment will be close to

1. The probabilities of all assignments is called the joint probability distribution which

6

can take the following form:

E B A C Pr(.)

false false false false 0.8

false false false true 0.05

false false true false 0
...

...
...

...
...

where Pr(.) denotes the probability of a value assignment to each of the variables.

Using probability theory, it is now easy to compute the probability of burglary given

the call.

The joint probability distribution in this problem has 16 entries since we have 4

binary variables. In real world problems, the number of variables could be large leading

to an impractical number of entries in the joint distribution which calls for a compact

representation.

A Bayesian network could be used to provide a compact representation of the joint

distribution. Figure 2.1 shows a Bayesian network for this problem. To build a Bayesian

network, we start with the random variables in the problem definition as our nodes.

After that, a directed edge is added from variable i to variable j if we perceive variable

i to be a direct cause of variable j.

In this problem, both Earthquake and Burglary directly cause the Alarm and there-

fore there are edges from Earthquake to Alarm, and from Burglary to Alarm. In this

case, Earthquake and Burglary are called the parents of Alarm, whereas Alarm is called

their child. Moreover, the Alarm causes the Call and therefore we add an edge from

Alarm to Call. Note that Earthquake and Burglary affects the Call variable. However,

an edge was not added from Earthquake or Burglary to Call because they only affect

the call indirectly (through Alarm). Formally, the graph structure is interpreted as a set

of conditional independence constraints (Pearl, 1988). For example, given A, E and C

are conditionally independent, and also B and C.

7

Earthquake	
(E)	

Call	
(C)	

Alarm	
(A)	

Burglary	
(B)	

Figure 2.1: A Bayesian network for the Burglary problem

After building the Bayesian network structure, we associate with each variable a

table called the conditional probability table (CPT). A CPT of a variable is a conditional

probability distribution of this variable given its parents. For example, for Call, we have

the following CPT:

A C Pr(C|A)

false false 0.7

false true 0.3

true false 0.2

true true 0.8

Such CPTs could be created by a domain expert or by learning techniques, (see

(Darwiche, 2009)). Once all of the CPTs are ready, there are many inference algorithms

that could help us answer questions like the one raised at the beginning of this chapter.

In other words, the CPTs (and conditional independencies) uniquely specify a joint

probability distribution.

Note that the largest CPT will be the CPT of the variable with the largest number

of direct causes (parents), assuming all variables have the same cardinality. However,

the size of this CPT is typically much smaller than that of the joint probability dis-

tribution. The CPT size is exponential in the number of parents, whereas the size of

8

the joint probability distribution is exponential in all of the variables involved in the

problem definition. This is the main advantage of Bayesian networks over the explicit

representation of joint probability distributions.

In our burglary example, we have manually built the network structure using the no-

tion of cause and effect. Sometimes, deriving such relations is problematic or unknown

in advance. For example, in a bioinformatics application, the role of a certain gene in

causing a disease might not be known and therefore we might not be sure if we should

add an edge from this gene to the disease.

One method to create a Bayesian network modeling some system or phenomenon

is to learn the network from data examples. This learning problem was proved to be

NP-Hard (Chickering & Heckerman, 1995).

2.2 Markov Random Fields

We have discussed Bayesian networks as a useful tool for representing a probability

distribution. However, for some domains, being forced to choose a direction for edges

can be rather awkward. For example, when we model an image, we may assume that

the intensity values of neighboring pixels are correlated. We can then create a node

for each pixel, and an edge between each two neighboring pixels. However, deciding

on the direction of each edge may seem unnatural. An alternative is to use a Markov

Random Field (MRF) which is a graphical model where edges do not have directions.

MRFs can be more natural for problems such as image analysis (Murphy, 2012).

In brief, MRFs are probabilistic graphical models that have been useful to many

fields, including computer vision, bioinformatics, natural language processing, and sta-

tistical physics. Like a Bayesian network, an MRF represents a joint probability dis-

tribution compactly using a structure populated with parameters. The structure is an

undirected graph defining conditional independence relationships between variables in

the graph, whereas the parameters consist of a factor for every maximal clique in the

9

graph; see (Kindermann & Snell, 1980; Koller & Friedman, 2009; Murphy, 2012).

Figure 2.2 shows an MRF for the same Burglary problem we discussed. The graph

is now undirected, and every maximal clique is associated with a factor. For example,

the factor over variables A and C can take the form:

A C f(A,C)

false false 7

false true 3

true false 2

true true 8

The number associated with a particular value assignment in the factor denotes the

affinity between these values: the higher the number, the more compatible these values

are. Roughly speaking, f(A,C) asserts that it is more likely that A = true, C = true

than A = true, C = false.

Like in a Bayesian network, the parameters of the MRF defines the local interactions

between directly related variables. In a Bayesian network, we combine the CPTs by

multiplication. However, in an MRF, we have no guarantees that the result of this

process is a normalized joint distribution. Thus, in an MRF, we combine the factors by

multiplication, and then normalize the result to define a legal distribution; see (Koller

& Friedman, 2009).

2.3 Learning Graphical Models

We use upper case letters (X) to denote random variables and lower case letters (x) to

denote their specific values. Variable sets are denoted by bold-face upper case letters

(X) and their sets of instantiations by bold-face lower case letters (x). Generally, we

will use X to denote a variable in a Bayesian network and U to denote its parents. A

network parameter will therefore have the general form θx|u, representing the probabil-

ity Pr(X=x|U=u).

10

Earthquake	
(E)	

Call	
(C)	

Alarm	
(A)	

Burglary	
(B)	

Figure 2.2: An MRF for the Burglary problem

Each variable X in a Bayesian network can be thought of as inducing a number

of conditional random variables, denoted by X|u, where the values of variable X|u

are drawn based on the conditional distribution Pr(X|u). Parameter estimation in

Bayesian networks can be thought of as a process of estimating the distributions of

these conditional random variables.

We will use θ to denote the set of all network parameters. Given a network structure

G, our goal is to learn its parameters from an incomplete dataset, such as:

example E B A C

1 e1 b1 a1 ?

2 ? b2 a2 ?

3 e1 b2 a2 c1

We useD to denote a dataset, and di to denote an example. The dataset above has three

examples, with example d2 being B = b2, A = a2, and E and C being unknown.

2.3.1 Learning Parameters in Bayesian Networks

A commonly used measure for the quality of parameter estimates θ is their likelihood,

defined as:

L(θ|D) =
∏N

i=1 Prθ(di),

11

where Prθ is the distribution induced by network structure G and parameters θ, and

N is the number of data examples. We assume that the data examples are drawn in-

dependently from the true distribution. The likelihood is computed by computing the

probability of each data example, and multiplying these probabilities to get the prob-

ability of observing the dataset. In the case of complete data (each example fixes the

value of each variable), the maximum likelihood (ML) parameters are unique and eas-

ily obtainable by counting. For example, θx|u is computed as#(x,u)
#(u)

, where #(x,u) is

the number of times that x and u appear in the dataset, and #(u) is the number of times

that u appears in the dataset; see (Darwiche, 2009).

Learning ML parameters is harder when the data is incomplete and the EM algo-

rithm (Dempster et al., 1977; Lauritzen, 1995) is typically employed. EM starts with

some initial parameters θ0, called a seed, and successively improves on them via itera-

tion. EM uses the update equation:

θk+1
x|u =

∑N
i=1 Prθk(xu|di)∑N
i=1 Prθk(u|di)

,

which requires inference on a Bayesian network parameterized by θk, in order to com-

pute Prθk(xu|di) and Prθk(u|di). This iterative equation uses the current learned pa-

rameters θk to compute the most likely new parameters θk+1. Given the new learned

parameters θk+1, it computes new statistics Prθk+1(xu|di) and Prθk+1(u|di) to be used

to compute new parameters θk+2, and the process repeats.

It is known that one run of the jointree algorithm on each example is sufficient to

implement an iteration of EM, which is guaranteed to never decrease the likelihood of

its estimates across iterations. EM can also converge to every local maximum given

that it starts with an appropriate seed. It is common to run EM with multiple seeds,

keeping the best local maximum it finds. See (Darwiche, 2009; Koller & Friedman,

2009) for recent treatments on parameter learning in Bayesian networks via EM and

related methods.

EM can also be used to find Maximum a Posteriori (MAP) parameters given Dirich-

12

let priors on network parameters. The Dirichlet prior for the parameters of a ran-

dom variable X|u is specified by a set of exponents, ψx|u, leading to a density ∝∏
x[θx|u]ψx|u−1. It is common to assume that exponents are greater than one, which

guarantees a unimodal density. For MAP parameters, EM uses the update (see, e.g.,

Darwiche (2009)):

θk+1
x|u =

ψx|u − 1 +
∑N

i=1 Prθk(xu|di)
ψX|u − |X|+

∑N
i=1 Prθk(u|di)

, (2.1)

where ψX|u =
∑

x ψx|u. This iterative equation uses the current learned parameters θk

to compute the most likely new parameters θk+1. Given the new learned parameters

θk+1, it computes new statistics Prθk+1(xu|di) and Prθk+1(u|di) to be used to compute

new parameters θk+2, and the process repeats. When ψx|u = 1, the equation reduces to

the one for computing ML parameters. Moreover, using ψx|u = 2 leads to ML parame-

ters with Laplace smoothing. This is a common technique to deal with the problem of

insufficient counts (i.e., instantiations that never appear in the dataset, leading to zero

probabilities and division by zero). We will use Laplace smoothing in our experiments.

2.3.2 Learning Parameters in MRFs

In Bayesian networks, computing the probability of a complete variable assignment is

done by multiplying CPT values. However, in MRFs, factors do not have direct proba-

bilistic semantics, and therefore a normalization constant, called the partition function,

Zθ, is used to give them probabilistic meaning. The log-likelihood in the case of a

Markov network is:

``(θ|D) =
N∑
i=1

log
Zθ(di)

Zθ
= −N logZθ +

N∑
i=1

logZθ(di) (2.2)

where Zθ is the partition function, and where Zθ(di) is similar to Prθ(di) except that

it is not normalized. The second term
∑N

i=1 logZθ(di) takes the same form as the log-

likelihood used for BNs, whereas the first term−N logZθ is added for normalization, in

order to ensure computing valid probability values. Namely, we have Zθ(di)
Zθ

= Prθ(di).

The goal is to maximize the likelihood as in the case of Bayesian networks.

13

2.3.3 Soft Evidence

EDML makes heavy use of soft evidence (i.e., evidence that changes the distribution of

a variable without necessarily fixing its value). In this section, we give an introduction

to the semantics of soft evidence.

We follow the treatment of (Pearl, 1988) for soft evidence, which models soft ev-

idence as hard evidence on a virtual event η. In particular, soft evidence on some

variable X with k values is quantified by a vector λx1 , . . . , λxk with λxi ∈ [0,∞). The

semantics is that λx1 : · · · : λxk ∝ Pr(η|x1) : · · · : Pr(η|xk). The soft evidence on

variable X is then emulated by asserting the hard evidence η. That is, the new distri-

bution on variable X after having asserted the soft evidence is modeled by Pr(X|η).

Note that Pr(X|η) depends only on the ratios λx1 : · · · : λxk , not on their absolute

values. Hard evidence of the form X = xj can be modeled using λxi = 0 for all i 6= j,

and λxj = 1. Moreover, neutral evidence can be modeled using λxi = 1 for all i. The

reader is referred to (Pearl, 1988) for more details.

As an example of soft evidence, consider the burglary problem, and suppose that

rumors were heard that an earthquake occurred. Since the rumors are not conclusive,

we would like to model this evidence as soft rather than hard. One way to assert the

soft evidence to model the rumors is to add an auxiliary node Rumors as shown in

Figure 2.3 and fix Rumors to true. The CPT of Rumors quantifies the strength of the

soft evidence.

14

Earthquake	
(E)	

Call	
(C)	

Alarm	
(A)	

Burglary	
(B)	

Rumors	 =	 true	

Figure 2.3: A Bayesian network for the Burglary problem with soft evidence on Earth-

quake

15

CHAPTER 3

EDML: A Method for Learning Parameters in Bayesian

Networks

We propose a method called EDML for learning MAP parameters in binary Bayesian

networks under incomplete data. The method assumes Beta priors and can be used

to learn maximum likelihood parameters when the priors are uninformative. EDML

exhibits interesting behaviors, especially when compared to EM. We introduce EDML,

explain its origin, and study some of its properties both analytically and empirically.

This chapter is based on (Choi et al., 2011).

3.1 Introduction

We consider in this chapter the problem of learning Bayesian network parameters given

incomplete data, while assuming that all network variables are binary. We propose a

specific method, EDML,1 which has a similar structure and complexity to the EM algo-

rithm (Dempster et al., 1977; Lauritzen, 1995). EDML assumes Beta priors on network

parameters, allowing one to compute MAP parameters. When using uninformative pri-

ors, EDML reduces to computing maximum likelihood (ML) parameters.

EDML originated from applying an approximate inference algorithm (Choi & Dar-

wiche, 2006) to a meta network in which parameters are explicated as variables, and

on which data is asserted as evidence. The update equations of EDML resemble the

1EDML stands for Edge-Deletion MAP-Learning or Edge-Deletion Maximum-Likelihood as it is
based on an edge-deletion approximate inference algorithm that can compute MAP or maximum likeli-
hood parameters.

16

ones for EM, yet EDML appears to have different convergence properties which stem

from its being an inference method as opposed to a local search method. For example,

we will identify a class of incomplete datasets on which EDML is guaranteed to con-

verge immediately to an optimal solution, by simply reasoning about the behavior of

its underlying inference method.

Even though EDML originates in a rather involved approximate inference scheme,

its update equations can be intuitively justified independently. We therefore present

EDML initially in Section 3.3 before delving into the details of how it was originally

derived in Section 3.5.

Intuitively, EDML can be thought of as relying on two key concepts. The first

concept is that of estimating the parameters of a single random variable given soft

observations, i.e., observations that provide soft evidence on the values of a random

variable. The second key concept behind EDML is that of interpreting the examples

of an incomplete data set as providing soft observations on the random variables of a

Bayesian network. As to the first concept, we also show that MAP and ML parameter

estimates are unique in this case, therefore, generalizing the fundamental result which

says that these estimates are unique for hard observations. This result is interesting and

fundamental enough that we treat it separately in Section 3.4 before we move on and

discuss the origin of EDML in Section 3.5.

We discuss some theoretical properties of EDML in Section 3.6, where we identify

situations in which it is guaranteed to converge immediately to optimal estimates. We

present some empirical results in Section 3.7 that corroborate some of the convergence

behaviors predicted. In Section 3.8, we close with some concluding remarks on related

work. We note that while we focus on binary variables in this chapter, our approach

generalizes to multivalued variables as well. We will comment later on this and the

reason we restricted our focus here.

17

3.2 Technical Preliminaries

As discussed earlier, EM can be used to find MAP parameters, assuming one has

some priors on network parameters. The Beta distribution is commonly used as a

prior on the probability of a binary random variable. In particular, the Beta for ran-

dom variable Xu is specified by two exponents, αXu and βXu , leading to a density

∝ [θx|u]αXu−1[1− θx|u]βXu−1. It is common to assume that exponents are > 1 (the den-

sity is then unimodal). For MAP parameters, EM uses the update equation (see, e.g.,

(Darwiche, 2009)):

θk+1
x|u =

αXu − 1 +
∑N

i=1 Prθk(xu|di)
αXu + βXu − 2 +

∑N
i=1 Prθk(u|di)

.

When αXu = βXu = 1 (uninformative prior), the equation reduces to the one for

computing ML parameters. When computing ML parameters, using αXu = βXu = 2

leads to what is usually known as Laplace smoothing. This is a common technique to

deal with the problem of insufficient counts (i.e., instantiations that never appear in the

dataset, leading to zero probabilities and division by zero). We will indeed use Laplace

smoothing in our experiments.

Our method for learning MAP and ML parameters makes heavy use of two notions:

(1) the odds of an event, which is the probability of the event over the probability of

its negation, and (2) the Bayes factor (Good, 1950), which is the relative change in

the odds of one event, say, X=x, due to observing some other event, say, η. In this

case, we have the odds O(x) and O(x|η), where the Bayes factor is κ = O(x|η)/O(x),

which is viewed as quantifying the strength of soft evidence η onX=x. It is known that

κ = Pr(η|x)/Pr(η|x̄) and κ ∈ [0,∞]. When κ = 0, the soft evidence reduces to hard

evidence asserting X= x̄. When κ = ∞, the soft evidence reduces to hard evidence

asserting X=x. When κ = 1, the soft evidence is neutral and bears no information

on X=x. A detailed discussion on the use of Bayes factors for soft evidence is given

in (Chan & Darwiche, 2005).

18

Algorithm 1 EM

input:
G: A Bayesian network structure

D: An incomplete dataset d1, . . . ,dN

θ: An initial parameterization of G

αXu , βXu : Beta prior for each variable Xu

1: while not converged do

2: Pr← distribution induced by θ and G

3: Compute probabilities:

Pr(xu|di) and Pr(u|di)

for each family instantiation xu and exam-

ple di

4: Update parameters:

θx|u←
αXu − 1 +

∑N
i=1 Pr(xu|di)

αXu + βXu − 2 +
∑N
i=1 Pr(u|di)

5: return parameterization θ

Algorithm 2 EDML

input:
G: A Bayesian network structure

D: An incomplete dataset d1, . . . ,dN

θ: An initial parameterization of G

αXu , βXu : Beta prior for each variable Xu

1: while not converged do

2: Pr← distribution induced by θ and G

3: Compute Bayes factors:

κix|u←
Pr(xu|di)/Pr(x|u)− Pr(u|di) + 1

Pr(x̄u|di)/Pr(x̄|u)− Pr(u|di) + 1
(3.1)

for each family instantiation xu and exam-

ple di

4: Update parameters:

θx|u← argmax
p

[p]αXu−1[1− p]βXu−1×

N∏
i=1

[κix|u · p− p+ 1]

(3.2)

5: return parameterization θ

3.3 An Overview of EDML

Consider Algorithm 1, which provides pseudocode for EM. EM typically starts

with some initial parameter estimates, called a seed, and then iterates to monotonically

improve on these estimates. Each iteration consists of two steps. The first step, Line 3,

computes marginals over the families of a Bayesian network that is parameterized by

the current estimates. The second step, Line 4, uses the computed probabilities to

update the network parameters. The process continues until some convergence criterion

is met. The main point here is that the computation on Line 3 can be implemented by a

single run of the jointree algorithm, while the update on Line 4 is immediate.

19

Consider now Algorithm 2, which provides pseudocode for EDML, to be contrasted

with the one for EM. The two algorithms clearly have the same overall structure. That

is, EDML also starts with some initial parameters estimates, called a seed, and then

iterates to update these estimates. Each iteration consists of two steps. The first step,

Line 3, computes Bayes factors using a Bayesian network that is parameterized by

the current estimates. The second step, Line 4, uses the computed Bayes factors to

update network parameters. The process continues until some convergence criterion is

met. Much like EM, the computation on Line 3 can be implemented by a single run

of the jointree algorithm. Unlike EM, however, the update on Line 4 is not immediate

as it involves solving an optimization problem, albeit a simple one. Aside from this

optimization task, EM and EDML have the same computational complexity.

We next explain the two concepts underlying EDML and how they lead to the equa-

tions of Algorithm 2.

3.3.1 Estimation from Soft Observations

Consider a random variable X with values x and x̄, and suppose that we have N > 0

independent observations of X , with Nx as the number of positive observations. It

is well known that the ML parameter estimates for random variable X are unique in

this case and characterized by θx = Nx/N . If one further assumes a Beta prior with

exponents α and β that are ≥ 1, it is also known that the MAP parameter estimates are

unique and characterized by θx = Nx+α−1
N+α+β−2

.

Consider now a more general problem in which the observations are soft in that

they only provide soft evidence on the values of random variable X . That is, each soft

observation ηi is associated with a Bayes factor κix = O(x|ηi)/O(x) which quantifies

the evidence that ηi provides on having observed the value x of variable X . We will

show later that the ML estimates remain unique in this more general case, if at least

one of the soft observations is not trivial (i.e., with Bayes factor κix 6= 1). Moreover, we

20

will show that the MAP estimates are also unique assuming a Beta prior with exponents

≥ 1. In particular, we will show that the unique MAP estimates are characterized by

Equation 3.2 of Algorithm 2. Further, we will show that the unique ML estimates are

characterized by the same equation while using a Beta prior with exponents = 1. This

is the first key concept that underlies our proposed algorithm for estimating ML and

MAP parameters in a binary Bayesian network.

3.3.2 Examples as Soft Observations

The second key concept underlying EDML is to interpret each example di in a dataset

as providing a soft observation on each random variable Xu. As mentioned earlier, soft

observations are specified by Bayes factors and, hence, one needs to specify the Bayes

factor κix|u that example di induces on random variable Xu. EDML uses Equation 3.1

for this purpose, which will be derived in Section 3.5. We next consider a few special

cases of this equation to highlight its behavior.

Consider first the case in which example di implies parent instantiation u (i.e., the

parents U of variable X are instantiated to u in example di). In this case, Equation 3.1

reduces to κix|u = O(x|u,di)
O(x|u)

, which is the relative change in the odds of x given u due to

conditioning on example di. Note that for root variables X , which have no parents U,

Equation 3.1 further reduces to κix = O(x|di)
O(x)

.

The second case we consider is when example di is inconsistent with parent instan-

tiation u. In this case, Equation 3.1 reduces to κix|u = 1, which amounts to neutral

evidence. Hence, example di is irrelevant to estimating the distribution of variable Xu

in this case, and will be ignored by EDML.

The last special case of Equation 3.1 we shall consider is when the example di is

complete; that is, it fixes the value of each variable. In this case, one can verify that

κix|u ∈ {0, 1,∞} and, hence, the example can be viewed as providing either neutral or

hard evidence on each random variable Xu. Thus, an example will provide soft obser-

21

x

X1 X2 XN …

Figure 3.1: Estimation given independent observations.

vations on variables only when it is incomplete (i.e., missing some values). Otherwise,

it is either irrelevant to, or provides a hard observation on each variable Xu.

In the next section, we prove Equation 3.2 of Algorithm 2. In Section 3.5, we

discuss the origin of EDML, where we go on and derive Equation 3.1 of Algorithm 2.

3.4 Estimation from Soft Observations

Consider a binary variable X . Figure 3.1 depicts a network where θx is a parameter

representing Pr(X=x) and X1, . . . , XN are independent observations of X . Suppose

further that we have a Beta prior on parameter θx with exponents α ≥ 1 and β ≥ 1.

A standard estimation problem is to assume that we know the values of these observa-

tions and then estimate the parameter θx. We now consider a variant on this problem,

in which we only have soft evidence ηi about each observation, whose strength is quan-

tified by a Bayes factor κix = O(x|ηi)/O(x). Here, κix represents the change in odds

that the i-th observation is positive due to evidence ηi. We will refer to ηi as a soft

observation on variable X , and our goal in this section is to compute (and optimize)

the posterior density on parameter θx given these soft observations η1, . . . , ηN .

22

We first consider the likelihood:

Pr(η1, . . . , ηN |θx) =
∏N

i=1 Pr(ηi|θx)

=
∏N

i=1[Pr(ηi|x, θx)Pr(x|θx) + Pr(ηi|x̄, θx)Pr(x̄|θx)]

=
∏N

i=1[Pr(ηi|x)θx + Pr(ηi|x̄)(1− θx)]

∝
∏N

i=1[κix · θx − θx + 1].

The last step follows because κix = O(x|ηi)/O(x) = Pr(ηi|x)/Pr(ηi|x̄). The poste-

rior density is then:

ρ(θx|η1, . . . , ηN) ∝ ρ(θx)Pr(η1, . . . , ηN |θx)

∝ [θx]
α−1[1− θx]β−1

∏N
i=1[κix · θx − θx + 1].

This is exactly Equation 3.2 of Algorithm 2 assuming we replace the random variable

X with the conditional random variable Xu.2

The second derivative of the log posterior is

−α− 1

[θx]2
− β − 1

[1− θx]2
−
∑
i

[
(κix − 1)

(κix − 1)θx + 1

]2

which is strictly negative when κix 6= 1 for at least one i. This remains true when

α = β = 1. Hence, both the likelihood function and the posterior density are strictly

log-concave and therefore have unique modes. This means that both ML and MAP

parameter estimates are unique in the case of soft, independent observations, which

generalizes the uniqueness result for hard, independent observations on a variable X .

3.5 The Origin of EDML

This section reveals the technical origin of EDML, showing how Equation 3.1 of Algo-

rithm 2 is derived, and providing the basis for the overall structure of EDML as spelled

out in Algorithm 2.
2 The case of κix = ∞ needs to be handled carefully in Equation 3.2. First note that κix = ∞ iff

Pr(ηi|x̄) = 0 in the derivation of this equation. In this case, the term Pr(ηi|x)θx + Pr(ηi|x̄)(1 − θx)
equals c · θx for some constant c ∈ (0, 1]. Since the value of Equation 3.2 does not depend on constant c,
we will assume c = 1. Hence, when κix =∞, the term [κix · θx − θx + 1] evaluates to θx by convention.

23

h

s|h e|h

H1 H2 H3

S1 S2 S3 E1 E2 E3

s|h e|h

Figure 3.2: A meta network induced from a base network S←−H−→E. The CPTs

here are based on standard semantics; see, e.g., (Darwiche, 2009, Ch. 18).

EDML originated from an approximation algorithm for computing MAP parame-

ters in a meta network. Figure 3.2 depicts an example meta network in which parame-

ters are represented explicitly as nodes (Darwiche, 2009). In particular, for each condi-

tional random variable Xu in the original Bayesian network, called the base network,

we have a node θx|u in the meta network which represents a parameter that characterizes

the distribution of this random variable. Moreover, the meta network includes enough

instances of the base network to allow the assertion of each example di as evidence on

one of these instances. Assuming that θ is an instantiation of all parameter variables,

and D is a dataset, MAP estimates are then:

θ? = argmax
θ

ρ(θ|D),

where ρ is the density induced by the meta network.

Computing MAP estimates exactly is usually prohibitive due to the structure of the

meta network. We therefore use the technique of edge deletion (Choi & Darwiche,

2006), which formulates approximate inference as exact inference on a simplified net-

work that is obtained by deleting edges from the original network. The technique com-

24

H3

E3

e|h

E
3

Eh

e|h

E
3

Eh

(a) Adding generators

H3

E3

e|h

E
3

Eh:

E
3

Eh

e|h

E
3

Eh

E
3

Eh:

(b) Deleting copy edges

Figure 3.3: Introducing generators into a meta network and then deleting copy edges

from the resulting meta network, which leads to introducing clones.

pensates for these deletions by introducing auxiliary parameters whose values must be

chosen carefully (and usually iteratively) in order to improve the quality of approxi-

mations obtained from the simplified network. EDML is the result of making a few

specific choices for deleting edges and for choosing values for the auxiliary parameters

introduced, which we explain next.

3.5.1 Introducing Generators

Let X i denote the instance of variable X in the base network corresponding to example

di. The first choice of EDML is that for each edge θx|u−→X i in the meta network, we

introduce a generator variable X i
u, leading to the pair of edges θx|u−→X i

u−→X i. Fig-

ure 3.3(a) depicts a fragment of the meta network in Figure 3.2, in which we introduced

two generator variables for edges θe|h−→E3 and θe|h̄−→E3, leading to θe|h−→E3
h−→E3

and θe|h̄−→E3
h̄
−→E3.

Variable X i
u is meant to generate values of variable X i according to the distribution

specified by parameter θx|u. Hence, the conditional distribution of a generator X i
u is

25

such that Pr(xiu|θx|u) = θx|u. Moreover, the CPT of variable X i is set to ensure that

variable X i copies the value of generator X i
u if and only if the parents of X i take on

the value u. That is, the CPT of variable X i acts as a selector that chooses a particular

generator X i
u to copy from, depending on the values of its parents U. For example, in

Figure 3.3(a), when parentH3 takes on its positive value h, variableE3 copies the value

of generator E3
h. When parent H3 takes on its negative value h̄, variable E3 copies the

value of generator E3
h̄
.

Adding generator variables does not change the meta network as it continues to

have the same density over the original variables. Yet, generators are essential to the

derivation of EDML as they will be used for interpreting data examples as soft obser-

vations.

3.5.2 Deleting Copy Edges

The second choice made by EDML is that we only delete edges of the form X i
u−→X i

from the augmented meta network, which we shall call copy edges. Figure 3.3(b) de-

picts an example in which we have deleted the two copy edges from Figure 3.3(a).

Note here the addition of another auxiliary variable X i
u:, called a clone, for each

generator X i
u. The addition of clones is mandated by the edge deletion framework.

Moreover, if the CPT of cloneX i
u: is chosen carefully, it can compensate for the parent-

to-child information lost when deleting edge X i
u−→X i. We will later see how EDML

sets these CPTs. The other aspect of compensating for a deleted edge is to specify soft

evidence on each generator X i
u. This is also mandated by the edge deletion framework,

and is meant to compensate for the child-to-parent information lost when deleting edge

X i
u−→X i. We will later see how EDML sets this soft evidence as well, which ef-

fectively completes the specification of the algorithm. We prelude this specification,

however, by making some further observations about the structure of the meta network

after edge deletion.

26

H2

S2 E2

H: H2

H1 H3

S1 E1 E3 S3

h

s|h e|h

Sh S2 Sh S3 Sh S1
Sh: S2 Eh: E2 Sh: S2 Eh: E2

e|h s|h

Figure 3.4: An edge-deleted network obtained from the meta network in Figure 3.2

found by: (1) adding generator variables, (2) deleting copy edges, and (3) adding cloned

generators. The figure highlights the island for example d2, and the island for parameter

θs|h.

3.5.3 Parameter & Example Islands

Consider the network in Figure 3.4, which is obtained from the meta network in Fig-

ure 3.2 according to the edge-deletion process indicated earlier.

The edge-deleted network contains a set of disconnected structures, called islands.

Each island belongs to one of two classes: a parameter island for each network param-

eter θx|u and an example island for each example di in the dataset. Figure 3.4 provides

the full details for one example island and one parameter island. Note that each param-

eter island corresponds to a Naive Bayes structure, with parameter θx|u as the root and

generators X i
u as children. When soft evidence is asserted on these generators, we get

the estimation problem we treated in Section 3.4.

EDML can now be fully described by specifying (1) the soft evidence on each

generator X i
u in a parameter island, and (2) the CPT of each clone X i

u: in an example

island. These specifications are given next.

27

3.5.4 Child-To-Parent Compensation

The edge deletion approach suggests the following soft evidence on generators X i
u,

specified as Bayes factors:

κix|u =
O(xiu:|di)
O(xiu:)

=
Pri(di|xiu:)

Pri(di|x̄iu:)
, (3.3)

where Pri is the distribution induced by the island of example di. We will now show

that this equation simplifies to Equation 3.1 of Algorithm 2.

Suppose that we marginalize all clonesX i
u: from the island of example di, leading to

a network that induces a distribution Pr. The new network has the following properties.

First, it has the same structure as the base network. Second, Pr(x|u) = Pri(xiu:),

which means that the CPTs of clones in example islands correspond to parameters in the

base network. Finally, if we use u to denote the disjunction of all parent instantiations

excluding u, we get:

κix|u =
Pri(di|xiu:)

Pri(di|x̄iu:)

=
Pr(di|xu)Pr(u) + Pr(di|u)Pr(u)

Pr(di|x̄u)Pr(u) + Pr(di|u)Pr(u)

=
Pr(xu|di)/Pr(x|u)− Pr(u|di) + 1

Pr(x̄u|di)/Pr(x̄|u)− Pr(u|di) + 1
.

This is exactly Equation 3.1 of Algorithm 2. Hence, we can evaluate Equation 3.3 by

evaluating Equation 3.1 on the base network, as long as we seed the base network with

parameters that correspond to the CPTs of clones in an example island.

3.5.5 Parent-To-Child Compensation

We now complete the derivation of EDML by showing how it specifies the CPTs of

clones in example islands, which are needed for computing soft evidence as in the

previous section.

In a nutshell, EDML assumes an initial value of these CPTs, typically chosen ran-

domly. Given these CPTs, example islands will be fully specified and EDML will

28

h

s|h

H1 H2 H3

S1 S2 S3 E1 E2 E3

e|h s|h e|h

Figure 3.5: A pruning of the meta network in Figure 3.2 given H1 = h̄, H2 =h and

H3 = h̄.

compute soft evidence as given by Equation 3.3. The computed soft evidence is then

injected on the generators of parameter islands, leading to a full specification of these

islands. EDML will then estimate parameters by solving an exact optimization problem

on each parameter island as shown in Section 3.4. The estimated parameters are then

used as the new values of CPTs for clones in example islands. This process repeats

until convergence.

We have shown in the previous section that the CPTs of clones are in one-to-one

correspondence with the parameters of the base network. We have also shown that

soft evidence, as given by Equation 3.3, can be computed by evaluating Equation 3.1

of Algorithm 2 (with parameters θ corresponding to the CPTs of clones in an exam-

ple island). EDML takes advantage of this correspondence, leading to the simplified

statement spelled out in Algorithm 2.

29

3.6 Some Properties of EDML

Being an approximate inference method, one can sometimes identify good behaviors of

EDML by identifying situations under which the underlying inference algorithm will

produce high quality approximations. We provide a result in this section that illustrates

this point in the extreme, where EDML is guaranteed to return optimal estimates and

in only one iteration. Our result relies on the following observation about parameter

estimation via inference on a meta network.

When the parents U of a variable X are observed to u in an example di, all edges

θx|u?−→X i in the meta network become superfluous and can be pruned, except for the

one edge that satisfies u? = u. Moreover, edges outgoing from observed nodes can

also be pruned from a meta network. Suppose now that the parents of each variable

are observed in a dataset. After pruning edges as indicated earlier, each parameter

variable θx|u will end up being the root of an isolated naive Bayes structure that has

some variables X i as its children (those whose parents are instantiated to u in example

di). Figure 3.5 depicts the result of such pruning in the meta network of Figure 3.2,

given a dataset with H1 = h̄, H2 =h and H3 = h̄.

The above observation implies that when the parents of each variable are observed

in a dataset, parameters can be estimated independently. This leads to the following

well known result.

Proposition 1 When the dataset is complete, the ML estimate for parameter θx|u is

unique and given by D#(xu)/D#(u), where D#(xu) is the number of examples con-

taining xu and D#(u) is the number of examples containing u.

It is well known that EM returns such estimates and in only one iteration (i.e., inde-

pendently of its seed). The following more general result is also implied by our earlier

observation.

30

Proposition 2 When only leaf variables have missing values in a dataset, the ML

estimate for each parameter θx|u is unique and given by D#(xu)/D+#(u). Here,

D+#(u) is the number of examples containing u and in which X is observed.

We can now prove the following property of EDML, which is not satisfied by EM,

as we show next.

Theorem 1 When only leaf variables have missing values in a dataset, EDML returns

the unique ML estimates given by Proposition 2 and in only one iteration.

Proof Consider an example di that fixes the values of parents U for variable X and

consider Equation 3.1. First, κix|u = 1 iff example di is inconsistent with u or does not

set the value of X . Next, κix|u = 0 iff example di contains x̄u. Finally, κix|u = ∞ iff

example di contains xu. Moreover, these values are independent of the EDML seed

so the algorithm converges in one iteration. Given these values of the Bayes factors,

Equation 3.2 leads to the estimate of Proposition 2. �

We have a number of observations about this result. First, since Proposition 1 is

implied by Proposition 2, EDML returns the unique ML estimates in only one iteration

when the dataset is complete (just like EM). Next, when only the values of leaf vari-

ables are missing in a dataset, Proposition 2 says that there is a unique ML estimate for

each network parameter. Moreover, Theorem 1 says that EDML returns these unique

estimates and in only one iteration. Finally, Theorem 1 does not hold for EM. In par-

ticular, one can show that under the conditions of this theorem, an EM iteration will

update its current parameter estimates θ and return the following estimates for θx|u:

D#(xu) +D−#(u)Pr(x|u)

D#(u)
.

Here, D−#(u) is the number of examples that contain u and in which the value of X

is missing. This next estimate clearly depends on the current parameter estimates. As a

result, the behavior of EM will depend on its initial seed, unlike EDML.

31

When only the values of leaf variables are missing, there is a unique optimal solu-

tion as shown by Proposition 2. Since EM is known to converge to a local optimum, it

will eventually return the optimal estimates as well, but possibly after some number of

iterations. In this case, the difference between EM and EDML is simply in the speed of

convergence.

Theorem 1 clearly suggests better convergence behavior of EDML over EM in some

situations. We next present initial experiments supporting this suggestion.

3.7 More on Convergence

We highlight now a few empirical properties of EDML. In particular, we show how

EDML can sometimes find higher quality estimates than EM, in fewer iterations and

also in less time.

We highlight different types of relative convergence behavior in Figure 3.6, which

depicts example runs on a selection of networks: spect, win95pts, emdec6g,

and tcc4e. Network spect is a naive Bayes network induced from a dataset in the

UCI ML repository, with 1 class variable and 22 attributes. Network win95pts (76

variables) is an expert system for printer troubleshooting in Windows 95. Networks

emdec6g (168 variables) and tcc4e (98 variables) are noisy-or networks for diagno-

sis (courtesy of HRL Laboratories).

We simulated datasets of size 2k, using the original CPT parameters of the respec-

tive networks, and then used EDML and EM to learn new parameters for a network

with the same structure. We assumed that certain variables were hidden (latent); in

Figure 3.6, we randomly chose 1
4

of the variables to be hidden. Hidden nodes are of

particular interest to EM, because it has been observed that local extrema and conver-

gence rates can be problematic for EM here; see, for example (Elidan & Friedman,

2005; Salakhutdinov, Roweis, & Ghahramani, 2003).

In Figure 3.6, each plot represents a simulated data set of size 210, where EDML and

32

EM have been initialized with the same random parameter seeds. Both algorithms were

run for a fixed number of iterations, 1024 in this case, and we observed the quality of

the parameter estimates found, with respect to the log posterior probability (which has

been normalized so that the maximum log probability observed is 0.0). We assumed

a Beta prior with exponents 2. EDML damped its parameter updates by a factor of 1
2
,

which is typical for (loopy) belief propagation algorithms.3

In the left column of Figure 3.6, we evaluated the quality of estimates over itera-

tions of EDML and EM. In these examples, EDML (represented by a solid red line)

tended to have better quality estimates from iteration to iteration (curves that are higher

are better), and further managed to find them in fewer iterations (curves to the left

are faster).4 This is most dramatic in network spect, where EDML appears to have

converged almost immediately, whereas EM spent a significant number of iterations to

reach estimates of comparable quality. As most nodes hidden in network spect were

leaf nodes, this may be expected due to the considerations from the previous section.

In the right column of Figure 3.6, we evaluated the quality of estimates, now in

terms of time. We remark again that procedurally, EDML and EM are very similar, and

each algorithm needs only one evaluation of the jointree algorithm per distinct example

in the data set (per iteration). EDML solves an optimization problem per distinct exam-

ple, whereas EM has a closed-form update equation in the corresponding step (Line 4

in Algorithms 1 and 2). Although this optimization problem is a simple one, EDML

does require more time per iteration than EM. The right column of Figure 3.6 suggests

that EDML can still find better estimates faster, especially in the cases where EDML

has converged in significantly fewer iterations. In network emdec6g, we find that al-

though EDML appeared to converge in fewer iterations, EM was able to find better

estimates in less time. We anticipate in larger networks with higher treewidth, the time

3The simple bisection method suffices for the optimization sub-problem in EDML for binary
Bayesian networks. In our current implementation, we used the conjugate gradient method, with a
convergence threshold of 10−8.

4We omit the results of the first 10 iterations as initial parameter estimates are relatively poor, which
make the plots difficult to read.

33

spent in the simple optimization sub-problem will be dominated by the time to perform

jointree propagation.

We also performed experiments on networks learned from binary haplotype data

(Elidan & Gould, 2008), which are networks with bounded treewidth. Here, we simu-

lated data sets of size 210, where we again randomly selected 1
4

of the variables to be

hidden. We further ran EDML and EM for a fixed number of iterations (512, here). For

each of the 74 networks available, we ran EDML and EM with 3 random seeds, for a

total of 222 cases. In Figure 3.7, we highlight a selection of the runs we performed, to

illustrate examples of relative convergence behaviors. Again, in the first row, we see a

case where EDML identifies better estimates in fewer iterations and less time. In the

next two rows, we highlight two cases where EDML appears to converge to a superior

fixed point than the one that EM appears to converge to. In the last row, we highlight

an instance where EM instead converges to a superior estimate. In Figure 3.8, we com-

pare the estimates of EDML and EM at each iteration, computing the percentage of

the 74 × 3 = 222 cases considered, where EDML had estimates no worse than those

found by EM. In this set of experiments, the estimates identified by EDML are clearly

superior (or at least, no worse in most cases), when compared to EM.

We remark however, that when both algorithms are given enough iterations to con-

verge, we have observed that the quality of the estimates found by both algorithms are

often comparable. This is evident in Figure 3.6, for example. The analysis from the

previous section indicates however that there are (very specialized) situations where

EDML would be clearly preferred over EM. One subject of future study is the identi-

fication of situations and applications where EDML would be preferred in practice as

well.

34

3.8 Related Work

EM has played a critical role in learning probabilistic graphical models and Bayesian

networks (Dempster et al., 1977; Lauritzen, 1995; Heckerman, 1998). However learn-

ing (and Bayesian learning in particular) remains challenging in a variety of situations,

particularly when there are hidden (latent) variables; see, e.g., (Elidan, Ninio, Fried-

man, & Shuurmans, 2002; Elidan & Friedman, 2005). Slow convergence of EM has

also been recognized, particularly in the presence of hidden variables. A variety of

techniques, some incorporating more traditional approaches to optimization, have been

proposed in the literature; see, e.g., (Thiesson, Meek, & Heckerman, 2001).

Variational approaches are an increasingly popular formalism for learning tasks as

well, and for topic models in particular, where variational alternatives to EM are used to

maximize a lower bound on the log likelihood (Blei, Ng, & Jordan, 2003). Expectation

Propagation also provides variations of EM (Minka & Lafferty, 2002) and is closely

related to (loopy) belief propagation (Minka, 2001).

Our empirical results have been restricted to a preliminary investigation of the con-

vergence of EDML, in contrast to EM. A more comprehensive evaluation is called for

in relation to both EM and other approaches based on Bayesian inference. We have

also focused this chapter on binary variables. EDML, however, generalizes to multival-

ued variables since edge deletion does not require a restriction to binary variables and

the key result of Section 3.4 also generalizes to multivalued variables. The resulting

formulation is less transparent though when compared to the binary case since Bayes

factors no longer apply directly and one must appeal to a more complex method for

quantifying soft evidence; see (Chan & Darwiche, 2005).

35

101 102 103 104

iteration

6

5

4

3

2

1

0

EM

EDML
spect

102 103 104 105

time

6

5

4

3

2

1

0

EM

EDML
spect

101 102 103 104

iteration

0.8

0.6

0.4

0.2

0.0

1e2

EM

EDML

win95pts

103 104 105 106

time

0.8

0.6

0.4

0.2

0.0

1e2

EM

EDML

win95pts

101 102 103 104

iteration

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1e2

EM

EDML
tcc4e

103 104 105 106

time

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1e2

EM

EDML
tcc4e

101 102 103 104

iteration

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1e2

EM

EDML
emdec6g

103 104 105 106

time

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

1e2

EM

EDML
emdec6g

Figure 3.6: Quality of parameter estimates over iterations (left column) and time (right

column). Going right on the x-axis, we have increasing iterations and time. Going up

on the y-axis, we have increasing quality of parameter estimates. EDML is depicted

with a solid red line, and EM with a dashed black line.

36

101 102 103

iteration

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1e2

EM
EDML

greedy.15.1

104 105 106

time

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1e2

EM
EDML

greedy.15.1

101 102 103

iteration

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1e3

EM

EDML
bounded.u.20.5

104 105 106

time

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1e3

EM

EDML
bounded.u.20.5

101 102 103

iteration

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1e3

EM

EDML
bounded.u.25.5

104 105 106

time

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

1e3

EM

EDML
bounded.u.25.5

101 102 103

iteration

4

3

2

1

0

1e2

EM

EDML

greedy.1.1

103 104 105 106

time

4

3

2

1

0

1e2

EM

EDML

greedy.1.1

Figure 3.7: Quality of parameter estimates over iterations (left column) and time (right

column). Going right on the x-axis, we have increasing iterations and time. Going up

the y-axis, we have increasing quality of parameter estimates. EDML is depicted with

a solid red line, and EM with a dashed black line.

37

101 102

iteration

0

20

40

60

80

100 % of 222 cases, EDML favored

Figure 3.8: Quality of EDML estimates over 74 networks (3 cases each) induced from

binary haplotype data. Going right on the x-axis, we have increasing iterations. Going

up the y-axis, we have an increasing percentage of instances where EDML’s estimates

were no worse than those given by EM.

38

CHAPTER 4

Advances and Theoretical Insight into EDML

We provide a simple characterization of EDML that enables us to prove that its fixed

points are exactly the stationary points of the likelihood (MAP) function. Furthermore,

we modify EDML to guarantee improving the likelihood (MAP), at every step. In ad-

dition to this, we generalize EDML to support multivalued variables. We also propose

a simple iterative method for solving its optimization problems. Finally, we provide

experimental results suggesting that the modified EDML can sometimes be faster, in

running time, than EM. This chapter is based on (Refaat et al., 2012).

4.1 Introduction

In this chapter, we present a number of new results and insights on the EDML algo-

rithm. First, we provide a simple extension of EDML to Bayesian networks over mul-

tivalued variables. We also show that the convex optimization problem that underlies

the binary version of EDML, remains convex for the multivalued case.

Next, we identify a new and simplified characterization of EDML, which facilitates

a number of theoretical observations about EDML. For example, this new characteriza-

tion implies a simple, fixed-point iterative algorithm for solving the convex optimiza-

tion problems underlying EDML. Moreover, we show that this fixed-point algorithm

monotonically improves the solutions of these convex optimization problems, which

correspond to an approximate factorization of the posterior over network parameters.

Armed with this new characterization of EDML, we go on to identify a surprising

39

Algorithm 3 EM

input:
G: A Bayesian network structure

D: An incomplete dataset d1, . . . ,dN

θ: An initial parameterization of structure G

ψ: A Dirichlet prior for each parameter set θX|u

1: while not converged do

2: Pr← distribution induced by θ and G

3: Compute probabilities:

Pr(xu|di) and Pr(u|di)

for each family instantiation xu and exam-

ple di

4: Update parameters:

θx|u←
ψx|u − 1 +

∑N
i=1 Pr(xu|di)

ψX|u − |X|+
∑N
i=1 Pr(u|di)

5: return parameterization θ

Algorithm 4 Multivalued EDML

input:
G: A Bayesian network structure

D: An incomplete dataset d1, . . . ,dN

θ: An initial parameterization of structure G

ψ: A Dirichlet prior for each parameter set θX|u

1: while not converged do

2: Pr← distribution induced by θ and G

3: Compute soft evidence parameters:

λix|u←Pr(xu|di)/Pr(x|u)−Pr(u|di)+1

(4.1)

for each family instantiation xu and exam-

ple di

4: Update parameters:

θX|u← argmax
θ̂X|u

∏
x

[θ̂x|u]ψx|u−1
N∏
i=1

∑
x

λix|uθ̂x|u

(4.2)

5: return parameterization θ

connection between EDML and EM (considering their theoretical and practical differ-

ences). In particular, we show that a fixed point of EDML is a fixed point of EM, and

vice versa. This observation has a number of implications. First, it provides a new per-

spective on EM fixed points, based on the semantics of EDML, which was originally

inspired by an approximate inference algorithm for Bayesian networks that subsumed

the influential loopy belief propagation algorithm as a degenerate case (Pearl, 1988;

Choi & Darwiche, 2006). Second, it suggests a hybrid EDML/EM algorithm that seeks

to take advantage of the desirable properties from each: the improved convergence

behavior of EDML, and the monotonic improvement property of EM.

4.2 Multivalued EDML

40

One contribution of this chapter is the extension of binary EDML so that it handles

multivalued variables as well. In principle, the extension turns out to be straightforward

and is depicted in Algorithm 4. However, two issues require further discussion. The

first concerns the specification of soft evidence for multivalued variables. The second

is confirming that the optimization problem corresponding to a parameter island (on

Line 4 of Algorithm 4) remains strictly concave, therefore, admitting unique solutions.

We will consider both issues next.

4.2.1 Examples as Soft Evidence

The first key concept of EDML is to interpret a data example di in the dataset as soft

evidence on a conditional random variableX|u. As mentioned earlier, soft evidence on

a variable is modeled using a vector of parameters, one for each value of the variable.

We will therefore use λx|u to denote the parameter pertaining to value x of variable

X|u.

EDML uses Equation 4.1 in Algorithm 4 to compute soft evidence. In particu-

lar, example di is viewed as soft evidence on conditional random variable X|u that is

quantified as follows:

λix|u←Pr(xu|di)/Pr(x|u)− Pr(u|di) + 1

We will not derive this equation here as it resembles the one for binary EDML. We will,

however, discuss some of its key properties in this and further sections.

Consider the case when the example di is inconsistent with the parent instantiation

u. In this case, the example should be irrelevant to variable X|u. Equation 4.1 does the

right thing here as it reduces to 1 for all values of x, which amounts to neutral evidence.

Another special case is when example di is complete; that is, it has no missing

values. In this case, one can verify that if di is consistent with u (relevant), then λix|u =

0 for all values x except the value x? consistent with di. This is equivalent to hard

evidence in favor of x?. On the other hand, if di is inconsistent with u (irrelevant), then

41

x

X1 X2 XN …

Figure 4.1: Learning from independent, hard observations X1, . . . , XN . The distribu-

tion of variable X is specified by parameter set θX .

λix|u = 1 for all values x, providing neutral evidence. In a nutshell, a complete example

provides either hard evidence, if it is relevant; or neutral evidence, if it is irrelevant.

4.2.2 Learning from Soft Evidence

Consider the standard learning problem depicted in Figure 4.1. Here, we have a vari-

able X that takes k values x1, . . . , xk and has a distribution specified by a parameter set

θX : θx1 , . . . , θxk . That is, each parameter θxi represents the corresponding probability

Pr(X = xi). Suppose further that we have a Dirichlet prior ρ(θX) on the parameter

set with exponents ψxi greater than one. A standard learning problem here is to com-

pute the MAP estimates of parameter set θX given N independent observations on the

variable X . MAP estimates are known to be unique in this case and have a correspond-

ing closed form. In particular, it is known that the posterior ρ(θX |X1, . . . , XN) is a

unimodal Dirichlet and, hence, has a unique maximum; see for example (Darwiche,

2009).

EDML is based on a variant of this learning problem in which we are given N

soft observations on variable X instead of hard observations. This variant is shown

in Figure 4.2, where each observation X i has a child ηi that is used to emulate soft

evidence on X i. That is, to represent soft evidence λix1 , . . . , λ
i
xk

, we simply choose the

CPT for ηi so that Pr(ηi|x1) : · · · : Pr(ηi|xk) = λix1 : · · · : λixk .

Note here that the posterior density ρ(θX |η1 . . . ηN) is no longer Dirichlet, but takes

the more complex form given by Equation 4.2 of Algorithm 4. Yet, we have the fol-

42

θX

X1 X2 XN …	
η1 η2 ηN …	

Figure 4.2: Learning from independent, soft observations η1, . . . , ηN . The distribution

of variable X is specified by parameter set θX .

lowing result.

Theorem 2 Given N soft observations ηi on a variable X , and a Dirichlet prior on its

parameters θX , with Dirichlet exponents ψx > 1, the posterior density ρ(θX |η1 . . . ηN)

is strictly log concave.

Therefore, the posterior density, ρ(θX |η1 . . . ηN), has a unique maximum. We next

provide a simple iterative method for obtaining the maximum in this case.

4.3 Simple EDML

Multivalued EDML, as given in Algorithm 4, works as follows. We start with some

initial parameter estimates, just like EM. We then iterate, while performing two steps

in each iteration. In the first step, each example di in the dataset is used to compute

soft evidence on each variable X|u, as in Equation 4.1 of Algorithm 4. Using this soft

evidence, a learning problem is set up for the parameter set θX|u as given in Figure 4.2,

which is a learning sub-problem in the context of Equation 4.2 of Algorithm 4. The

solution to this learning sub-problem provides the next estimate for parameter set θX|u.

The process repeats. In principle, any appropriate optimization algorithm could be used

to solve each of these learning sub-problems.

We will next derive a simpler description of EDML that has two key components.

43

First, we will provide a convergent update equation that iteratively solves the optimiza-

tion problem in Equation 4.2 of Algorithm 4. Second, we will use this update equation

to provide a characterization of EDML’s fixed points.

First, consider the likelihood:

Pr(η1, . . . , ηN | θX) =
N∏
i=1

Pr(ηi | θX)

=
N∏
i=1

∑
x

Pr(ηi | x)Pr(x | θX) =
N∏
i=1

∑
x

λixθx

Next, we have the posterior:

ρ(θX | η1, . . . , ηN) ∝ ρ(θX)Pr(η1, . . . , ηN | θX)

= ρ(θX)
N∏
i=1

∑
x

λixθx

Assuming a Dirichlet prior over parameter set θX , with Dirichlet exponents ψx, the log

of the posterior is:

log ρ(θX | η1 . . . ηN)

=
∑
x

(ψx − 1) log θx +
N∑
i=1

log
∑
x

λixθx + γ

where γ is a constant that is independent of θX , which we can ignore. By Theorem 2

we know that the log of the posterior is strictly concave when ψx > 1.

To get the unique maximum of the log posterior, we solve the optimization problem:

minimize − log ρ(θX | η1, . . . , ηN)

subject to
∑
x

θx = 1

In order to characterize the unique maximum of the log posterior, we start by taking the

Lagrangian:

L(θX ,u) = − log ρ(θX | η1, . . . , ηN) + u · (
∑
x

θx − 1)

44

where u is a Lagrange multiplier. We get the following condition for the optimal pa-

rameter estimates, by setting the gradient of L(θX ,u) with respect to θX to zero:

θx =
ψx − 1 +

∑N
i=1

λixθx∑
x∗ λ

i
x∗θx∗

ψX − |X|+N

where ψX =
∑

x ψx, and where we used the constraint
∑

x θx = 1 to identify that

u = ψX − |X|+N.

The above equation leads to a much stronger result.

Theorem 3 The following update equation monotonically increases the posterior

ρ(θX|u | η1, . . . , ηN):

θtx|u =
ψx|u − 1 +

∑N
i=1

λi
x|uθ

t−1
x|u∑

x? λ
i
x?|uθ

t−1
x?|u

ψX|u − |X|+N
(4.3)

This theorem suggests a convergent iterative algorithm for solving the convex optimiza-

tion problem of Equation 4.2 in Algorithm 4. First, we start with some initial parameter

estimates θ0
x|u at iteration t = 0. For iteration t > 0, we use the above update to compute

parameters θtx|u given the parameters θt−1
x|u from the previous iteration. If at some point,

the parameters of one iteration do not change in the next (in practice, up to some limit),

we say that the iterations have converged to a fixed point. The above theorem, together

with Theorem 2, shows that these updates are convergent to the unique maximum of

the posterior.

Given Equation 4.3, one can think of two types of iterations in EDML: local and

global. A global iteration corresponds to executing Lines 2–4 of Algorithm 4 and is

similar to an EM iteration. Within each global iteration, we have local iterations which

correspond to the evaluations of Equation 4.3. Note that each parameter set θX|u has its

own local iterations, which are meant to find the optimal values of this parameter set.

Moreover, the number of local iterations for each parameter set θX|u may be different,

depending on the soft evidence pertaining to that set (i.e., λix|u) and depending on how

Equation 4.3 is seeded for that particular parameter set (i.e., θ0
x|u).

45

This leads to a number of observations on the difference between EM updates

(Equation 2.1) and EDML updates (Equation 4.3). From a time complexity viewpoint,

an EM update implies exactly one local iteration for each parameter set since Equa-

tion 2.1 needs to be evaluated only once for each parameter set. As mentioned earlier,

however, an EDML update requires a varying number of local iterations. We have in-

deed observed that some parameter sets may require several hundred local iterations,

depending on the seed of Equation 4.3 and the convergence criteria used. Another im-

portant observation is that EDML has a secondary set of seeds, as compared to EM,

which are needed to start off Equation 4.3 at the beginning of each global iteration of

EDML. In our experiments, we seed Equation 4.3 using the parameter estimates ob-

tained from the previous global iteration of EDML. We note, however, that the choice

of these secondary seeds is a subject that can significantly benefit from further research.

4.4 EDML Fixed Points

One of the more well known facts about EM is that its fixed points are precisely the

stationary points of the log-likelihood function (or more generally, the posterior density

when Dirichlet priors are used). This property has a number of implications, one of

which is that EM is capable of converging to every local maxima of the log-likelihood,

assuming that the algorithm is seeded appropriately.

In this section, we show that the fixed points of EDML are precisely the fixed points

of EM. We start by formally defining what a fixed point is.

Both EM and EDML can be viewed as functions f(θ) that take a network param-

eterization θ and returns another network parameterization f(θ). Each algorithm is

seeded with initial parameters θ0. After the first iteration, each algorithm produces the

next parameters θ1 = f(θ0). More generally, at iteration i, each algorithm produces the

parameters θi+1 = f(θi). When θi+1 = θi, we say that parameters θi are a fixed point

for an algorithm. We also say that the algorithm has converged to θi. We now have the

46

following results.

Theorem 4 A parameterization θ is a fixed point for EDML if and only if it is a fixed

point for EM.

The proof of this theorem rests on two observations. First, using the update equation

of EM given on Line 4 of Algorithm 3, one immediately gets that the EM fixed points

are characterized by the following equation

Pr(x|u) =
ψx|u − 1 +

∑N
i=1 Pr(xu|di)

ψX|u − |X|+
∑N

i=1 Pr(u|di)
(4.4)

That is, we can test whether a network parameterization θ is a fixed point for EM by

simply checking the probability distribution Pr it induces to see if satisfies the above

equation (this is actually a set of equations, one for each family instantiation xu in the

network).

Consider now EDML updates as given by Equation 4.3 and suppose that we have

reached a fixed point, where θtx|u = θt−1
x|u = Pr(x|u) for all xu. If we now replace each

λix|u by its corresponding value in Equation 4.1 of Algorithm 4, we obtain, after some

simplification:

Pr(x|u) =
ψx|u − 1 +

∑N
i=1

λi
x|uPr(x|u)∑

x? λ
i
x?|uPr(x

?|u)

ψX|u − |X|+N

=
ψx|u − 1 +

∑N
i=1 Pr(xu|di) + Pr(¬u|di)Pr(x|u)

ψX|u − |X|+N
(4.5)

Thus, a parameterization θ is a fixed point for EDML iff it satisfies Equation 4.5. After

noting that N =
∑N

i=1 Pr(u|di) + Pr(¬u|di), we rearrange Equation 4.5 to obtain

Equation 4.4, which is the characteristic equation for EM fixed points. Thus, a param-

eterization θ satisfies Equation 4.5 iff it is a fixed point for EM.

47

4.5 Hybrid EDML/EM

By Theorem 4, EDML and EM share the same fixed points. This result is fairly surpris-

ing, considering the theoretical and practical differences between the two algorithms.

For example, certain specialized situations were identified where EDML converges to

optimal parameter estimates in a single global iteration (regardless of how it is seeded),

whereas EM may require many iterations to converge to the same estimates (Choi et al.,

2011). On the other hand, EDML is not guaranteed to monotonically improve its esti-

mates after each global iteration as EM does (improvement here is in terms of increasing

the likelihood of estimates, or the MAP when Dirichlet priors are used).

By carefully examining EDML updates (Equation 4.3), one can see that the quanti-

ties it needs to perform a single local iteration are the same quantities needed to perform

an EM update (Equation 2.1). Hence, without any additional computational effort, one

can obtain EM updates as a side effect of computing EDML updates (the converse is not

true since Equation 4.3 may require many local iterations). As both algorithms share

the same fixed points, it thus makes sense to consider a hybrid algorithm that takes

advantage of the improved theoretical and practical benefits of EDML (with respect to

faster convergence) and the monotonic improvement property of EM.

We thus propose a very simple hybrid algorithm. At each global iteration of EDML,

we also compute EM updates simultaneously. We then evaluate each update and choose

the one that increases the posterior the most. As EM is guaranteed to improve the

posterior, this hybrid algorithm is also trivially guaranteed to monotonically improve

the posterior, therefore, inheriting the most celebrated feature of EM.

While additionally computing an EM update is not much overhead if one is com-

puting an EDML update, evaluating both updates with respect to the posterior incurs

a non-trivial cost. As we shall see in the following section, however, the improved

convergence behavior of EDML enables this hybrid algorithm to realize improvements

over EM, both in terms of faster convergence (i.e., number of global iterations) and in

48

terms of time (i.e., when taking both global and local iterations under consideration).

4.6 Experimental Results

0 200 400 600 800 1000
iterations

0

50

100

150

200

250

300

350

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

(a) andes

0 200 400 600 800 1000
iterations

0

100

200

300

400

500

600

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

(b) andes

0 200 400 600 800 1000
iterations

0.0

0.5

1.0

1.5

2.0

2.5

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

(c) asia

0 200 400 600 800 1000
iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

(d) asia

0 200 400 600 800 1000
iterations

0

50

100

150

200

250

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

(e) diagnose

0 200 400 600 800 1000
iterations

0

20

40

60

80

100

120

140

160

180

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

(f) diagnose

0 200 400 600 800 1000
iterations

0

50

100

150

200

250

300

350

400

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

(g) alarm

0 100 200 300 400 500
iterations

0

20

40

60

80

100

120

140

Lo
g
 M

A
P
 (

e
rr

o
r)

EM
EDML

(h) alarm

Figure 4.3: MAP Error of parameter estimates over iterations. Going right on the

x-axis, we have increasing iterations. Going up on the y-axis, we have increasing error.

EDML is depicted with a solid red line, and EM with a dashed black line. The curves

are, in pairs, for the networks: andes, asia, diagnose, and alarm. Each pair of curves

represents a selection of two different datasets of size 210.

In our first set of experiments, we show that simple EDML, as compared to EM, can

often find better estimates in fewer global iterations. In our second set of experiments,

we show that a hybrid EDML/EM algorithm can find better estimates in less time, as

49

well as fewer global iterations. We use the following networks: alarm, andes, asia,

diagnose, pigs, spect, water, and win95pts. Network spect is a naive Bayes network

induced from a dataset in the UCI ML repository, with 1 class variable and 22 attributes.

Network diagnose is from the UAI 2008 evaluation. The other networks are commonly

used benchmarks.1

Using these networks, we simulated data sets of a certain size (210), then made the

data incomplete by randomly selecting a certain percentage of the nodes to be hidden

(10%, 25%, 35%, 50%, and 70%). For each of these cases, and for each network, we

further generated 3 data sets at random. A combination of a network, a percentage of

hidden nodes, and a generated data set constitutes a learning problem. Both EM and

EDML are seeded with the same set of randomly generated parameters. Local EDML

iterations are seeded with the estimates of the previous global iteration.

4.6.1 Experiments I

First, we study the behavior of EDML compared to EM, with respect to global itera-

tions (more on the computation time, in the next section). For every learning problem,

we run both EM and EDML2 for 1000 global iterations and identify the best MAP esti-

mates achieved by either of them, for the purpose of evaluation. In each global iteration,

EM and EDML each try to improve their current estimates by improving the posterior

(again, EM is provably guaranteed to increase the posterior, while EDML is not). The

difference between the (log) posterior of the current estimates, and the best (log) pos-

terior found, by either algorithm, is considered to be the error. The error is measured

at every global iteration of EM and EDML until it decreases below 10−4. Table 4.1

summarizes the results by showing the percentage of global iterations in which each

algorithm had less error than the other. In the global iterations where an algorithm had

1Available at http://www.cs.huji.ac.il/site/labs/compbio/Repository/ and
http://genie.sis.pitt.edu/networks.html

2Soft evidence and parameter updates are damped in EDML, which is typical for algorithms like
loopy belief propagation, which EDML is, in part, inspired by (Choi & Darwiche, 2006).

50

less error, the factor by which it decreases the error of the other algorithm, on average,

is computed, and is considered the relative improvement: r and r′, for EM and EDML,

respectively. Table 4.1 shows the results for three different breakdowns: (1) by different

networks, (2) by different hiding percentages, and (3) on average.

We see here that EDML can obtain better estimates than EM in much fewer global

iterations. Interestingly, this is the case even though EDML is not guaranteed to im-

prove estimates after each global iteration, as EM does. Another interesting observation

is that decreasing the percentage of hidden nodes widens the gap between EDML and

EM, in favor of EDML. This is not surprising though since the approximate inference

scheme on which EDML is based becomes more accurate with more observations. In

particular, the local optimization problems that EDML solves exactly and indepen-

dently, become more independent with more observations (i.e., as the dataset becomes

more complete). Figure 4.3 highlights a selection of error curves given by EM and

EDML for different learning problems. One can see that in most cases shown, the

EDML error goes to zero much faster than EM.

4.6.2 Experiments II

0 10000 20000 30000 40000 50000 60000
time

12000

11800

11600

11400

11200

11000

10800

Lo
g
 M

A
P

hideNodes: Log Map

EM
Hybrid EDML
EDML

0 50000 100000 150000 200000 250000
time

10000

9800

9600

9400

9200

9000

8800

Lo
g
 M

A
P

hideNodes: Log Map

EM
Hybrid EDML
EDML

0 400000 800000 1200000
time

26800

26700

26600

26500

26400

26300

26200

26100

Lo
g
 M

A
P

hideNodes: Log Map

EM
Hybrid EDML
EDML

Figure 4.4: MAP of parameter estimates over time. Going right on the x-axis, we have

increasing time (ms). Going up on the y-axis, we have increasing MAP. Hybrid EDML

is depicted with a solid red line, EM with a dashed black line, and EDML with a blue

dotted dashed line. The curves are from left to right for the following problems: alarm

with hiding 25%, win95pts with hiding 35%, and water with hiding 50%.

51

Table 4.1: Speedup results (iterations)

category % EDML % EM r r′

alarm 89.25% 10.75% 76.21% 76.44%

andes 75.89% 24.11% 88.95% 79.29%

asia 99.01% 0.99% 92.05% 76.91%

diagnose 78.99% 21.01% 77.99% 80.18%

pigs 83.34% 16.66% 83.51% 60.57%

spect 86.65% 13.35% 82.70% 79.96%

water 82.77% 17.23% 91.55% 83.78%

win95pts 78.73% 21.27% 91.75% 79.89%

hiding 10% 93.82% 6.18% 84.59% 87.13%

hiding 25% 90.95% 9.05% 83.83% 75.70%

hiding 35% 82.24% 17.76% 86.26% 75.09%

hiding 50% 77.61% 22.39% 87.8% 80.21%

hiding 70% 75.65% 24.35% 84.48% 74.21%

average 83.05% 16.95% 85.41% 76.96%

Our first set of experiments showed that EDML can obtain better estimates in sig-

nificantly fewer global iterations than EM. A global EDML iteration, however, is more

costly than a global EM iteration as EDML performs local iterations which are needed

to solve the convex optimization problem associated with each parameter set. Thus,

EDML can potentially take more time to converge than EM in some cases, therefore

reducing the overall benefit over EM, in terms of time (more on this later).3 EDML

can still perform favorably time-wise compared to EM, but we show here that a hybrid

EDML/EM can go even further.

We first run EM until convergence (or until it exceeds 1000 iterations). Second, we

3This could be alleviated, for example, by better seeding of the local EDML iterations (to speed
up convergence of the local iterations), or by performing the local EDML iterations in parallel, across
parameter sets.

52

Table 4.2: Speedup results (time)

network % Hybrid % EM s s′

alarm 46.67% 53.33% 75.80% 56.22%

andes 53.33% 46.67% 42.27% 47.08%

asia 66.67% 33.33% 70.37% 41.00%

diagnose 26.67% 73.33% 52.71% 43.14%

pigs 73.33% 26.67% 52.35% 31.32%

spect 100% 0% 98.03% —

water 35.71% 64.29% 46.15% 43.55%

win95pts 80.00% 20.00% 66.37% 54.95%

average 60.50% 39.50% 67.45% 45.55%

run our hybrid EDML/EM until it achieves the same quality of parameter estimates as

EM (or until it exceeds 1000 iterations). To summarize the results, Table 4.2 shows

the percentage of learning problems in which each algorithm was faster than the other.

In the cases where the hybrid EDML/EM algorithm was faster, the average percentage

by which it decreases the execution time of EM is reported as the speedup (s). The

speedup for the cases in which EM was faster is given by s′.

The results suggest that hybrid EDML/EM can be used to get better estimates in

less time. Specifically, on average, the hybrid method decreases the execution time by

a factor of 3.07 in about 60.50% of the cases, and, in the rest of the cases, EM was

faster by a factor of roughly 1.84. This is particularly interesting in light of the non-

trivial overhead associated with hybrid EDML/EM, as it has to evaluate both EDML

and EM estimates in order to select the better estimate. In comparison, EDML alone

was on average faster than EM by a factor of 2.59 times in about 54.17% of the cases,

whereas EM was faster than EDML alone by a factor of 2.38 in the remaining 45.83%

of the cases.

Figure 4.4 shows a sample of the time curves showing two cases where EDML/EM

53

reached better MAP estimates, faster than EM, and one case where EDML/EM finished

slightly after EM. EDML alone is also plotted in Figure 4.4 where it is usually slower

than EDML/EM except in some cases; see the center plot in Figure 4.4.

54

CHAPTER 5

Generalized EDML for Learning Parameters in

Directed and Undirected Graphical Models

In this chapter, we propose a greatly simplified perspective on EDML, which casts it

as a general approach to continuous optimization. The new perspective has several ad-

vantages. First, it makes immediate some results that were non-trivial to prove initially.

Second, it facilitates the design of EDML algorithms for new graphical models, lead-

ing to a new algorithm for learning parameters in Markov networks. We derive this

algorithm in this chapter, and show, empirically, that it can sometimes learn estimates

more efficiently from complete data, compared to commonly used optimization meth-

ods, such as conjugate gradient and L-BFGS. This chapter is based on (Refaat et al.,

2013).

5.1 Introduction

In this chapter, we propose a new perspective on EDML, which views it more ab-

stractly in terms of a simple method for continuous optimization. This new perspec-

tive has a number of advantages, including the design of new EDML algorithms for

new classes of models, where graphical formulations of parameter estimation, such as

meta-networks, are lacking.

This chapter is structured as follows. In Section 5.2, we highlight a simple iterative

method for, approximately, solving continuous optimization problems. In Section 5.3,

we formulate the EDML algorithm for parameter estimation in Bayesian networks, as

55

an instance of this optimization method. In Section 5.4, we derive a new EDML algo-

rithm for Markov networks, based on the same perspective. In Section 5.5, we contrast

the two EDML algorithms for directed and undirected graphical models, in the com-

plete data case. We empirically evaluate our new algorithm for parameter estimation

under complete data in Markov networks, in Section 5.6; review related work in Sec-

tion 5.7; and conclude in Section 5.8. Proofs of theorems appear in the supplementary

appendix.

5.2 An Approximate Optimization of Real-Valued Functions

Consider a real-valued objective function f(x) whose input x is a vector of components:

x = (x1, . . . , xi, . . . , xn),

where each component xi is a vector in Rki for some ki. Suppose further that we have

a constraint on the domain of function f(x) with a corresponding function g that maps

an arbitrary point x to a point g(x) satisfying the given constraint. We say in this case

that g(x) is a feasibility function and refer to the points in its range as feasible points.

Our goal here is to find a feasible input vector x = (x1, . . . , xi, . . . , xn) that opti-

mizes the function f(x). Given the difficulty of this optimization problem in general,

we will settle for finding stationary points x in the constrained domain of function f(x).

One approach for finding such stationary points is as follows.

Let x? = (x?1, . . . , x
?
i , . . . , x

?
n) be a feasible point in the domain of function f(x).

For each component xi, we define a sub-function

fx?(xi) = f(x?1, . . . , x
?
i−1, xi, x

?
i+1, . . . , x

?
n).

That is, we use the n-ary function f(x) to generate n sub-functions fx?(xi). Each of

these sub-functions is obtained by fixing all inputs xj of f(x), for j 6= i, to their values

in x?, while keeping the input xi free. We further assume that these sub-functions are

subject to the same constraints that the function f(x) is subject to.

56

We can now characterize all feasible points x? that are stationary with respect to the

function f(x), in terms of local conditions on sub-functions fx?(xi).

Claim 1 A feasible point x? = (x?1, . . . , x
?
i , . . . , x

?
n) is stationary for function f(x) iff

for all i, component x?i is stationary for sub-function fx?(xi).

This is immediate from the definition of a stationary point. Assuming no con-

straints, at a stationary point x?, the gradient∇f(x?) = 0, i.e.,∇xif(x?) = ∇fx?(x?i) =

0 for all xi, where∇xif(x?) denotes the sub-vector of gradient∇f(x?) with respect to

component xi.1

With these observations, we can now search for feasible stationary points x? of the

constrained function f(x) using an iterative method that searches instead for stationary

points of the constrained sub-functions fx?(xi). The method works as follows:

1. Start with some feasible point xt of function f(x) for t = 0

2. While some xti is not a stationary point for constrained sub-function fxt(xi)

(a) Find a stationary point yt+1
i for each constrained sub-function fxt(xi)

(b) xt+1 = g(yt+1)

(c) Increment t

The real computational work of this iterative procedure is in Steps 2(a) and 2(b),

although we shall see later that such steps can, in some cases, be performed efficiently.

With an appropriate feasibility function g(y), one can guarantee that a fixed-point of

this procedure yields a stationary point of the constrained function f(x), by Claim 1 2.

Further, any stationary point is trivially a fixed-point of this procedure (one can seed

this procedure with such a point).

As we shall show in the next section, the EDML algorithm—which has been pro-

posed for parameter estimation in Bayesian networks—is an instance of the above
1Under constraints, we consider points that are stationary with respect to the corresponding

Lagrangian.
2We discuss this point further in the supplementary appendix.

57

procedure with some notable observations: (1) the sub-functions fxt(xi) are convex

and have unique optima; (2) these sub-functions have an interesting semantics, as they

correspond to posterior distributions that are induced by Naive Bayes networks with

soft evidence asserted on them; (3) defining these sub-functions requires inference in

a Bayesian network parameterized by the current feasible point xt; (4) there are al-

ready several convergent, fixed-point iterative methods for finding the unique optimum

of these sub-functions; and (5) these convergent methods produce solutions that are

always feasible and, hence, the feasibility function g(y) corresponds to the identity

function g(y) = y in this case.

We next show this connection to EDML as proposed for parameter estimation in

Bayesian networks. We follow by deriving an EDML algorithm (another instance of

the above procedure), but for parameter estimation in undirected graphical models. We

will also study the impact of having complete data on both versions of the EDML

algorithm, and finally evaluate the new instance of EDML by comparing it to conjugate

gradient and L-BFGS when applied to complete datasets.

5.3 EDML for Bayesian Networks

Consider a (possibly incomplete) dataset D with examples d1, . . . ,dN , and a Bayesian

network with parameters θ. Our goal is to find parameter estimates θ that minimize the

negative log-likelihood:

f(θ) = −``(θ|D) = −
N∑
i=1

logPrθ(di). (5.1)

Here, θ = (. . . , θX|u, . . .) is a vector over the network parameters. Moreover, Prθ is the

distribution induced by the Bayesian network structure under parameters θ. As such,

Prθ(di) is the probability of observing example di in dataset D under parameters θ.

Each component of θ is a parameter set θX|u, which defines a parameter θx|u for each

value x of variableX and instantiation u of its parents U. The feasibility constraint here

58

is that each component θX|u satisfies the convex sum-to-one constraint:
∑

x θx|u = 1.

The above parameter estimation problem is clearly in the form of the constrained

optimization problem that we phrased in the previous section and, hence, admits the

same iterative procedure proposed in that section for finding stationary points. The

relevant questions now are: What form do the sub-functions fθ?(θX|u) take in this con-

text? What are their semantics? What properties do they have? How do we find their

stationary points? What is the feasibility function g(y) in this case? Finally, what is the

connection to previous work on EDML? We address these questions next.

5.3.1 Form

We start by characterizing the sub-functions of the negative log-likelihood given in

Equation 5.1.

Theorem 5 For each parameter set θX|u, the negative log-likelihood of Equation 5.1

has the sub-function:

fθ?(θX|u) = −
N∑
i=1

log
(
Ci

u +
∑
x

Ci
x|u · θx|u

)
(5.2)

where Ci
u and Ci

x|u are constants that are independent of parameter set θX|u, given by

Ci
u = Prθ?(di)− Prθ?(u,di) and Ci

x|u = Prθ?(x,u,di)/θ
?
x|u

To compute the constants Ci, we require inference on a Bayesian network with param-

eters θ?.3

5.3.2 Semantics

Equation 5.2 has an interesting semantics, as it corresponds to the negative log-likelihood

of a root variable in a naive Bayes structure, on which soft, not necessarily hard, evi-
3Theorem 5 assumes tacitly that θ?x|u 6= 0. More generally, however, Cix|u = ∂Prθ?(di)/∂θx|u,

which can also be computed using some standard inference algorithms (Darwiche, 2003; Park & Dar-
wiche, 2004).

59

…	
…	 η1

 η2
 ηN

!X

X1 X2 XN

Figure 5.1: Estimation given independent soft observations.

dence is asserted (Choi et al., 2011).4

This model is illustrated in Figure 5.1, where our goal is to estimate a parameter set

θX , given soft observations η = (η1, . . . , ηN) on variables X1, . . . , XN , where each ηi

has a strength specified by a weight on each value xi ofXi. If we denote the distribution

of this model by P, then (1) P(θ) denotes a prior over parameters sets,5 (2) P(xi|θX =

(. . . , θx, . . .)) = θx, and (3) weights P(ηi|xi) denote the strengths of soft evidence ηi

on value xi. The log likelihood of our soft observations η is:

logP(η|θX) =
N∑
i=1

log
∑
xi

P(ηi|xi)P(xi|θX) =
N∑
i=1

log
∑
xi

P(ηi|xi) · θx (5.3)

The following result connects Equation 5.2 to the above likelihood of a soft dataset,

when we now want to estimate the parameter set θX|u, for a particular variable X and

parent instantiation u.

Theorem 6 Consider Equations 5.2 and 5.3, and assume that each soft evidence ηi has

the strength P(ηi|xi) = Ci
u + Ci

x|u. It then follows that

fθ?(θX|u) = − logP(η|θX|u) (5.4)

This theorem yields the following interesting semantics for EDML sub-functions. Con-

sider a parameter set θX|u and example di in our dataset. The example can then be

viewed as providing “votes” on what this parameter set should be. In particular, the
4Soft evidence is an observation that increases or decreases ones belief in an event, but not necessarily

to the point of certainty. For more on soft evidence, see (Chan & Darwiche, 2005).
5Typically, we assume Dirichlet priors for MAP estimation. However, we focus on ML estimation

here.

60

vote of example di for value x takes the form of a soft evidence ηi whose strength is

given by

P(ηi|xi) = Prθ?(di)− Prθ?(u,di) + Prθ?(x,u,di)/θ
?
x|u

The sub-function is then aggregating these votes from different examples and produc-

ing a corresponding objective function on parameter set θX|u. EDML optimizes this

objective function to produce the next estimate for each parameter set θX|u.

5.3.3 Properties

Equation 5.2 is a convex function, and thus has a unique optimum.6 In particular,

we have logs of a linear function, which are each concave. The sum of two concave

functions is also concave, thus our sub-function fθ?(θX|u) is convex, and is subject to

a convex sum-to-one constraint (Refaat et al., 2012). Convex functions are relatively

well understood, and there are a variety of methods and systems that can be used to

optimize Equation 5.2; see, e.g., (Boyd & Vandenberghe, 2004). We describe one such

approach, next.

5.3.4 Finding the Unique Optima

In every EDML iteration, and for each parameter set θX|u, we seek the unique opti-

mum for each sub-function fθ?(θX|u), given by Equation 5.2. Refaat, et al., has previ-

ously proposed a fixed-point algorithm that monotonically improves the objective, and

is guaranteed to converge (Refaat et al., 2012). Moreover, the solutions it produces

already satisfy the convex sum-to-one constraint and, hence, the feasibility function g

ends up being the identity function g(θ) = θ.

In particular, we start with some initial feasible estimates θtX|u at iteration t = 0,

6More specifically, strict convexity implies a unique optimum, although under certain assumptions,
we can guarantee that Equation 5.2 is indeed strictly convex.

61

and then apply the following update equation until convergence:

θt+1
x|u =

1

N

N∑
i=1

(Ci
u + Ci

x|u) · θtx|u
Ci

u +
∑

x′ C
i
x′|u · θtx′|u

(5.5)

Note here that constants Ci are computed by inference on a Bayesian network structure

under parameters θt (see Theorem 5 for the definitions of these constants). Moreover,

while the above procedure is convergent when optimizing sub-functions fθ?(θX|u), the

global EDML algorithm that is optimizing function f(θ) may not be convergent in

general.

5.3.5 Connection to Previous Work

EDML was originally derived by applying an approximate inference algorithm to a

meta-network, which is typically used in Bayesian approaches to parameter estima-

tion (Choi et al., 2011; Refaat et al., 2012). This previous formulation of EDML,

which is specific to Bayesian networks, now falls as a special instance of the one given

in Section 5.2. In particular, the “sub-problems” defined by the original EDML (Choi

et al., 2011; Refaat et al., 2012) correspond precisely to the sub-functions fθ?(θX|u)

described here. Further, both versions of EDML are procedurally identical when they

both use the same method for optimizing these sub-functions.

The new formulation of EDML is more transparent, however, at least in revealing

certain properties of the algorithm. For example, it now follows immediately (from

Section 5.2) that the fixed points of EDML are stationary points of the log-likelihood—

a fact that was not proven until (Refaat et al., 2012), using a technique that appealed

to the relationship between EDML and EM. Moreover, the proof that EDML under

complete data will converge immediately to the optimal estimates is also now imme-

diate (see Section 5.5). More importantly though, this new formulation provides a

systematic procedure for deriving new instances of EDML for additional models, be-

yond Bayesian networks. Indeed, in the next section, we use this procedure to derive

an EDML instance for Markov networks, which is followed by an empirical evaluation

62

of the new algorithm under complete data.

5.4 EDML for Undirected Models

In this section, we show how parameter estimation for undirected graphical models,

such as Markov networks, can also be posed as an optimization problem, as described

in Section 5.2.

For Markov networks, θ = (. . . , θXa , . . .) is a vector over the network parameters.

Component θXa is a parameter set for a (tabular) factor a, assigning a number θxa ≥ 0

for each instantiation xa of variables Xa. The negative log-likelihood −``(θ|D) for a

Markov network is:

−``(θ|D) = N logZθ −
N∑
i=1

logZθ(di) (5.6)

where Zθ is the partition function, and where Zθ(di) is the partition function after con-

ditioning on example di, under parameterization θ. Sub-functions with respect to Equa-

tion 5.6 may not be convex, as was the case in Bayesian networks. Consider instead

the following objective function, which we shall subsequently relate to the negative

log-likelihood:

f(θ) = −
N∑
i=1

logZθ(di), (5.7)

with a feasibility constraint that the partition function Zθ equals some constant α. The

following result tells us that it suffices to optimize Equation 5.7 under the given con-

straint, to optimize Equation 5.6.

Theorem 7 Let α be a positive constant, and let g(θ) be a (feasibility) function satis-

fying Zg(θ) = α and g(θxa) ∝ θxa for all θxa .7 For every point θ, if g(θ) is optimal

for Equation 5.7, subject to its constraint, then it is also optimal for Equation 5.6.
7Here, g(θxa) denotes the component of g(θ) corresponding to θxa . Moreover, the function g(θ) can

be constructed, e.g., by simply multiplying all entries of one parameter set by α/Zθ. In our experiments,
we normalize each parameter set to sum-to-one, but then update the constant α = Zθt for the subsequent
iteration.

63

Moreover, a point θ is stationary for Equation 5.6 iff the point g(θ) is stationary for

Equation 5.7, subject to its constraint.

With Equation 5.7 as a new (constrained) objective function for estimating the pa-

rameters of a Markov network, we can now cast it in the terms of Section 5.2. We start

by characterizing its sub-functions.

Theorem 8 For a given parameter set θXa , the objective function of Equation 5.7 has

sub-functions:

fθ?(θXa) = −
N∑
i=1

log
∑
xa

Ci
xa · θxa subject to

∑
xa

Cxa · θxa = α (5.8)

where Ci
xa and Cxa are constants that are independent of the parameter set θXa:

Ci
xa = Zθ?(xa,di)/θ

?
xa and Cxa = Zθ?(xa)/θ

?
xa .

Note that computing these constants requires inference on a Markov network with pa-

rameters θ?.8

Interestingly, this sub-function is convex, as well as the constraint (which is now

linear), resulting in a unique optimum, as in Bayesian networks. However, even when

θ? is a feasible point, the unique optima of these sub-functions may not be feasible

when combined. Thus, the feasibility function g(θ) of Theorem 7 must be utilized in

this case.

We now have another instance of the iterative algorithm proposed in Section 5.2,

but for undirected graphical models. That is, we have just derived an EDML algorithm

for such models.

8Theorem 8 assumes that θ?xa 6= 0. In general, Cixa = ∂Zθ? (di)
∂θxa

, and Cxa = ∂Zθ?
∂θxa

. See also
Footnote 3.

64

5.5 EDML under Complete Data

We consider now how EDML simplifies under complete data for both Bayesian and

Markov networks, identifying forms and properties of the corresponding sub-functions

under complete data.

We start with Bayesian networks. Consider a variable X , and a parent instantiation

u; and let D#(xu) represent the number of examples that contain xu in the complete

dataset D. Equation 5.2 of Theorem 5 then reduces to:

fθ?(θX|u) = −
∑
x

D#(xu) log θx|u + C,

where C is a constant that is independent of parameter set θX|u. Assuming that θ? is

feasible (i.e., each θX|u satisfies the sum-to-one constraint), the unique optimum of this

sub-function is θx|u = D#(xu)
D#(u)

, which is guaranteed to yield a feasible point θ, globally.

Hence, EDML produces the unique optimal estimates in its first iteration and terminates

immediately thereafter.

The situation is different, however, for Markov networks. Under a complete dataset

D, Equation 5.8 of Theorem 8 reduces to:

fθ?(θXa) = −
∑
xa

D#(xa) log θxa + C,

where C is a constant that is independent of parameter set θXa . Assuming that θ?

is feasible (i.e., satisfies Zθ? = α), the unique optimum of this sub-function has the

closed form: θxa = α
N
D#(xa)
Cxa

, which is equivalent to the unique optimum one would

obtain in a sub-function for Equation 5.6 (Pietra, Pietra, & Lafferty, 1997; Murphy,

2012). Contrary to Bayesian networks, the collection of these optima for different

parameter sets do not necessarily yield a feasible point θ. Hence, the feasibility function

g of Theorem 7 must be applied here. The resulting feasible point, however, may no

longer be a stationary point for the corresponding sub-functions, leading EDML to

iterate further. Hence, under complete data, EDML for Bayesian networks converges

immediately, while EDML for Markov networks may take multiple iterations.

65

Both results are consistent with what is already known in the literature on parame-

ter estimation for Bayesian and Markov networks. The result on Bayesian networks is

useful in confirming that EDML performs optimally in this case. The result for Markov

networks, however, gives rise to a new algorithm for parameter estimation under com-

plete data. We evaluate the performance of this new EDML algorithm after considering

the following example.

Let D be a complete dataset over three variables A, B and C, specified in terms of

the number of times that each instantiation a, b, c appears in D. In particular, we have

the following counts:

D#(a, b, c) = 4, D#(a, b, c̄) = 18, D#(a, b̄, c) = 2, D#(a, b̄, c̄) = 13, D#(ā, b, c) =

1, D#(ā, b, c̄) = 1, D#(ā, b̄, c) = 42, and D#(ā, b̄, c̄) = 19.

Suppose we want to learn, from this dataset, a Markov network with 3 edges, (A,B),

(B,C) and (A,C), with the corresponding parameter sets θAB, θBC and θAC . If the

initial set of parameters θ? = (θ?AB, θ
?
BC , θ

?
AC) is uniform, i.e., θ?XY = (1, 1, 1, 1), then

Equation 5.8 gives the sub-function fθ?(θAB) = −22 · log θab−15 · log θab̄−2 · log θāb−

61·log θāb̄. Moreover, we haveZθ? = 2·θab+2·θab̄+2·θāb+2·θāb̄. Minimizing fθ?(θAB)

under Zθ? = α = 2 corresponds to solving a convex optimization problem, which has

the unique solution: (θab, θab̄, θāb, θab̄) = (22
100
, 15

100
, 2

100
, 61

100
). We solve similar convex

optimization problems for the other parameter sets θBC and θAC , to update estimates

θ?. We then apply an appropriate feasibility function g (see Footnote 7), and repeat

until convergence.

5.6 Experimental Results

We evaluate now the efficiency of EDML, conjugate gradient (CG) and Limited-memory

BFGS (L-BFGS), when learning Markov networks under complete data.9 We first

learned grid-structured pairwise MRFs from the CEDAR dataset of handwritten digits,

9We also considered Iterative Proportional Fitting (IPF) as a baseline. However, IPF does not scale
to our benchmarks, as it invokes inference many times more often than the methods we considered.

66

which has 10 datasets (one for each digit) of 16×16 binary images. We also simulated

datasets from networks used in the probabilistic inference evaluations of UAI-2008,

2010 and 2012, that are amenable to jointree inference.10 For each network, we sim-

ulated 3 datasets of size 210 examples each, and learned parameters using the original

structure. Experiments were run on a 3.6GHz Intel i5 CPU with access to 8GB RAM.

We used the CG implementation in the Apache Commons Math library, and the

L-BFGS implementation in Mallet.11 Both are Java libraries, and our implementation

of EDML is also in Java. More importantly, all of the CG, L-BFGS, and EDML meth-

ods rely on the same underlying engine for exact inference.12 For EDML, we damped

parameter estimates at each iteration, which is typical for algorithms like loopy be-

lief propagation, which EDML was originally inspired by (Choi et al., 2011).13 We

used Brent’s method with default settings for line search in CG, which was the most

efficient over all univariate solvers in Apache’s library, which we evaluated in initial

experiments.

We first run CG until convergence (or after exceeding 30 minutes) to obtain param-

eter estimates of some quality qcg (in log likelihood), recording the number of iterations

icg and time tcg required in minutes. EDML is then run next until it obtains an estimate

of the same quality qcg, or better, recording also the number of iterations iedml and time

tedml in minutes. The time speed-up S of EDML over CG is computed as tcg/tedml.

We also performed the same comparison with L-BFGS instead of CG, recording the

corresponding number of iterations (il-bfgs, i′edml) and time taken (tl-bfgs, t′edml), giving

us the speed-up of EDML over L-BFGS as S ′ = tl-bfgs/t
′
edml.

Table 5.1 shows results for both sets of experiments. It shows the number of vari-

10Network 54.wcsp is a weighted CSP problem; or-chain-{42, 45, 147, 148, 225} are from the Prome-
das suite; rbm-20 is a restricted Boltzmann machine; Seg2-17, Seg7-11 are from the Segmentation suite;
family2-dominant, family2-recessive are genetic linkage analysis networks; and grid10x10.f5.wrap,
grid10x10.10.wrap are 10x10 grid networks.

11Available at http://commons.apache.org/ and http://mallet.cs.umass.edu/.
12For exact inference in Markov networks, we employed a jointree algorithm from the SAMIAM in-

ference library, http://reasoning.cs.ucla.edu/samiam/.
13We start with an initial factor of 1

2 , which we tighten as we iterate.

67

ables in each network (#vars), the average number of iterations taken by each algo-

rithm, and the average speed-up achieved by EDML over CG (L-BFGS).14 On the

given benchmarks, we see that on average EDML was roughly 13.5× faster than CG,

and 4.5× faster than L-BFGS. EDML was up to an order-of-magnitude faster than L-

BFGS in some cases. In many cases, EDML required more iterations but was still

faster in time. This is due in part by the number of times inference is invoked by CG

and L-BFGS (in line search), whereas EDML only needs to invoke inference once per

iteration.

5.7 Related Work

As an iterative fixed-point algorithm, we can view EDML as a Jacobi-type method,

where updates are performed in parallel (Bertsekas & Tsitsiklis, 1989). Alternatively,

a version of EDML using Gauss-Seidel iterations would update each parameter set in

sequence using the most recently computed update. This leads to an algorithm that

monotonically improves the log likelihood at each update. In this case, we obtain a

coordinate descent algorithm, Iterative Proportional Fitting (IPF) (Jirousek & Preucil,

1995), as a special case of EDML.

The notion of fixing all parameters, except for one, has been exploited before for

the purposes of optimizing the log likelihood of a Markov network, as a heuristic for

structure learning (Pietra et al., 1997). This notion also underlies the IPF algorithm;

see, e.g., (Murphy, 2012), Section 19.5.7. In the case of complete data, the resulting

sub-function is convex, yet for incomplete data, it is not necessarily convex.

Optimization methods such as conjugate gradient, and L-BFGS (Liu & Nocedal,

1989), are more commonly used to optimize the parameters of a Markov network.

For relational Markov networks or Markov networks that otherwise assume a feature-
14For CG, we used a threshold based on relative change in the likelihood at 10−4. We used Mallet’s

default convergence threshold for L-BFGS.

68

based representation (Domingos & Lowd, 2009), evaluating the likelihood is typically

intractable, in which case one typically optimizes instead the pseudo-log-likelihood

(Besag, 1975). For more on parameter estimation in Markov networks, see (Koller &

Friedman, 2009; Murphy, 2012).

5.8 Conclusion

In this chapter, we provided an abstract and simple view of the EDML algorithm, orig-

inally proposed for parameter estimation in Bayesian networks, as a particular method

for continuous optimization. One consequence of this view is that it is immediate that

fixed-points of EDML are stationary points of the log-likelihood, and vice-versa (Re-

faat et al., 2012). A more interesting consequence, is that it allows us to propose an

EDML algorithm for a new class of models, Markov networks. Empirically, we find

that EDML can more efficiently learn parameter estimates for Markov networks under

complete data, compared to conjugate gradient and L-BFGS, sometimes by an order-

of-magnitude.

69

Table 5.1: Speed-up results of EDML over CG and L-BFGS

problem #vars icg iedml tcg (S) il-bfgs i′edml tl-bfgs (S′)

zero 256 45 105 3.6 3.9x 24 74 1.6 2x

one 256 104 73 8.3 13.3x 58 42 3.9 8.1x

two 256 46 154 3.7 2.8x 21 87 1.5 1.5x

three 256 43 169 3.6 2.5x 52 169 3.6 1.9x

four 256 56 126 4.6 4.3x 61 115 3.9 3.2x

five 256 43 155 3.5 2.7x 49 155 3.2 1.9x

six 256 48 150 3.9 3.1x 20 90 1.5 1.4x

seven 256 57 147 4.6 3.4x 23 89 1.7 1.6x

eight 256 48 155 3.8 2.8x 57 154 3.8 2.3x

nine 256 56 168 4.5 3.15x 45 141 2.9 1.9x

54.wcsp 67 107.3 160.3 6.6 2.8x 68.3 172 1.8 0.7x

or-chain-42 385 120.3 27 0.1 31.3x 110 54.3 0.1 6.4x

or-chain-45 715 151 33.7 0.1 12.5x 94.3 36.3 0.1 4.9x

or-chain-147 410 107.7 18.7 3.3 80.7x 105 58.3 1.6 12.8x

or-chain-148 463 122.7 42.3 1 49.0x 80 32 0.3 14.2x

or-chain-225 467 181.3 58 0.8 44.1x 137.7 69 0.3 10.8x

rbm20 40 9 41 31 2.4x 30 107.2 30.2 1x

Seg2-17 228 63 83.7 1.8 7x 46.7 64.7 0.7 4.1x

Seg7-11 235 54.3 84 1.9 2.8x 48.7 73.3 1.3 2.3x

Family2Dominant 385 117.3 88 2.4 5.9x 85.7 78.3 1 2.7x

Family2Recessive 385 111.6 89.7 1.31 3.9x 86.3 81.7 0.7 2.2x

grid10x10.f5.wrap 100 136.7 239 17.4 6.3x 142 180.3 10.3 4.6x

grid10x10.f10.wrap 100 101.3 62.3 12.4 20.9x 92.7 59 5.9 9.7x

average 275.7 83.9 101.3 5.4 13.6x 66.8 94.9 3.6 4.5x

70

CHAPTER 6

Decomposing Parameter Estimation Problems in

Bayesian Networks

We propose in this chapter a technique for decomposing the parameter learning problem

in Bayesian networks into independent learning problems. Our technique applies to

incomplete datasets and exploits variables that are either hidden or observed in the

given dataset. We show empirically that the proposed technique can lead to orders-

of-magnitude savings in learning time. We explain, analytically and empirically, the

reasons behind our reported savings, and compare the proposed technique to related

ones that are sometimes used by inference algorithms. This chapter is based on (Refaat

et al., 2014).

6.1 Introduction

When learning the parameters of a graphical model from data, a key distinction is

commonly drawn between complete and incomplete datasets. In a complete dataset,

the value of each variable is known in every example. In this case, maximum like-

lihood parameters are unique and can be easily estimated using a single pass on the

dataset. However, when the data is incomplete, the optimization problem is generally

non-convex, has multiple local optima, and is commonly solved by iterative methods,

such as EM (Dempster et al., 1977; Lauritzen, 1995), gradient descent (Russel, Binder,

Koller, & Kanazawa, 1995) and, more recently, EDML (Choi et al., 2011; Refaat et al.,

2012, 2013).

71

Incomplete datasets may still exhibit a certain structure. In particular, certain vari-

ables may always be observed in the dataset, while others may always be unobserved

(hidden). We exploit this structure by decomposing the parameter learning problem into

smaller learning problems that can be solved independently. In particular, we show that

the stationary points of the likelihood function can be characterized by the ones of the

smaller problems. This implies that algorithms such as EM and gradient descent can

be applied to the smaller problems while preserving their guarantees. Empirically, we

show that the proposed decomposition technique can lead to orders-of-magnitude sav-

ings. Moreover, we show that the savings are amplified when the dataset grows in size.

Finally, we explain these significant savings analytically by examining the impact of

our decomposition technique on the dynamics of the used convergence test, and on the

properties of the datasets associated with the smaller learning problems.

The chapter is organized as follows. In Section 6.2, we present the decomposition

technique and then prove its soundness in Section 6.3. Section 6.4 is dedicated to

empirical results and to analyzing the reported savings. We discuss related work in

Section 6.5 and finally close with some concluding remarks in Section 6.6. The proofs

are moved to the appendix in the supplementary material.

6.2 Decomposing the Learning Problem

We now show how the problem of learning Bayesian network parameters can be de-

composed into independent learning problems. The proposed technique exploits two

aspects of a dataset: hidden and observed variables.

Proposition 3 The likelihood function L(θ|D) does not depend on the parameters of

variable X if X is hidden in dataset D and is a leaf of the network structure.

If a hidden variable appears as a leaf in the network structure, it can be removed from

the structure while setting its parameters arbitrarily (assuming no prior). This process

72

	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 V

X Y

Z

	 	 	 	 	 	 	 	

	 	 	 	

	 	 	 	 V

X Y

Z

Figure 6.1: Identifying components of network G given O = {V,X,Z}.

can be repeated until there are no leaf variables that are also hidden. The soundness of

this technique follows from (Shachter, 1986, 1990).

Our second decomposition technique will exploit the observed variables of a dataset.

In a nutshell, we will (a) decompose the Bayesian network into a number of sub-

networks, (b) learn the parameters of each sub-network independently, and then (c)

assemble parameter estimates for the original network from the estimates obtained in

each sub-network.

Definition 1 (Component) Let G be a network, O be some observed variables in G

and let G|O be the network which results from deleting all edges from G which are

outgoing from O. A component of G|O is a maximal set of nodes that are connected in

G|O.

Consider the network G in Figure 6.1, with observed variables O = {V,X,Z}. Then

G|O has three components in this case: S1 = {V }, S2 = {X}, and S3 = {Y, Z}.

The components of a network partition its parameters into groups, one group per

component. In the above example, the network parameters are partitioned into the

following groups:

S1 : {θv, θv}

S2 : {θx|v, θx|v, θx|v, θx|v}

S3 : {θy|x, θy|x, θy|x, θy|x, θz|y, θz|y, θz|y, θz|y}.

73

	 	 	 	 V 	 	 	 	

	 	 	 	 V

X

	 	 	 	 	 	 	 	

	 	 	 	

X Y

Z

Figure 6.2: The sub-networks induced by adding boundary variables to components.

We will later show that the learning problem can be decomposed into independent

learning problems, each induced by one component. To define these independent prob-

lems, we need some definitions.

Definition 2 (Boundary Node) Let S be a component ofG|O. If edgeB → S appears

in G, B 6∈ S and S ∈ S, then B is called a boundary for component S.

Considering Figure 6.1, node X is the only boundary for component S3 = {Y, Z}.

Moreover, node V is the only boundary for component S2 = {X}. Component S1 =

{V } has no boundary nodes.

The independent learning problems are based on the following sub-networks.

Definition 3 (Sub-Network) Let S be a component of G|O with boundary variables

B. The sub-network of component S is the subset of network G induced by variables

S ∪B.

Figure 6.2 depicts the three sub-networks which correspond to our running example.

The parameters of a sub-network will be learned using projected datasets.

Definition 4 Let D = d1, . . . ,dN be a dataset over variables X and let Y be a subset

of variables X. The projection of dataset D on variables Y is the set of examples

e1, . . . , eN , where each ei is the subset of example di which pertains to variables Y.

74

We show below a dataset for the full Bayesian network in Figure 6.1, followed by three

projected datasets, one for each of the sub-networks in Figure 6.2.

V X Y Z

d1 v x ? z

d2 v x ? z

d3 v x ? z

V count

e1 v 1

e2 v 2

V X count

e1 v x 1

e2 v x 1

e3 v x 1

X Y Z count

e1 x ? z 2

e2 x ? z 1

The projected datasets are “compressed” as we only represent unique examples, to-

gether with a count of how many times each example appears in a dataset. Using com-

pressed datasets is crucial to realizing the full potential of decomposition, as it ensures

that the size of a projected dataset is at most exponential in the number of variables

appearing in its sub-network (more on this later).

We are now ready to describe our decomposition technique. Given a Bayesian

network structureG and a datasetD that observes variables O, we can get the stationary

points of the likelihood function for network G as follows:

1. Identify the components S1, . . . ,SM of G|O (Definition 1).

2. Construct a sub-network for each component Si and its boundary variables Bi

(Definition 3).

3. Project the dataset D on the variables of each sub-network (Definition 4).

4. Identify a stationary point for each sub-network and its projected dataset (using,

e.g., EM, EDML or gradient descent).

5. Recover the learned parameters of non-boundary variables from each sub-network.

75

We will next prove that (a) these parameters are a stationary point of the likelihood

function for network G, and (b) every stationary point of the likelihood function can be

generated this way (using an appropriate seed).

6.3 Soundness

The soundness of our decomposition technique is based on three steps. We first intro-

duce the notion of a parameter term, on which our proof rests. We then show how the

likelihood function for the Bayesian network can be decomposed into component like-

lihood functions, one for each sub-network. We finally show that the stationary points

of the likelihood function (network) can be characterized by the stationary points of

component likelihood functions (sub-networks).

Two parameters are compatible iff they agree on the state of their common variables.

For example, parameters θz|y and θy|x are compatible, but parameters θz|y and θy|x are

not compatible, as y 6= y. Moreover, a parameter is compatible with an example iff

they agree on the state of their common variables. Parameter θy|x is compatible with

example x, y, z, but not with example x, y, z.

Definition 5 (Parameter Term) Let S be network variables and let d be an example.

A parameter term for S and d, denoted Θd
S, is a product of compatible network param-

eters, one for each variable in S, that are also compatible with example d.

Consider the network X → Y → Z. If S = {Y, Z} and d = x, z, then Θd
S will de-

note either θy|xθz|y or θy|xθz|y. Moreover, if S = {X, Y, Z}, then Θd
S will denote either

θxθy|xθz|y or θxθy|xθz|y. In this case, Pr(d) =
∑

Θd
S

Θd
S. This holds more generally,

whenever S is the set of all network variables.

We will now use parameter terms to show how the likelihood function can be de-

composed into component likelihood functions.

76

Theorem 9 Let S be a component of G|O and let R be the remaining variables of

network G. If variables O are observed in example d, we have

Prθ(d) =

∑
Θd

S

Θd
S

∑
Θd

R

Θd
R

 .
If θ denotes all network parameters, and S is a set of network variables, then θ :S

will denote the subset of network parameters which pertain to the variables in S. Each

component S of a Bayesian network induces its own likelihood function over parame-

ters θ :S.

Definition 6 (Component Likelihood) Let S be a component of G|O. For dataset

D = d1, . . . ,dN , the component likelihood for S is defined as

L(θ :S|D) =
N∏
i=1

∑
Θ

di
S

Θdi
S .

In our running example, the components are S1 = {V }, S2 = {X} and S3 = {Y, Z}.

Moreover, the observed variables are O = {V,X,Z}. Hence, the component likeli-

hoods are

L(θ :S1|D) = [θv] [θv] [θv]

L(θ :S2|D) =
[
θx|v
] [
θx|v
] [
θx|v
]

L(θ :S3|D) =
[
θy|xθz|y + θy|xθz|y

] [
θy|xθz|y + θy|xθz|y

] [
θy|xθz|y + θy|xθz|y

]
The parameters of component likelihoods partition the network parameters. That is, the

parameters of two component likelihoods are always non-overlapping. Moreover, the

parameters of component likelihoods account for all network parameters.1

We can now state our main decomposition result, which is a direct corollary of

Theorem 9.
1The sum-to-one constraints that underlie each component likelihood also partition the sum-to-one

constraints of the likelihood function.

77

Corollary 1 Let S1, . . . ,SM be the components of G|O. If variables O are observed

in dataset D,

L(θ|D) =
M∏
i=1

L(θ :Si|D).

Hence, the network likelihood decomposes into a product of component likelihoods.

This leads to another important corollary (see Lemma 1 in the Appendix):

Corollary 2 Let S1, . . . ,SM be the components of G|O. If variables O are observed

in dataset D, then θ? is a stationary point of the likelihood L(θ|D) iff, for each i, θ? :Si

is a stationary point for the component likelihood L(θ :Si|D).

The search for stationary points of the network likelihood is now decomposed into

independent searches for stationary points of component likelihoods.

We will now show that the stationary points of a component likelihood can be iden-

tified using any algorithm that identifies such points for the network likelihood.

Theorem 10 Consider a sub-network G which is induced by component S and bound-

ary variables B. Let θ be the parameters of sub-networkG, and letD be a dataset forG

that observes boundary variables B. Then θ? is a stationary point for the sub-network

likelihood, L(θ|D), only if θ? :S is a stationary point for the component likelihood

L(θ :S|D). Moreover, every stationary point for L(θ :S|D) is part of some stationary

point for L(θ|D).

Given an algorithm that identifies stationary points of the likelihood function of

Bayesian networks (e.g., EM), we can now identify all stationary points of a component

likelihood. That is, we just apply this algorithm to the sub-network of each component

S, and then extract the parameter estimates of variables in S while ignoring the param-

eters of boundary variables. This proves the soundness of our proposed decomposition

technique.

78

6.4 The Computational Benefit of Decomposition

We will now illustrate the computational benefits of the proposed decomposition tech-

nique, showing orders-of-magnitude reductions in learning time. Our experiments are

structured as follows. Given a Bayesian network G, we generate a dataset D while en-

suring that a certain percentage of variables are observed, with all others hidden. Using

dataset D, we estimate the parameters of network G using two methods. The first uses

the classical EM on network G and dataset D. The second decomposes network G into

its sub-networks G1, . . . , GM , projects the dataset D on each sub-network, and then

applies EM to each sub-network and its projected dataset. This method is called D-EM

(for Decomposed EM). We use the same seed for both EM and D-EM.

Before we present our results, we have the following observations on our data gen-

eration model. First, we made all unobserved variables hidden (as opposed to missing

at random) as this leads to a more difficult learning problem, especially for EM (even

with the pruning of hidden leaf nodes). Second, it is not uncommon to have a signifi-

cant number of variables that are always observed in real-world datasets. For example,

in the UCI repository: the internet advertisements dataset has 1558 variables, only 3

of which have missing values; the automobile dataset has 26 variables, where 7 have

missing values; the dermatology dataset has 34 variables, where only age can be miss-

ing; and the mushroom dataset has 22 variables, where only one variable has missing

values (Bache & Lichman, 2013).

We performed our experiments on three sets of networks: synthesized chains, syn-

thesized complete binary trees, and some benchmarks from the UAI 2008 evalua-

tion with other standard benchmarks (called UAI networks): alarm, win95pts, andes,

diagnose, water, and pigs. Figure 6.3 and Table 6.1 depict the obtained time savings.

As can be seen from these results, decomposing chains and trees lead to two orders-

of-magnitude speed-ups for almost all observed percentages. For UAI networks, when

observing 70% of the variables or more, one obtains one-to-two orders-of-magnitude

79

50 60 70 80 9095
0

500

1000

Observed %

S
pe

ed
−

up

50 60 70 80 9095
0

500

1000

Observed %

S
pe

ed
−

up

Figure 6.3: Speed-up of D-EM over EM on chain networks: three chains (180, 380, and

500 variables) (left), and tree networks (63, 127, 255, and 511 variables) (right), with

three random datasets per network/observed percentage, and 210 examples per dataset.

speed-ups. We note here that the time used for D-EM includes the time needed for

decomposition (i.e., identifying the sub-networks and their projected datasets). Similar

results for EDML are shown in the supplementary material.

The reported computational savings appear quite surprising. We now shed some

light on the culprit behind these savings. We also argue that some of the most promi-

nent tools for Bayesian networks do not appear to employ the proposed decomposition

technique when learning network parameters.

Our first analytic explanation for the obtained savings is based on understanding

the role of data projection, which can be illustrated by the following example. Consider

a chain network over binary variables X1, . . . , Xn, where n is even. Consider also a

dataset D in which variable Xi is observed for all odd i. There are n/2 sub-networks

in this case. The first sub-network is X1. The remaining sub-networks are in the form

Xi−1 → Xi → Xi+1 for i = 2, 4, . . . , n − 2 (node Xn will be pruned). The dataset D

can have up to 2n/2 distinct examples. If one learns parameters without decomposition,

one would need to call the inference engine once for each distinct example, in each

iteration of the learning algorithm. With m iterations, the inference engine may be

called up to m2n/2 times. When learning with decomposition, however, each projected

dataset will have at most 2 distinct examples for sub-network X1, and at most 4 distinct

80

Observed % Network Speed-up Network Speed-up Network Speed-up

D-EM D-EM D-EM

95.0% alarm 267.67x diagnose 43.03x andes 155.54x

90.0% alarm 173.47x diagnose 17.16x andes 52.63x

80.0% alarm 115.4x diagnose 11.86x andes 14.27x

70.0% alarm 87.67x diagnose 3.25x andes 2.96x

60.0% alarm 92.65x diagnose 3.48x andes 0.77x

50.0% alarm 12.09x diagnose 3.73x andes 1.01x

95.0% win95pts 591.38x water 811.48x pigs 235.63x

90.0% win95pts 112.57x water 110.27x pigs 37.61x

80.0% win95pts 22.41x water 7.23x pigs 34.19x

70.0% win95pts 17.92x water 1.5x pigs 16.23x

60.0% win95pts 4.8x water 2.03x pigs 4.1x

50.0% win95pts 7.99x water 4.4x pigs 3.16x

Table 6.1: Speed-up of D-EM over EM on UAI networks. Three random datasets per

network/observed percentage with 210 examples per dataset.

examples for sub-network Xi−1 → Xi → Xi+1 (variable Xi is hidden, while variables

Xi−1 and Xi+1 are observed). Hence, if sub-network i takes mi iterations to converge,

then the inference engine would need to be called at most 2m1+4(m2+m4+. . .+mn−2)

times. We will later show thatmi is generally significantly smaller thanm. Hence, with

decomposed learning, the number of calls to the inference engine can be significantly

smaller, which can contribute significantly to the obtained savings. 2

Our analysis suggests that the savings obtained from decomposing the learning

problem would amplify as the dataset gets larger. This can be seen clearly in Fig-

ure 6.4 (left), which shows that the speed-up of D-EM over EM grows linearly with

2The analysis in this section was restricted to chains to make the discussion concrete. This analysis,
however, can be generalized to arbitrary networks if enough variables are observed in the corresponding
dataset.

81

8 10 12 14 16
0

1000

2000

Dataset Size

S
pe

ed
−

up

0 200 400
0

2000

4000

Sub−network

ite

ra
tio

ns

0 200 400
0

1000

2000

Sub−network

ite

ra
tio

ns

Figure 6.4: Left: Speed-up of D-EM over EM as a function of dataset size. This is

for a chain network with 180 variables, while observing 50% of the variables. Right

Pair: Graphs showing the number of iterations required by each sub-network, sorted

descendingly. The problem is for learning Network Pigs while observing 90% of the

variables, with convergence based on parameters (left), and on likelihood (right).

the dataset size. Hence, decomposition can be critical when learning with very large

datasets.

Interestingly, two of the most prominent (non-commercial) tools for Bayesian net-

works do not exhibit this behavior on the chain network discussed above. This is

shown in Figure 6.5, which compares D-EM to the EM implementations of the GE-

NIE/SMILE and SAMIAM systems,3 both of which were represented in previous in-

ference evaluations (Darwiche, Dechter, Choi, Gogate, & Otten, 2008). In particular,

we ran these systems on a chain network X0 → · · · → X100, where each variable has

10 states, and using datasets with alternating observed and hidden variables. Each plot

point represents an average over 20 simulated datasets, where we recorded the time to

execute each EM algorithm (excluding the time to read networks and datasets from file,

which was negligible compared to learning time).

Clearly, D-EM scales better in terms of time than both SMILE and SAMIAM, as

the size of the dataset increases. As explained in the above analysis, the number of

3The GENIE/SMILE and SAMIAM systems are available at http://genie.sis.pitt.edu/
and http://reasoning.cs.ucla.edu/samiam/. SMILE’s C++ API was used to run EM,
using default options, except we suppressed the randomized parameters option. SAMIAM’s Java API
was used to run EM (via the CodeBandit feature), also using default options, and the Hugin algorithm as
the underlying inference engine.

82

8 10 12 14
10

0

10
1

10
2

10
3

Dataset Size

T
im

e

SMILE
SAMIAM
D−EM

Figure 6.5: Effect of dataset size (log-scale) on learning time in seconds.

calls to the inference engine by D-EM is not necessarily linear in the dataset size. Note

here that D-EM used a stricter convergence threshold and obtained better likelihoods,

than both SMILE and SAMIAM, in all cases. Yet, D-EM was able to achieve one-to-

two orders-of-magnitude speed-ups as the dataset grows in size. On the other hand,

SAMIAM was more efficient than SMILE, but got worse likelihoods in all cases, using

their default settings (the same seed was used for all algorithms).

Our second analytic explanation for the obtained savings is based on understanding

the dynamics of the convergence test, used by iterative algorithms such as EM. Such

algorithms employ a convergence test based on either parameter or likelihood change.

According to the first test, one compares the parameter estimates obtained at iteration i

of the algorithm to those obtained at iteration i − 1. If the estimates are close enough,

the algorithm converges. The likelihood test is similar, except that the likelihood of

estimates is compared across iterations. In our experiments, we used a convergence test

based on parameter change. In particular, when the absolute change in every parameter

falls below the set threshold of 10−4, convergence is declared by EM.

When learning with decomposition, each sub-network is allowed to converge in-

83

dependently, which can contribute significantly to the obtained savings. In particular,

with enough observed variables, we have realized that the vast majority of sub-networks

converge very quickly, sometimes in one iteration (when the projected dataset is com-

plete). In fact, due to this phenomenon, the convergence threshold for sub-networks

can be further tightened without adversely affecting the total running time. In our ex-

periments, we used a threshold of 10−5 for D-EM, which is tighter than the threshold

used for EM. Figure 6.4 (right pair) illustrates decomposed convergence, by showing

the number of iterations required by each sub-network to converge, sorted decreasingly,

with convergence test based on parameters (left) and likelihood (right). The vast ma-

jority of sub-networks converged very quickly. Here, convergence was declared when

the change in parameters or log-likelihood, respectively, fell below the set threshold of

10−5.

6.5 Related Work

The decomposition techniques we discussed in this chapter have long been utilized in

the context of inference, but apparently not in learning. In particular, leaf nodes that

do not appear in evidence e have been called Barren nodes in (Shachter, 1986), which

showed the soundness of their removal during inference with evidence e. Similarly,

deleting edges outgoing from evidence nodes has been called evidence absorption and

its soundness was shown in (Shachter, 1990). Interestingly enough, both of these tech-

niques are employed by the inference engines of SAMIAM and SMILE,4 even though

neither seem to employ them when learning network parameters as we propose here

(see earlier experiments). When employed during inference, these techniques simplify

the network to reduce the time needed to compute queries (e.g., conditional marginals

which are needed by learning algorithms). However, when employed in the context of

learning, these techniques reduce the number of calls that need to be made to an infer-

4SMILE actually employs a more advanced technique known as relevance reasoning (Lin &
Druzdzel, 1997).

84

ence engine. The difference is therefore fundamental, and the effects of the techniques

are orthogonal. In fact, the inference engine we used in our experiments does em-

ploy decomposition techniques. Yet, we were still able to obtain orders-of-magnitude

speed-ups when decomposing the learning problem. On the other hand, our proposed

decomposition techniques do not apply fully to Markov random fields (MRFs) as the

partition function cannot be decomposed, even when the data is complete (evaluating

the partition function is independent of the data). However, distributed learning algo-

rithms have been proposed in the literature. For example, the recently proposed LAP

algorithm is a consistent estimator for MRFs under complete data (Mizrahi, Denil, &

de Freitas, 2014). A similar method to LAP was independently introduced by (Meng,

Wei, Wiesel, & III, 2013) in the context of Gaussian graphical models.

6.6 Conclusion

We proposed a technique for decomposing the problem of learning Bayesian network

parameters into independent learning problems. The technique applies to incomplete

datasets and is based on exploiting variables that are either hidden or observed. Our

empirical results suggest that orders-of-magnitude speed-up can be obtained from this

decomposition technique, when enough or particular variables are hidden or observed

in the dataset. The proposed decomposition technique is orthogonal to the one used

for optimizing inference as one reduces the time of inference queries, while the other

reduces the number of such queries. The latter effect is due to decomposing the dataset

and the convergence test. The decomposition process incurs little overhead as it can

be performed in time that is linear in the structure size and dataset size. Hence, given

the potential savings it may lead to, it appears that one must always try to decompose

before learning network parameters.

85

CHAPTER 7

Data Compression in Learning MRFs

We propose in this chapter a technique for decomposing and compressing the dataset

in the parameter learning problem in Markov random fields. Our technique applies to

incomplete datasets and exploits variables that are always observed in the given dataset.

We show that our technique allows exact computation of the gradient and the likelihood,

and can lead to orders-of-magnitude savings in learning time. This chapter is based

on (Refaat & Darwiche, 2015).

7.1 Introduction

This chapter is concerned with learning factors from incomplete data given a fixed

structure. As pointed out in Koller and Friedman (2009) (Koller & Friedman, 2009), at

every iteration, besides doing inference to compute the partition function, we need to

run inference separately conditioned on every unique data example. In this chapter, we

propose a technique that can significantly decrease the number of required inferences

per iteration, without any loss of quality, which we highlight next.

Our goal is to alleviate the need for an inference for each unique data example.

We decompose the dataset into smaller datasets each of which is over a subset of the

variables, and is associated with some part of the MRF structure. We prove that to

compute the objective function or its gradient, one can operate on the decomposed

datasets rather than the original dataset. So why can operating on the decomposed

datasets be better? We show that our proposed decomposition can create room for

86

compressing the datasets. Accordingly, the decomposed datasets can be much smaller

than the original dataset. This leads to decreasing the number of inferences required by

the optimization algorithm, and can significantly decrease the learning time.

Our proposed technique exploits variables that are always observed in the dataset,

and it can be performed in time that is linear in the MRF structure and dataset size.

The chapter is organized as follows. In Section 7.2, we define our notation and give

an introduction to the problem of learning MRF parameters. We motivate the problem

we tackle in Section 7.3. In Section 7.4, we show how the data decomposition technique

works. The experimental results are given in Section 7.5. We prove that our method is

sound in Section 7.6. We review some of the related work in Section 7.7, and conclude

in Section 7.8.

7.2 Learning Parameters

In this section, we review how parameter estimation for MRFs is formulated as an op-

timization problem. The set of all parameters of the MRF is denoted by θ. Variables

and their instantiations are used as subscripts for θ to denote a subset of the param-

eters. Namely, the network parameters are given by the vector θ = (. . . , θXf
, . . .).

Component θXf
is a parameter set for a factor f , assigning a number θxf > 0 for each

instantiation xf of variable set Xf .

We say that an instantiation x and a data example d are compatible, denoted by

x ∼ d, iff they agree on the state of their common variables. For example x = a, b, c̄ is

compatible with d1 = a, c̄ but not with d2 = a, c as c 6= c̄.

The negative log-likelihood of a datasetD = {. . . ,di, . . . } is denoted by−``(θ|D),

and given by:

−``(θ|D) = −
N∑
i=1

logZθ(di) +N logZθ (7.1)

where N is the number of data examples, and Zθ is the partition function. The partition

87

function is given by Zθ =
∑

x

∏
f θxf , where

∑
x is a summation over all possible

instantiations of x, which determines an instantiation xf for each factor f . Similarly,

logZθ(di) =
∑

x∼di

∏
f θxf is the partition function conditioned on example di, i.e.

the summation is over the instantiations that agree with the observed values of di. For

simplicity, we assume, throughout the chapter, a tabular representation as given in (Re-

faat et al., 2013), as opposed to an exponential representation as given in Chapter 19

in (Murphy, 2012). In our experiments, however, we use the exponential representation,

to avoid the need for explicit non-negativity constraints.

The first term in Equation 7.1 is called the data term, whereas the second term is

called the model term. If the data is complete, Equation 7.1 is convex, if the exponential

representation is used; and the data term becomes trivial to evaluate. Thus, in every

optimization iteration, a single inference is typically needed to evaluate the model term.

However, when the data is incomplete, the data term is non-trivial to evaluate as it

requires running inference conditioned on every data example di. Thus, the number of

inferences needed per iteration would be N + 1 1. An efficient package would how-

ever detect identical data examples, and do inference for every distinct data example.

However, the number of distinct data examples can still be substantially large. In this

chapter, we propose a technique that decomposes the data term and compresses the

dataset. As a result, the number of inferences required to evaluate the data term can

decrease leading to high speed-ups. We next give a motivation and explain how the

technique works.

7.3 Motivation

We highlight the proposed technique by taking a closer look at the underlying optimiza-

tion problem. When learning maximum likelihood parameters, the objective function

1N iterations are needed for doing inference conditioned on each data example, and one inference is
needed for the model term.

88

consists of the data term and the model term, as explained in Section 7.2. Unlike the

data term, the model term does not depend on the dataset. In case of complete data, the

data term evaluation is trivial during optimization. Thus, only one inference per itera-

tion is required for the model term. However, when the data is incomplete, evaluation

of the data term requires a number of inferences equal to the number of distinct data

examples in the dataset. In this chapter, we exploit variables that are always observed

in the dataset, and decompose the data term into independent terms, each of which is

over a possibly much smaller dataset.

When inference is done conditioned on a data example, the graph can be pruned

using the observed values, to make inference more efficient; see Chapter 6 in (Dar-

wiche, 2009). Most learning packages, that use efficient inference engines, use such

techniques that date back to Shachter (Shachter, 1986, 1990). Namely, the graph is

pruned given every data example, before doing inference. The key observation that

we exploit is that the pruned graphs, given all the data examples, share something in

common, if some variables are always observed. This commonality is the heart of the

proposed method.

To capture this commonality, we decompose the graph conditioned only on the vari-

ables that are always observed in the dataset. As a result, the graph is decomposed into

a number of sub-graphs each of which is over a subset of the variables. We then project

the dataset onto the variables of each sub-graph, by discarding the variables not in the

sub-graph. We prove that evaluating the data term or computing its gradient can now

be computed by doing inference in the sub-graphs and their projected datasets indepen-

dently. This begs the question: Why is this decomposition useful?

Now, the number of variables and, therefore, unique data examples in each pro-

jected dataset is much smaller than in the original dataset. As a result, each projected

dataset can be compressed significantly by detecting repetitions, and accordingly, the

number of inferences required in each iteration decreases. We show empirically that the

proposed method can lead to orders-of-magnitude speed-ups. In fact, data compression

89

becomes particularly useful as the size of the dataset grows, and as the number of ob-

served variables increases.

7.4 Data Decomposition

2	 3	

4	 5	 6	

7	 8	 9	

f12 f23

f45 f56

f78 f89

f14

f47

f36

f69

f25

f58

1	

f25
f56f45

f36

f69
f78

f47

f14

f23f12

f89
f58

f25
f56f45

f36

f69
f78

f47

f14

f23f12

f89
f58

Figure 7.1: The process of identifying graph sub-networks given observed nodes: 2,

3, 4, 5, 7, and 9. Left: 3 × 3 MRF grid. Middle: A graph of factors, where an edge

between two factors exists if they have common variables. Right: The sub-networks

obtained by deleting every edge between two factors if all their common variables are

always observed in the data.

In this section, we explain how the data term is decomposed and, accordingly, the

dataset is compressed. The proof will be given in Section 7.6. Figure 7.1 (left) shows

a 3× 3 grid MRF that we use as a running example. Factors in the grid are binary, i.e.

involves two variables, and variables can take 2 states: true (t) or false (f). Suppose

that Variables 1, 6, and 8 have missing values in the dataset (denoted by ?), whereas

Variables 2, 3, 4, 5, 7, and 9 are always observed (cannot take ?). The dataset takes the

form:

example/variable 1 2 3 4 5 6 7 8 9

1 t f f f t ? t ? t

2 ? t t f t ? f ? f

3 t f t f f t t ? t

4 ? t t f f ? f f t

.

90

Firstly, we create a factor graph, as given in Figure 7.1 (middle), which has a node

for every factor in the original MRF. An edge between two factors exists if and only if

they share a common variable. For example, f12 and f25 share Variable 2, and therefore

has an edge between them in the factor graph. The decomposition will be performed

on the created factor graph as shown next.

Secondly, we delete any edge, in the factor graph, if the common variables between

its nodes are always observed in the dataset. For example, the edge between f12 and

f25 is deleted as the common Variable 2 is always observed in the dataset. On the other

hand, f58 and f89 remains intact as the common Variable 8 has missing values in the

dataset. The result of this decomposition is given in Figure 7.1 (right).

Now, the decomposed factor graph in Figure 7.1 (right) decomposes the MRF into

multiple sub-networks, each of which is over a subset of factors. For example, factors

f12 and f14 forms a sub-network. As we will prove in Section 7.6, the data term de-

composes into a summation of independent terms corresponding to each sub-network.

Thirdly, we project the dataset onto the variables of each sub-network, by discarding

the variables not in the sub-network. For example, we project the dataset onto the

variables of the sub-network, f12 − f14, by discarding all variables except 1, 2, and 4.

Thus, this projected dataset will have only 3 columns, and will take the form:

example/variable 1 2 4

1 t f f

2 ? t f

3 t f f

4 ? t f

. . . .

Now, we have a projected dataset for each sub-network. Finally, we will compress every

projected dataset by detecting repetitions and adding a count field to every distinct data

example. For example, the compressed dataset for f12 − f14 may take the form:

91

example/variable 1 2 4 Count

1 t f f 5

2 ? t f 15

.

where the count keeps record of how many times the distinct data example was repeated

in the dataset. The key observation here is that the number of repetitions increases in the

projected datasets. By a simple counting argument, one can show that the maximum

number of possible distinct data examples that can appear in the original dataset is

26 × 33 = 1728. 2 On the other hand, the maximum number of distinct data examples

in the projected dataset of f12 − f14, for instance, can be at most only 22 × 31 = 12.

Every sub-network with its own projected, and potentially compressed, dataset now

induces an independent data term, defined exactly as the original data term, as we

will show in Section 7.6. We will prove that the original data term is equivalent to the

summation of all the independent sub-network data terms. Thus, to evaluate or compute

the gradient of the original data term, one needs to evaluate or compute the gradient of

the data term of each sub-network independently, and then combine them by addition.

The decomposition above suggests that as more variables are always observed,

the MRF is decomposed into much smaller sub-networks leading to more repetitions.

Moreover, as the dataset size gets larger, the difference between the data before and

after decomposition is magnified. Now, we will show that, experimentally, data de-

composition works as expected and can achieve orders-of-magnitude savings in time.

7.5 Experimental Results

We compare the time taken by the gradient method if data decomposition is used, versus

if the original dataset is used. In particular, using a fixed network structure, we simulate

a dataset, then make the data incomplete by randomly selecting a certain percentage of

2Note that a variable with missing values can take true, false, or be missing.

92

variables to have missing values. After that, we learn the parameters from the data using

the gradient method with and without data decomposition, to obtain a local optimum.

For 11 different networks, 3 and with hiding 20% of the variables, Table 7.1 shows

the time taken by the gradient method without data decomposition tgrad, and with data

decomposition td−grad, together with the speed-up achieved by data decomposition,

computed as tgrad
td−grad

. In all cases, the same learned parameters were returned by both

techniques, which we do not show in the table.

One can see that data decomposition achieved one-to-two orders-of-magnitude speed-

up in learning time in most cases. The decomposition technique has almost left the

dataset of network 54.wcsp without much decomposition leading to little speed-up.

In this experiment, we did not vary the percentage of observed variables nor the

dataset size. We selected the dataset in each case to be as small as possible without

making computing the data term much easier than the model term. We next analyze the

behavior of the decomposition technique when the percentage of observed variables or

the dataset size changes.

As the motivating example in Section 7.4 suggests, we expect that data decomposi-

tion will behave favorably as the dataset gets larger, and as more variables are always

observed in the dataset.

Figure 7.2 shows the speed-up achieved with a dataset of 212 examples, while al-

ways observing different percentages of variables, using 4 different structures. As ex-

pected, as less nodes have missing values, the speed-up increases.

Figure 7.3 shows the speed-up achieved while using a hiding percentage of 20%,

for different dataset sizes, in log-scale. Indeed, the speed-up is directly proportional to

the dataset size. In this case, orders-of-magnitude speed-up was achieved starting from

214 examples.

3Among the used structures are randomly generated chains (Chain-50 and Chain-100), and randomly
generated binary trees (Tree-63, Tree-127, Tree-225). Grid9x9 and Grid10x10 are grid networks. Net-
work 54.wcsp is a weighted CSP problem, whereas Network win95pts is an expert system for printer
troubleshooting in Windows 95. Network smokers is a relational Markov network.

93

Table 7.1: The execution time taken by the gradient method (without and with data

decomposition), together with the speed-up achieved when data decomposition is used.

Network #vars data size tgrad td−grad speed-up

Chain− 50 50 4096 4.7 mins 1.7 secs 165×

Chain− 100 100 4096 12.2 mins 2.9 secs 253×

Tree− 63 63 4096 6 mins 2.36 secs 152×

Tree− 127 127 4096 18 mins 5.77 secs 187×

Tree− 255 255 4096 53 mins 13 secs 236×

Grid9x9 81 8192 61 mins 73 secs 50×

Grid10x10 100 8192 74 mins 34 secs 130×

alarm 37 4096 3.4 mins 13.6 secs 15×

54.wcsp 67 1024 1.45 mins 1.32 mins 1.1×

win95pts 76 1024 4.3 mins 7.8 secs 33×

smokers 120 2048 16 mins 1.64 mins 9.7×

Given the difficulty of the problem, the speed-up achieved by data decomposition

can be indispensable. For example, for a 9×9 Grid, 216 data examples, and 20% hiding

percentage, the gradient method took about 3 minutes by data decomposition versus

about 17 hours by detecting repetitions in the original dataset.

Decomposition can also make learning feasible in large problems. For example,

we were able to learn the parameters of a network from the field of genetics (Fam-

ily2Recessive), that has 385 factors, from 212 examples with 20% hiding, in about 55

minutes, by data decomposition. However, we were not able to get results, in less than

a day, without data decomposition, for this network.

We next show that an existing prominent package (FastInf) does not appear to

use the proposed data decomposition. We compare the speed-up obtained of our ba-

sic implementation of gradient descent and EM, that use data decomposition, against

FastInf (Jaimovich, Meshi, McGraw, & Elidan, 2010). We provided our system and

FastInf with the same initial parameters, same incomplete datasets (hiding 20%), and

94

70 80 90
0

100

200

Observed %

S
pe

ed
−

up
(a) Grid

70 80 90
0

100

200

Observed %

S
pe

ed
−

up

(b) Alarm

30 60 90
0

200

400

Observed %

S
pe

ed
−

up

(c) Chain

30 60 90
0

200

400

Observed %

S
pe

ed
−

up
(d) Tree

Figure 7.2: The speed-up obtained by data decomposition on different percentages of

always observed variables, for 4 different network structures: 9x9 grid, alarm, chain

(50 variables), tree (63 variables).

the same MRF structure.

Figure 7.4 shows the speed-up obtained by our Gradient and EM methods, that use

data decomposition (allowed 100 iterations), over FastInf EM (with the gradient option

allowed only 2 iterations), for different dataset sizes in log-scale. One can see that as

the data increases, more speed-up is achieved. We were able to get a better likelihood

too as we run our system for more iterations, and still achieve high speed-ups.

In Figure 7.5, we fix the dataset size to 212 and show the speed-up obtained by our

technique over FastInf EM with different algorithm options: 0-FR, 1-PR, 2-BFGS, 3-

STEEP, 4-NEWTON 4. Newton method was not successful and, therefore, not shown

in the figure.

Although FastInf uses approximate inference, and our implementation is based

on exact inference, we were still able to realize orders-of-magnitude speed-ups over

4For details about different algorithm options in FastInf, see (Jaimovich et al., 2010)

95

12 14 16
0

200

400

Dataset Size

S
pe

ed
−

up
(a) Grid

12 14 16
0

200

400

Dataset Size

S
pe

ed
−

up

(b) Alarm

12 14 16
0

2000

4000

Dataset Size

S
pe

ed
−

up

(c) Chain

12 14 16
0

2000

4000

Dataset Size

S
pe

ed
−

up
(d) Tree

Figure 7.3: The speed-up obtained by data decomposition on different dataset sizes in

log-scale, for 4 different network structures: 9x9 grid, alarm, chain (50 variables), tree

(63 variables).

FastInf, as the dataset size increases.

We note too that data decomposition is done once and can be performed in time that

is linear in the MRF structure size and dataset size. The execution time of our methods

used to compute the speed-ups did involve the time needed to decompose the graph and

decompose the data. In the next section, we prove that data decomposition is exact, and

does not compromise quality.

7.6 Soundness

In this section, we prove that our decomposition technique is sound. Before we give our

decomposition theorem, we review the notion of parameter terms, initially introduced

in the context of Bayesian networks in (Refaat et al., 2014).

96

12 14 16
0

1000

2000

Dataset Size

S
pe

ed
−

up
(a) Gradient

121416
0

5000

10000

Dataset Size

S
pe

ed
−

up

(b) EM

Figure 7.4: Speed-up of Gradient and EM methods (respectively) that use data decom-

position, (allowed 100 iterations) over FastInf EM (allowed 2 iterations) on different

dataset sizes in log-scale. Network alarm was used; 20% of the nodes have missing

values in the data.

0 1 2 3
0

100

200

Algorithm

S
pe

ed
−

up

(a) Gradient

0123
0

500

1000

Algorithm

S
pe

ed
−

up

(b) EM

Figure 7.5: Speed-up of Gradient and EM methods, that use data decomposition, over

different FastInf algorithms on 212 data examples. Network alarm was used; 20% of

the nodes have missing values in the data.

7.6.1 Parameter Terms

Two parameters are compatible, denoted by θxf ∼ θxf ′ , iff they agree on the state of

their common variables. For example, parameters θxf=xy and θxf ′=zy are compatible,

but parameters θxf=xy and θxf ′=zy are not compatible, as y 6= y.

Moreover, a parameter is compatible with an example iff they agree on the state of

their common variables. For example, parameter θxf=xy is compatible with example

x, y, z, v, but not with example x, y, z, v. The definition of a parameter term is given as

follows:

97

Definition 7 (Parameter Term) Let F be a set of network factors and let d be a data

example. A parameter term for F and d, denoted Θd
F, is a product of compatible net-

work parameters, one for each factor in F, that are also compatible with example d.

For example, consider an MRF with 3 factors {θXf1
=X , θXf2

=XY , θXf3
=Y Z}; and

let F be the subset of factors {θXf1
=X , θXf2

=XY } and d = x, z. Then, Θd
F will denote

either θxf1=x.θxf2=xy or θxf1=x.θxf2=x.y.

When F has all the MRF factors, i.e. F = {θXf1
=X , θXf2

=XY , θXf3
=Y Z}, then

Θd
F will denote either θxf1=x.θxf2=xy.θxf3=yz or θxf1=x.θxf2=x y.θxf3=yz; in this case

Zθ(d) =
∑

Θd
F

Θd
F. Armed with parameter terms, we are now ready to state our de-

composition theorem.

Theorem 11 The data term is decomposed into a number of smaller functions corre-

sponding to sub-networks. The log-likelihood takes the form:

``(θ|D) =
∑
s

Ns∑
i=1

nsi logZs
θ(di)−N logZθ (7.2)

where nsi is the number of times that distinct di appears in the projected dataset of Sub-

network s, N s is the total number of distinct data examples in the projected dataset of

Sub-network s, and Zs
θ(di) is the partition function of Sub-network s conditioned on

example di.

Proof We will proceed by induction, decomposing one sub-network, and operating

inductively on the rest of the network to decompose all the sub-networks.

We note that the data term in the log-likelihood function,
∑N

i=1 logZθ(di), can be

written as:
N∑
i=1

logZθ(di) =
N∑
i=1

log
∑
Θ

di
F

Θdi
F (7.3)

Where N is the number of data points in the dataset 5, and F is the set of all factors in

the MRF. Let Fs be the set of factors in Sub-network s, and Fs′ be the set of all the rest
5In this case, not necessarily distinct.

98

of the factors. By definition of parameter terms, the data term can be re-written as:

N∑
i=1

logZθ(di) =
N∑
i=1

log (
∑
Θ

di
Fs

Θdi
Fs

∑
Θ

di

Fs
′∼Θ

di
Fs

Θdi
Fs′

) (7.4)

where the fourth summation is over all Θdi
Fs′

that agree on the state of their common

variables with Θdi
Fs , which is denoted by the compatibility: Θdi

Fs′
∼ Θdi

Fs .

By the decomposition procedure, the common variables between Sub-network s and

the rest of the network are always observed. Otherwise, the sub-network would not have

been separated from the rest. Therefore, Θdi
Fs
′ and Θdi

Fs always agree on the common

variables, which are determined by di. Thus, there is no need to ensure compatibility,

and the data term can be written as:

N∑
i=1

logZθ(di) =
N∑
i=1

log(
∑
Θ

di
Fs

Θdi
Fs

∑
Θ

di

Fs
′

Θdi
Fs′

) =

N∑
i=1

log
∑
Θ

di
Fs

Θdi
Fs +

N∑
i=1

log
∑
Θ

di

Fs
′

Θdi
Fs′

(7.5)

Now the distinct data points with respect to Sub-network s can be detected, to get:

N∑
i=1

logZθ(di) =
Ns∑
i=1

nsi log
∑
Θ

di
Fs

Θdi
Fs +

N∑
i=1

log
∑
Θ

di

Fs
′

Θdi
Fs′

(7.6)

By observing that
∑

Θ
di
Fs

Θdi
Fs is equivalent to the partition function of Sub-network s

conditioned on di, we get:

N∑
i=1

logZθ(di) =
Ns∑
i=1

nsi logZs
θ(di) +

N∑
i=1

log
∑
Θ

di

Fs
′

Θdi
Fs′

(7.7)

We continue inductively on the rest of the network to decompose all the sub-networks.

�

99

7.7 Related Work

Some work on decomposing MRFs and Bayesian networks (BNs) exist in literature.

In the context of inference in BNs, pruning Barren nodes and edges outgoing from

observed variables was initially proposed in (Shachter, 1986, 1990) 6.

In the context of parameter learning from incomplete data, decomposing the BN

optimization problem was proposed in (Refaat et al., 2014), where the notion of param-

eter terms was introduced. Namely, it was shown that fully observed variables may be

exploited to decompose the optimization problem into independent problems, leading

to both data decomposition and independent convergence. In this chapter, we migrate

this concept to the context of MRFs. While the partition function makes decomposing

the optimization problem exactly, as in (Refaat et al., 2014), hard, we showed here that

similar decomposition techniques can be used to decompose the data term, leading to

decomposing, and potentially, compressing the dataset.

For MRFs, the LAP algorithm (Mizrahi et al., 2014) deals with approximately de-

composing MRFs in the case of complete data, where they showed that LAP behaves

similarly to pseudo-likelihood and maximum likelihood, for large sample sizes, while

being more efficient. A similar method was independently introduced by (Meng et al.,

2013) in the context of Gaussian graphical models. Our work stands out from the LAP

algorithm in dealing with incomplete data, and in being equivalent to maximizing the

likelihood. However, our proposed technique does not help in the case of complete

data, as the data term becomes trivial.

7.8 Conclusion

We proposed a technique for decomposing the dataset to learn MRF parameters from

incomplete data. The technique works by decomposing the MRF to sub-networks based

6Pruning edges migrates to MRFs.

100

on variables that are always observed in the incomplete dataset. The dataset is then

projected on each sub-network, and compressed by detecting repetitions.

The key observation, that data compression relies on, is that sub-networks typi-

cally have a small number of variables. Thus, it is likely that more repetitions, and,

accordingly, compression can take place. Our empirical results suggest that orders-of-

magnitude speed-ups may be obtained using data decomposition.

The decomposition process incurs very little overhead as it can be performed in

time that is linear in the MRF structure size and dataset size. Hence, given the potential

savings it may lead to, it appears that one must always try to decompose the incomplete

dataset before learning maximum likelihood MRF parameters.

101

CHAPTER 8

Summary of Contributions

In this thesis, we showed that special structure in the dataset could be exploited to

learn probabilistic graphical models from incomplete data more efficiently. Namely,

fully observed variables can be used to decompose the learning problem in Bayesian

networks into independent learning problems, without any loss of quality. Furthermore,

in Markov Random Fields, fully observed variables can be exploited to significantly

compress the dataset leading to orders-of-magnitude speed-ups in learning time. We

also proposed EDML, as an alternative to EM, in the context of learning graphical

models. We argued that EDML is more sensitive to the degree of completeness in

the data, and can have better convergence properties than EM, both theoretically and

practically.

When we solve a general optimization problem, all we know is the objective func-

tion and the constraints. However, when learning probabilistic graphical model pa-

rameters, we have a graph structure and a dataset that impose a specific structure on

the underlying optimization problem. We have presented in this thesis a number of

techniques that exploit this structure in order to solve the corresponding optimization

problem more efficiently.

102

APPENDIX A

Proofs of Chapter 4

Proof of Theorem 2

Proof We have:

Pr(θX |η1, . . . , ηn) ∝ ρ(θX)
n∏
i=1

∑
x

λixθx (A.1)

where 1 ≤ i ≤ n. The product of log concave functions where at least one is strictly log

concave is strictly log concave (Boyd & Vandenberghe, 2004). Thus, in order to prove

that ρ(θX)
∏n

i=1

∑
x λ

i
xθx is strictly log concave, it is sufficient to show that ρ(θX) and∑

x λ
i
xθx for every i are log concave and at least one of them is strictly log concave. In

fact,
∑

x λ
i
xθx for all i are strictly log concave. Consider fi(θX) =

∑
x λ

i
xθx for some

arbitrary i. Firstly, fi(θX) is an affine function. Moreover, fi(θX) has a range of values

from the smallest λix to the largest λix. Furthermore, this range is continuous since any

number in the range can be achieved by a weighted average of the maximum and the

minimum. Since log(x) is strictly concave over the domain defined by the range of∑
x λ

i
xθx, log fi(θX) is strictly concave. It follows that fi(θX) is strictly log concave.

On the other hand, we have:

log ρ(θX) =
∑
x

(ψx − 1) log θx (A.2)

The hessian of log ρ(θX) is a diagonal matrix because all non-diagonal elements vanish

due to differentiating with respect to θx and then with respect to θx′ , where x and x′

correspond to the row and column indices of the hessian, respectively. Moreover, it is

easy to show that all the diagonal elements are negative and, therefore, the hessian is

negative definite (Boyd & Vandenberghe, 2004) Thus, log ρ(θX) is concave. Finally,

103

If all λix for some i are equal, fi(θX) becomes a constant function, and, therefore, not

strictly log concave. For the proof to hold, λix for all x should not be all equal for at

least one fi(θX). �

Proof of Theorem 3

We want MAP estimates θ? maximizing ρ(θ | η), where η = {η1, . . . , ηN} is soft

(virtual) evidence on a soft-evidence island.

Say we have a Dirichlet prior ρ(θ) = α
∏

x[θx]
ψx−1, where α is a normalizing

constant. Given current estimates θt we want new estimates θ maximizing the expected

log posterior:

ELP (θ | θt) =
∑
x

Pr(x | η, θt) log ρ(x, θ | η)

=
∑
x

Pr(x | η, θt) log
Pr(x, η | θ)ρ(θ)

ρ(η)

= − log ρ(η) + log ρ(θ) +
∑
x

Pr(x | η, θt) logPr(x, η | θ)

= − log ρ(η) + log ρ(θ) + ELL(θ | θt)

= − log ρ(η) + logα +
∑
x

(ψx − 1) log θx + ELL(θ | θt)

104

where ELL(θ | θt) is the expected log likelihood:

ELL(θ | θt) =
∑
x

Pr(x | η, θt) logPr(x, η | θ)

=
∑
x

Pr(x | η, θt) log
∏
i

Pr(xi, ηi | θ)

=
∑
i

∑
x

Pr(x | η, θt) logPr(xi, ηi | θ)

=
∑
i

∑
xi

Pr(xi | ηi, θt) logPr(xi, ηi | θ)

=
∑
x

∑
i

Pr(xi | ηi, θt) logPr(xi, ηi | θ)

=
∑
x

∑
i

Pr(xi | ηi, θt) log λixiθx

=
∑
x

∑
i

Pr(xi | ηi, θt) log λixi +
∑
x

∑
i

Pr(xi | ηi, θt) log θx

where only the second term mentions θ. Thus it suffices to maximize:

∑
x

(ψx − 1) log θx +
∑
x

∑
i

Pr(xi | ηi, θt) log θx

We can multiply this equation by the constant [ψX − |X|+N]−1 and maximize:

∑
x

[
(ψx − 1) +

∑N
i=1 Pr(xi | ηi, θt)

ψX − |X|+N

]
log θx

Note that the bracketed expression is a normalized distribution Q(X), so to maxi-

mize this expression, we maximize
∑

xQ(x) log θx, which is uniquely maximized by

θx = Q(x). Note that Pr(xi | ηi, θt) = λixθx∑
y λ

i
yθy

. Thus, our expected log posterior is

maximized by our fixed-point update for optimization in a soft-evidence island:

Q(X) =
(ψx − 1) +

∑N
i=1

λixθx∑
y λ

i
yθy

ψX − |X|+N

To show that this update monotonically increases the log posterior, observe that

105

ELP (θ | θt) is also maximized by:

f(θ | θt) =
∑
x

Pr(x | η, θt) log
ρ(x, θ | η)

ρ(x, θt | η)

=
∑
x

Pr(x | η, θt) log
Pr(x | η, θ)
Pr(x | η, θt)

ρ(θ | η)

ρ(θt | η)

= log
ρ(θ | η)

ρ(θt | η)
+
∑
x

Pr(x | η, θt) log
Pr(x | η, θ)
Pr(x | η, θt)

= log
ρ(θ | η)

ρ(θt | η)
−KL(Pr(x | η, θt),Pr(x | η, θ))

Now, let:

θt+1 = argmax
θ

ELP (θ | θt) = argmax
θ

f(θ | θt)

Note that argmaxθ f(θ | θt) ≥ 0 since f(θ | θt) = 0 when θ = θt. Moreover, since the

KL–divergence is non-negative:

log
ρ(θt+1 | η)

ρ(θt | η)
≥ log

ρ(θt+1 | η)

ρ(θt | η)
−KL(Pr(x | η, θt),Pr(x | η, θ)) ≥ 0

and thus the posterior is increasing.

106

APPENDIX B

Proofs of Chapter 5

Proof of Theorem 5 First, the probability of an example di ∈ D is:

Prθ(di) =
∑
x∼di

∏
x|u∼x

θx|u

where operator ∼ denotes compatibility between two instantiations (they set the same

value to common variables). For a fixed parameter set θX|u, the probability Prθ(di) is

a linear function with respect to the parameters of θX|u:

Prθ(di) = Prθ(¬u,di) +
∑
x

Prθ(xu,di)

= Prθ(¬u,di) +
∑
x

∂Prθ(di)

∂θx|u
θx|u

= Ci
u +

∑
x

Ci
x|u · θx|u

where Ci
u and Ci

x|u are constants with respect to θX|u. Moreover Prθ(¬u,di) =

Prθ(di)− Prθ(u,di). Thus our sub-function, the negative log-likelihood with respect

to parameter set θX|u, has the form:

fθ?(θX|u) = −
N∑
i=1

log
(
Ci

u +
∑
x

Ci
x|u · θx|u

)
.

�

107

Proof of Theorem 6 The log-likelihood of soft evidence in this model is:

logP(η|θX|u) =
N∑
i=1

logP(ηi|θX|u)

=
N∑
i=1

log
∑
xi

P(ηi|xi, θX|u)P(xi|θX|u)

=
N∑
i=1

log
∑
xi

P(ηi|xi) · θx|u.

If we substitute P(ηi|xi) = Ci
u + Ci

x|u, we have

logP(η|θX|u) =
N∑
i=1

log
∑
x

(
Ci

u + Ci
x|u

)
· θx|u

=
N∑
i=1

log
(
Ci

u +
∑
x

Ci
x|uθx|u

)
which is Equation 5.2, negated. �

Proof of Theorem 7 Suppose that θ∗ is optimal for Equation 5.6. Multiplying an ar-

bitrary θ∗Xa
by a constant, results in multiplying both Zθ, and Zθ(di), by the same con-

stant, which cancels out in each pair of terms, logZθ− logZθ(di), preserving the same

optimal objective value. Thus, one could always find an optimal θ where θXa ∝ θ∗Xa
,

that is optimal for Equation 5.6, and where Zθ = α.

Thus, fixing Zθ = α does not exclude the optimal solution for Equation 5.6, which

can be now reduced to:

f(θ) = N logα−
N∑
i=1

logZθ(di) (B.1)

with a feasibility constraint that Zθ = α.

Equation B.1 is equivalent to Equation 5.7, since N logα is a constant. As a result,

if g(θ) is feasible and optimal for Equation 5.7, then any θ, where θXa ∝ g(θXa) ∀Xa

is optimal for Equation 5.6. We will next prove the second part of the theorem.

108

The partial derivative of the log likelihood ``(θ|D) w.r.t. parameter θxa is:

∂``

∂θxa
= −N

Zθ

∂Zθ
∂θxa

+
N∑
i=1

1

Zθ(di)

∂Zθ(di)

∂θxa
.

First, note that:

1
Zθ

∂Zθ
∂θxa

θxa = Pr(xa), 1
Zθ(di)

∂Zθ(di)
∂θxa

θxa = Prθ(xa|di)

Thus, with some re-arranging, we obtain:

Prθ(xa) =
1

N

N∑
i=1

Prθ(xa|di) (B.2)

which is the “moment matching” condition for parameter estimation in Markov net-

works. Second, consider the simplified objective: f(θ) = −
∑N

i=1 logZθ(di) which is

subject to the constraint Z = α. We construct the Lagrangian L(θ,u) = f(θ) +u(Z −

α). Setting to zero the partial derivative w.r.t. u, we obtain our constraint Z = α. The

partial derivative w.r.t. parameter θxa is:

−
N∑
i=1

1

Zθ(di)

∂Zθ(di)

∂θxa
+ u

∂Zθ
∂θxa

.

We set the partial derivative to zero, multiply the second term by α
Z

= 1, and re-arrange,

giving us:

uαPrθ(xa) =
N∑
i=1

Prθ(xa | di).

Summing each equation for all instantiations xa, we identify u = N
α

, which after sub-

stitution, gives us a condition equivalent to Equation B.2.

Note that the stationary condition given by Equation B.2 depends only on marginals,

not the absolute value of the partition function. Moreover, applying a proper feasibility

function g(θ), where θXa ∝ g(θXa) ∀Xa, will not change the marginals implied by

θ, as the multiplicative factors cancel out in each pair of terms, logZθ − logZθ(di).

Thus if a point θ satisfies Equation B.2, then g(θ) must also satisfy it. Similarly, if g(θ)

satisfies Equation B.2, the original point θ must also satisfy it. �

109

Proof of Theorem 8 First, the partition function conditioned on an example di ∈ D

is:

Zθ(di) =
∑
x∼di

∏
xa∼x

θxa

where operator ∼ denotes compatibility between two instantiations (they set the same

value to common variables). For a given parameter set θXa , the partition function

Zθ(di) is a linear function with respect to the parameters θXa:

Zθ(di) =
∑
xa

Zθ(xa,di) =
∑
xa

∂Zθ(di)

∂θxa
θxa

=
∑
xa

Ci
xa · θxa

where Ci
xa is a constant with respect to θXa . Thus, our sub-function, has the form:

fθ?(θXa) = −
N∑
i=1

log
∑
xa

Ci
xa · θxa .

On the other hand, the constraint Zθ = α takes the form:

Zθ =
∑
xa

Zθ(xa) =
∑
xa

∂Zθ
∂θxa

θxa =
∑
xa

Cxaθxa = α

�

Theorem 12 Suppose we have a feasibility function

g(y1, . . . , yn) = (x1, . . . , xn)

where xi 6= yi implies that the point (x1, . . . , yi, . . . , xn) is infeasible (e.g., Euclidean

projection satisfies this condition). Suppose now that the algorithm produces a se-

quence xt, yt+1, xt+1 = xt. Then xt must be a feasible and stationary point.

Proof By the statement of the iterative procedure, xt is guaranteed to be feasible.

Suppose that g(yt+1) = xt+1 = xt. First, it must be that yt+1 = xt. Suppose in-

stead that yt+1 6= xt, and thus for some component, yt+1
i 6= xti. By our feasibil-

ity function, (xt1, . . . , y
t+1
i , . . . , xtn) must be infeasible. However, Step 2(a) ensures

110

that (xt1, . . . , y
t+1
i , . . . , xtn) is feasible. Hence, it must be that yt+1 = xt. Further, by

Step 2(a) and Claim 1, xt must also be stationary. �

111

APPENDIX C

Proofs of Chapter 6

Proof of Proposition 3 If di is an example of datasetD, then Prθ(di) does not depend

on the parameters of variable X; see (Darwiche, 2009, Chapter 6). Hence, the likeli-

hood function L(θ|D) =
∏N

i=1 Prθ(di) does not depend on the parameters of variable

X . �

Proof of Theorem 9 Let N = S ∪R be all network variables. One can show that the

product Θd
SΘd

R is a parameter term for N and d. Moreover, one can show that every

parameter term for N and d can be written as Θd
SΘd

R. The key observation here is that if

variable X is shared by some parameter in Θd
S and some parameter in Θd

R, then X ∈ O

and its value must be set by example d. Hence, the parameters of Θd
S and those of Θd

R

must be compatible. Hence, one can enumerate all parameter terms Θd
N by enumerating

all products Θd
SΘd

R:

Prθ(d) =
∑
Θd

N

Θd
N =

∑
Θd

S

∑
Θd

R

Θd
SΘd

R =

∑
Θd

S

Θd
S

∑
Θd

R

Θd
R

 .
�

Proof of Theorem 10 By definition of a sub-network, S must be a component of G|B.

Hence, by Theorem 9, L(θ|D) = L(θ :S|D)L(θ :B|D). Since S and B partition the

variables of sub-network G, the parameters in θ :S do not overlap with those in θ :B,

and their union accounts for all sub-network parameters, θ. The theorem then follows

immediately from Lemma 1. �

112

C.1 Decomposing Stationary Points

A stationary point for function f(x1, . . . , xn) is a point x?1, . . . , x
?
n at which the gradient

of f(x1, . . . , xn) evaluates to zero. That is,

∂f

∂xi

∣∣∣∣
xi=x?i

= 0 for i = 1, . . . , n.

Lemma 1 Consider the non-zero function

f(x1, . . . , xn, y1, . . . , ym) = g(x1, . . . , xn)h(y1, . . . , ym).

Then x?1, . . . , x
?
n, y

?
1, . . . , y

?
m is a stationary point of f iff x?1, . . . , x

?
n is a stationary point

of g and y?1, . . . , y
?
m is a stationary point of h.

Proof Consider the following elementary identities:

∂f

∂xi
= g(x1, . . . , xn)

∂h

∂xi
+ h(y1, . . . , ym)

∂g

∂xi

= h(y1, . . . , ym)
∂g

∂xi
∂f

∂yi
= g(x1, . . . , xn)

∂h

∂yi
+ h(y1, . . . , ym)

∂g

∂yi

= g(x1, . . . , xn)
∂h

∂yi
.

The lemma follows immediately from these identities since function f is non-zero

(which implies that g and h are non-zero). �

113

BIBLIOGRAPHY

Aitkin, M., & Aitkin, I. (1996). A hybrid EM/Gauss-Newton algorithm for maximum likelihood

in mixture distributions. Statistics and Computing, 6, 127–130.

Bache, K., & Lichman, M. (2013). Uci machine learning repository. Tech. rep., Irvine, CA:

University of California, School of Information and Computer Science.

Bertsekas, D. P., & Tsitsiklis, J. N. (1989). Parallel and Distributed Computation: Numerical

Methods. Prentice-Hall.

Besag, J. (1975). Statistical Analysis of Non-Lattice Data. The Statistician, 24, 179–195.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. JMLR, 3, 993–1022.

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.

Chan, H., & Darwiche, A. (2005). On the revision of probabilistic beliefs using uncertain

evidence. AIJ, 163, 67–90.

Cherkassky, V., & Mulier, F. M. (2007). Learning from Data: Concepts, Theory, and Methods.

Wiley-IEEE Press.

Chickering, G., & Heckerman (1995). Learning bayesian networks: Search methods and exper-

imental results. In Proceedings of the Fifth International Workshop on Artificial Intelligence

and Statistics, pp. 112–128.

Choi, A., & Darwiche, A. (2006). An edge deletion semantics for belief propagation and its

practical impact on approximation quality. In AAAI, pp. 1107–1114.

Choi, A., Refaat, K. S., & Darwiche, A. (2011). EDML: A method for learning parameters in

Bayesian networks. In UAI.

Darwiche, A. (2003). A differential approach to inference in Bayesian networks. JACM, 50(3),

280–305.

Darwiche, A. (2009). Modeling and Reasoning with Bayesian Networks. Cambridge University

Press.

114

Darwiche, A., Dechter, R., Choi, A., Gogate, V., & Otten, L. (2008). Results from

the probabilistic inference evaluation of uncertainty in artificial intelligence UAI-08.

http://graphmod.ics.uci.edu/uai08/Evaluation/Report.

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society B, 39, 1–38.

Domingos, P., & Lowd, D. (2009). Markov Logic: An Interface Layer for Artificial Intelligence.

Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Pub-

lishers.

Elidan, G., & Friedman, N. (2005). Learning hidden variable networks: The information bot-

tleneck approach. JMLR, 6, 81–127.

Elidan, G., & Gould, S. (2008). Learning bounded treewidth Bayesian networks. JMLR, 9,

2699–2731.

Elidan, G., Ninio, M., Friedman, N., & Shuurmans, D. (2002). Data perturbation for escaping

local maxima in learning. In AAAI/IAAI, pp. 132–139.

Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical

Transactions of the Royal Society of London Series, 222.

Good, I. J. (1950). Probability and the Weighing of Evidence. Charles Griffin, London.

Heckerman, D. (1998). A tutorial on learning with Bayesian networks. In Jordan, M. I. (Ed.),

Learning in Graphical Models, pp. 301–354. MIT Press.

Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear sys-

tems. Research of the National Bureau of Standards, 49(6).

Hinton, G. (2000). Training products of experts by minimizing contrastive divergence. In

Neural Computation.

Hyvarinen, A., & Dayan, P. (2005). Estimation of non-normalized statistical models using score

matching. JMLR, 6.

Jaimovich, A., Meshi, O., McGraw, I., & Elidan, G. (2010). Fastinf: An efficient approximate

inference library. The Journal of Machine Learning Research, 11.

115

Jiang, J., Rai, P., & III, H. D. (2011). Message-passing for approximate MAP inference with

latent variables. In NIPS, pp. 1197–1205.

Jirousek, R., & Preucil, S. (1995). On the effective implementation of the iterative proportional

fitting procedure. Computational Statistics & Data Analysis, 19(2), 177–189.

Kindermann, R., & Snell, J. L. (1980). Markov Random Fields and their Applications. Ameri-

can Mathematical Society.

Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques.

MIT Press.

Lafferty, J. D., McCallum, A., & Pereira, F. C. N. (2001). Conditional random fields: Proba-

bilistic models for segmenting and labeling sequence data.. In ICML.

Lauritzen, S. (1995). The EM algorithm for graphical association models with missing data.

Computational Statistics and Data Analysis, 19, 191–201.

Li, S. Z. (2001). Markov random field modeling in image analysis. Springer-Verlag.

Lin, Y., & Druzdzel, M. (1997). Computational advantages of relevance reasoning in Bayes-

ian belief networks. In Proceedings of the Thirteenth Conference on Uncertainty in Artificial

Intelligence.

Liu, D. C., & Nocedal, J. (1989). On the Limited Memory BFGS Method for Large Scale

Optimization. Mathematical Programming, 45(3), 503–528.

Liu, Q., & Ihler, A. T. (2011). Variational algorithms for marginal MAP. In UAI, pp. 453–462.

Marinari, E., Parisi, G., & Ruiz-Lorenzo, J. (1997). Numerical simulations of spin glass sys-

tems.. Spin Glasses and Random Fields, 12.

Meng, Z., Wei, D., Wiesel, A., & III, A. O. H. (2013). Distributed learning of gaussian graphical

models via marginal likelihoods. In AIStats.

Minka, T. P. (2001). Expectation propagation for approximate Bayesian inference. In UAI, pp.

362–369.

Minka, T. P., & Lafferty, J. D. (2002). Expectation-propogation for the generative aspect model.

In UAI, pp. 352–359.

116

Mizrahi, Y. D., Denil, M., & de Freitas, N. (2014). Linear and parallel learning of markov

random fields. In In International Conference on Machine Learning (ICML).

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. MIT Press.

Park, J., & Darwiche, A. (2004). A differential semantics for jointree algorithms. AIJ, 156,

197–216.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-

ence. Morgan Kaufmann Publishers, Inc., San Mateo, California.

Pietra, S. D., Pietra, V. J. D., & Lafferty, J. D. (1997). Inducing features of random fields. IEEE

Trans. Pattern Anal. Mach. Intell., 19(4), 380–393.

Refaat, K. S., Choi, A., & Darwiche, A. (2012). New advances and theoretical insights into

EDML. In UAI, pp. 705–714.

Refaat, K. S., Choi, A., & Darwiche, A. (2013). EDML for learning parameters in directed and

undirected graphical models. In Advances in Neural Information Processing Systems 26, pp.

1502–1510.

Refaat, K. S., Choi, A., & Darwiche, A. (2014). Decomposing parameter estimation problems.

In Advances in Neural Information Processing Systems 27, pp. 1565–1573.

Refaat, K. S., & Darwiche, A. (2015). Data compression for learning mrf parameters. In

International Joint Conference on Artificial Intelligence. To appear.

Roth, D. (1996). On the hardness of approximate reasoning. Artificial Intelligence, 82.

Russel, S., Binder, J., Koller, D., & Kanazawa, K. (1995). Local learning in probabilistic net-

works with hidden variables. In Proceedings of the Fourteenth International Joint Conference

on Artificial Intelligence.

Salakhutdinov, R., Roweis, S. T., & Ghahramani, Z. (2003). Optimization with EM and

expectation-conjugate-gradient. In ICML, pp. 672–679.

Shachter, R. (1986). Evaluating influence diagrams. Operations Research, 34(6), 871–882.

Shachter, R. (1990). Evidence absorption and propagation through evidence reversals. In Pro-

ceedings of the Conference on Uncertainty in Artificial Intelligence.

117

Thiesson, B., Meek, C., & Heckerman, D. (2001). Accelerating EM for large databases. Ma-

chine Learning, 45(3), 279–299.

Varin, C., Reid, N., & Firth, D. (2011). An overview of composite likelihood methods.. Statis-

tica Sinica, 21.

Yanover, C., Schueler-Furman, O., & Weiss, Y. (2007). Minimizing and learning energy func-

tions for side-chain prediction.. In Speed, Terry and Huang, Haiyan (eds.), Research in Com-

putational Molecular Biology, volume 4453 of Lecture Notes in Computer Science, 11.

118

