Target Language-Aware Constrained Inference for Cross-lingual Dependency Parsing
Tao Meng¹, Nanyun Peng², Kai-Wei Chang¹
¹University of California, Los Angeles ²University of Southern California

Overview

Task: Cross-lingual Dependency Parsing

We are trying to capture differences between languages.

Motivations

- Prior work: focus on capturing commonalities between languages.
- Leverage linguistic properties of the target to facilitate the transfer.

Contributions

- We explore corpus linguistic statistics derived from WALS features and compile them into corpus-wise constraints to guide the inference process during the test time.
- We improve the performances on 17 out of 19 target languages.

Background

Graph-Based Parser:

- Assigns a score for every word pair and conducts inference to derive a directed spanning tree with the highest accumulated score.
- Integer linear program (ILP) Inference: \(\max \sum y_{i,j} S_{ij}^{(k)} y_{k}(i,j) \)

Corpus-Statistics Constraints

Unary constraints:

- Statistics regarding a particular POS tag (POS).
 - E.g. Spanish:

 DET NOUN VERB DET NOUN ADP DET NOUN ADP NOUN PUNCT
 Este triunfo supuso su comienzo en el mundo de moda.

 Heads of NOUN appears on the left 82.9% of the time.

Binary constraints:

- Statistics regarding a pair of POS tags (POS₁, POS₂).
 - E.g. In Hindi, ADP appears on the right of NOUN in ADP-NOUN arcs 99.9% of the time

Inference with Corpus-Statistics Constraints

- Lagrangian Relaxation (Right).
 - Constrained inference problem can be formulated as an ILP:
 \(\max \sum y_{i,j} S_{ij}^{(k)} y_{k}(i,j) \) s.t. \(r_i - \theta_i \leq R(C, Y) \leq r_i + \theta_i, \ i \in [N] \)
 - Solve approximately by Lagrangian Relaxation:
 - Lagrangian multipliers \(\lambda \rightarrow \) relax the constraints.
 - Iteratively \(\lambda(t) \rightarrow \lambda(t+1) \)

- Posterior Regularization (Middle).
 - Treat the model as a probability model \(p_{θ} \):
 \(p_k(i,j) \propto \exp S_{ij}^{(k)} \)
 - Define the feasible set \(Q \) by constraints:
 \(r_i - \theta_i \leq R(C, q) \leq r_i + \theta_i, \ i \in [N] \)
 - Find the closest distribution in \(Q \) from \(p_{θ} \):
 \(q^* = \arg\min_{q \in Q} KL(q||p_{θ}) \)
 - MAP inference based on the feasible distribution \(q^* \):
 \(Y = \arg\max_{q \in Q} q^*(Y) \)

Results

- Significant improvements in low-resource languages. Keep or slightly improve the performance in common languages.

- Analysis about individual constraints and the relation between improvements and ratio gap (Highly related, Pearson 0.938).

Conclusion

- Improve 15 and 17 languages out of 19 with LR and PR, respectively.
- Languages with different word order from English improve significantly.
- Lagrangian relaxation has a greater average improvement, while posterior regularization improves more languages.
- Code and models:
 https://github.com/MtSomeThree/CrossLingualDependencyParsing/