Structured Predictions: Practical Advancements and Applications in Natural Language Processing

Kai-Wei Chang UCLA

References: http://kwchang.net/talk/sp.html

Why is structure important? Hand written recognition example

What is this English letter?

Credit: Ben Taskar

Why is structure important? Hand written recognition example

What is this English letter?

Part-of-speech (POS) tagging:

Kai-Wei Chang (kwchang.net/talks/sp.html)

Q: [Chris] = [Mr. Robin] ?

Christopher Robin is alive and well. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris ived in a pretty home called **Cotchfield Farm**. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. (Mr. Robin) then wrote a book

P.S. In fact, Alan Alexander Milne is the author.

Slide modified from Dan Roth

Complex Decision Structure

Christopher Robin is alive and well. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris) ived in a pretty home called Cotchfield Farm. When Chris was three years old his father wrote a poem about him. The poem was printed in a magazine for others to read. (Mr. Robin then wrote a book

P.S. In fact, Alan Alexander Milne is the author.

Challenges--language is compositional

Challenges--language is compositional

Translate			
English Spanish French Chinese - detected +	+	English Spanish Arabic -	islate
小心地滑	×	Carefully slide	
Ä () /		☆ 🔳 •)	Nrong?
Xiǎoxīn dì huá			

CS6501– Natural Language Processing

Visual recognition

Credit: Dhruv Batra

Human body recognition

Joint Inference with General Constraint Structure [Roth&Yih'04,07,....]

Models could be learned separately/jointly; constraints may come up only at decision time.

Structured Prediction Models

How to model?

Learning signals

0.84 OAA CRF+· StrPerc L2S L2S (ft) StrSVM 0.82 CRFsad + StrSVM2 0.80 10 10 10 Training time (minutes)

POS Tagging (tuned hps)

<mark>96</mark>.95.9

Training/test/dev speed

Query

0.98

0.96 0.94

Accuracy (per word) 0.90 88.0 98.0 98.0

activity	cooking
agent	woman
food	vegetable

Fairness (data biases)

Kai-Wei Chang (kwchang.net/talks/sp.html)

Outline

Part 1: 14:40-15:50

- From binary to structured prediction -- Introduction to CRF
- -- Constrained conditional model

Part 2: 16:00-17:30

- **Advanced topics**
- -- Efficient inference/learning
- -- Learning from Indirect supervision signal
- -- Reducing human biases in structured models

Supervised learning

Supervised learning

y is represented in output space (label space) Different kinds of output:

- Binary classification: $y \in \{-1,1\}$
- Multiclass classification: $y \in \{1,2,3, ..., K\}$
- Regression:

 $y \in R$

• Structured output $y \in \{1,2,3, ..., K\}^N$

Combinatorial optimization problem

 $\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} f(y; w, x)$ input model parameters output space Inference/Test: given w, x, solve argmax Learning/Training: find a good w

Binary Linear Classifiers

$$\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} f(y; \boldsymbol{w}, \boldsymbol{x})$$

$$\boldsymbol{*} \boldsymbol{x} \in \mathbb{R}^{n}, \mathcal{Y} = \{-1, 1\}$$

$$\boldsymbol{*} f(y; \boldsymbol{w}, \boldsymbol{x}) \stackrel{\text{def}}{=} y(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{b}) = y(\sum_{i} w_{i} x_{i} + \boldsymbol{b})$$

$$\boldsymbol{*} \operatorname{argmax}_{y \in \mathcal{Y}} f(y; \boldsymbol{w}, \boldsymbol{x}) = \begin{cases} 1, \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{b} \ge 0\\ -1, \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{b} < 0\\ -1, \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{b} < 0 \end{cases}$$

$$= \operatorname{sgn}(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + \boldsymbol{b})$$

(break ties arbitrarily)

Recap: Logistic Regression

Regression

Logistic regression

CS6501 Lecture 2

logistic function or sigmoid function

- When $z \to -\infty$ what is $\sigma(z)$?
- When z = 0 what is $\sigma(z)$?

CS6501 Lecture 2

Probabilistic Interpretation

Assume labels are generated using the following probability distribution:

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = \frac{e^{\mathbf{w}^T \mathbf{x}}}{1 + e^{\mathbf{w}^T \mathbf{x}}} = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$
$$P(y = -1 | \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{\mathbf{w}^T \mathbf{x}}}$$

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = \frac{e^{\mathbf{w}^T \mathbf{x}}}{1 + e^{\mathbf{w}^T \mathbf{x}}} = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$
$$P(y = -1 | \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{\mathbf{w}^T \mathbf{x}}}$$
$$P(y | \mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-y\mathbf{w}^T\mathbf{x})}$$

Э

$$P(y \mid x, w) = \sigma(yw^T x)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

How to make prediction?

Predict y=1 if P(y=1|x,w) > P(y=-1|x,w)

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = \frac{e^{\mathbf{w}^T \mathbf{x}}}{1 + e^{\mathbf{w}^T \mathbf{x}}} = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$
$$P(y = -1 | \mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{\mathbf{w}^T \mathbf{x}}}$$

$$\log \frac{P(y = 1 \mid x, w)}{P(y = -1 \mid x, w)} = w^{T}x$$

* The decision boundary? $w^T x > 0$ How to learn models -- Maximum likelihood estimation

Which bag of words more likely generate:

aaaDaaaKoaaaa

Kai-Wei Chang (kwchang.net/talks/sp.html)

Maximum likelihood estimation

Probabilistic model assumption:

$$P(y|\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-y\mathbf{w}^T\mathbf{x})}$$

The log-likelihood of seeing a dataset
 D = {(x , y)} if the true weight vector was w:

$$\log P(D|\mathbf{w}) = -\sum \log \left(1 + \exp(-y\mathbf{w}^T\mathbf{x})\right)$$
$$P(D|w) = \prod_i P(y_i|x_i, w)$$
$$\Rightarrow \log P(D|w) = \sum_i \log P(y_i|x_i, w)$$

Minimizing negative log-likelihood

Log likelihood

$$\log P(D|\mathbf{w}) = -\sum \log \left(1 + \exp(-y\mathbf{w}^T\mathbf{x})\right)$$

✤ Logistic regression $\min_{w} \sum_{i} \log(1 + e^{-y_i(w^T x_i)})$ ♠ Let's add some prior (Gaussian Prior)

$$\min_{\boldsymbol{w}} \quad \frac{1}{2}\boldsymbol{w}^{T}\boldsymbol{w} + C\sum_{i} \log(1 + e^{-y_{i}(\boldsymbol{w}^{T}\boldsymbol{x}_{i})})$$

(multi-class) log-linear model

This is a valid probability assumption. Why?

This often called soft-max

Softmax

Softmax: let s(y) be the score for output y here s(y)=w_y^Tx, but it can be computed by other metric.

$$P(y) = \frac{\exp(s(y))}{\sum_{y' \in \{1,2,\dots,K\}} \exp(s(y))}$$

We can control the peakedness of the distribution

$$P(y|\sigma) = \frac{\exp(s(y)/\sigma)}{\sum_{y' \in \{1,2,\dots,K\}} \exp(s(y)/\sigma)}$$

CS6501 Lecture 3

Maximum log-likelihood estimation

Training can be done by maximum log-likelihood estimation i.e. $\max_{w} \log P(D|w)$

 $D = \{(x_i, y_i)\}$

$$P(D|w) = \prod_{i} \frac{\exp(w_{y_{i}}^{T} x_{i})}{\sum_{y' \in \{1,2,\dots,K\}} \exp(w_{y'}^{T} x_{i})}$$
$$\log P(D|w) = \sum_{i} [w_{y_{i}}^{T} x_{i} - \log \sum_{y' \in \{1,2,\dots,K\}} \exp(w_{y'}^{T} x_{i})]$$

Maximum a posteriori

 $D = \{(x_i, y_i)\}$

 $P(w|D) \propto P(w)P(D|w)$

$$\max_{w} -\frac{1}{2} \sum_{y} w_{y}^{T} w_{y} + C \sum_{i} [w_{y_{i}}^{T} x_{i} - \log \sum_{y' \in \{1, 2, \dots, K\}} \exp(w_{y'}^{T} x_{i})]$$

or
$$\min_{w} \frac{1}{2} \sum_{y} w_{y}^{T} w_{y} + C \sum_{i} [\log \sum_{y' \in \{1, 2, \dots, K\}} \exp(w_{y'}^{T} x_{i}) - w_{y_{i}}^{T} x_{i}]$$

CS6501 Lecture 3

(multi-class) log-linear model

Another way to write this (with Kesler construction) is

$$P(y|x,w) = \frac{\exp(w^T \phi(x,y))}{\sum_{y' \in \{1,2,...,K\}} \exp(w^T \phi(x,y'))}$$

Kesler construction

Assume we have a multi-class problem with K class and n features.

$$w_{i}^{T} x$$

$$w_{i}^{T} x$$

$$w^{T} \phi(x, i)$$

$$w = \begin{bmatrix} w_{1} \\ \vdots \\ w_{y} \\ \vdots \\ w_{n} \end{bmatrix}_{nK \times 1} \phi(x, y) = \begin{bmatrix} 0_{n} \\ \vdots \\ x \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ x \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ x \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ x \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ x \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ x \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ x \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ y \\ y \\ z \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ y \\ z \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ y \\ z \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ y \\ y \\ z \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ y \\ y \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ y \\ y \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ y \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ y \\ y \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ y \\ y \end{bmatrix}_{nK \times 1} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ y \end{bmatrix}_{nK \times 1} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ y \end{bmatrix}_{nK \times 1} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{block}; \\ y \\ y \end{bmatrix}_{nK \times 1} \end{bmatrix}_{nK \times 1} \begin{bmatrix} x \ln y^{th} \operatorname{b$$

 $\min_{w} \frac{1}{2} w^{T} w + C \sum_{i} [\log \sum_{y' \in \{1,2,\dots,K\}} \exp(w^{T} \phi(x_{i}, y')) - w^{T} \phi(x_{i}, y_{i})]$

How can we predict?

$$\operatorname{argmax}_{y} P(y \mid x, w)$$
$$\operatorname{argmax}_{y} w^{T} \phi(x, y)$$
$$w = \begin{bmatrix} w_{1} \\ \vdots \\ w_{y} \\ \vdots \\ w_{n} \end{bmatrix}_{nK \times 1} \phi(x, y) = \begin{bmatrix} 0_{n} \\ \vdots \\ x \\ \vdots \\ 0_{n} \end{bmatrix}_{nK \times 1}$$

$$P(y|x,w) = \frac{\exp(w^{T}\phi(x,y))}{\sum_{y' \in \{1,2,...,K\}} \exp(w^{T}\phi(x,y'))}$$

For input an input x, the model predict label is 3

How can we predict?

$$\operatorname{argmax}_{y} w^{T} \phi(x, y)$$

For input an input x, the model predict label is 3

Combinatorial optimization problem

 $\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} f(y; w, x)$ input model parameters output space Inference/Test: given w, x, solve argmax Learning/Training: find a good w

Structured Prediction

Goal: make joint prediction to minimize a joint loss

find $h \in H$ such that $h(x) \in Y(X)$ minimizing $E_{(x,y)\sim D}[loss(y,h(x))]$ based on Nsamples $(x_n, y_n) \sim D$

Kai-Wei Chang (MSR -> U of Virginia)
General log-linear model

Assumption:

Partition function

$$P(y|x,w) = \frac{\exp(w^T\phi(x,y))}{\sum_{y'\in Y}\exp(w^T\phi(x,y'))}$$

Summation over exponentially large output space

Challenges with structured output

- We cannot train a separate weight vector for each possible inference outcome (why?)
 - For multi-class we train one weight vector for each class
- We cannot enumerate all possible structures for inference
 - Inference for multiclass was easy

Deal with combinatorial output

- Decompose the output into parts that are labeled
- Define a graph to represent (independent assumption)
 - how the parts interact with each other
 - These labeled interacting parts are scored; the total score for the graph is the sum of scores of each part
 - ✤ an inference algorithm to assign labels to all the parts

Conditional Random Field: Factor graph

Each node is a random variable

We observe some nodes and need to assign the rest Each factor is associated with a score

Conditional Random Field: Factor graph

Each node is a random variable We observe some nodes and need to assign the rest Each factor is associated with a score

Conditional Random Field for sequences

$$P(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z} w^T \boldsymbol{\phi}(\mathbf{x}, \mathbf{y}_0) \prod_i \exp(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{y}_i, \mathbf{y}_{i-1}) + w^T \boldsymbol{\phi}(\mathbf{x}, \mathbf{y}_i))$$

Z: Normalizing constant, sum over all sequences

$$Z = \sum_{y} w^{T} \boldsymbol{\phi}(\boldsymbol{x}, \boldsymbol{y_{0}}) \prod_{i} \exp(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{y}_{i}, \boldsymbol{y}_{i-1}) + \boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}, \boldsymbol{y}_{i}))$$

Conditional Random Field for sequences

$$P(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z} w^T \boldsymbol{\phi}(\mathbf{x}, \mathbf{y}_0) \prod_i \exp(\mathbf{w}^T \boldsymbol{\phi}(\mathbf{y}_i, \mathbf{y}_{i-1}) + w^T \boldsymbol{\phi}(\mathbf{x}, \mathbf{y}_i))$$

Z: Normalizing constant, sum over all sequences

$$Z = \sum_{y} w^{T} \boldsymbol{\phi}(\boldsymbol{x}, \boldsymbol{y}_{0}) \prod_{i} \exp(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{y}_{i}, \boldsymbol{y}_{i-1}) + \boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}, \boldsymbol{y}_{i}))$$

With this strong independent assumption, z and $\underset{y \in \mathcal{Y}}{\operatorname{argmax}} f(y; w, x)$ can be estimated by a dynamic programming alg.

 $\mathbf{W}^{\cdot}\varphi(\mathbf{y}_{0},\mathbf{y}_{1}) \quad \mathbf{W}^{\cdot}\varphi(\mathbf{y}_{0},\mathbf{x}) \quad \mathbf{W}^{\cdot}\varphi(\mathbf{y}_{1},\mathbf{y}_{2}) \quad \mathbf{W}^{\cdot}\varphi(\mathbf{y}_{1},\mathbf{x}) \quad \mathbf{W}^{\cdot}\varphi(\mathbf{y}_{2},\mathbf{x}) \quad \mathbf{W}^{\cdot}\varphi(\mathbf{y}_{3},\mathbf{x}) \quad \mathbf{W}^{\cdot}\varphi(\mathbf{x},\mathbf{y}_{2},\mathbf{y}_{3})$

General CRFs $w^T \boldsymbol{\phi}(\boldsymbol{y}_1, \boldsymbol{y}_2, \boldsymbol{y}_3)$ **y**₃ **y**₁ $\rightarrow \boldsymbol{w}^{T}\boldsymbol{\phi}(x_{3}, y_{2}, y_{3})$ **y**₂ $w^T \phi(\mathbf{x}_1, \mathbf{y}_1) \leftarrow \cdots$ \mathbf{X}_1 **X**₃ X₂ $w^T \boldsymbol{\phi}(\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_2)$ $P(\mathbf{y}|\mathbf{x}) = \frac{\exp\left(\mathbf{w}^{T}\phi(\mathbf{x},\mathbf{y})\right)}{\sum_{\hat{\mathbf{x}}}\exp\left(\mathbf{w}^{T}\phi(\mathbf{x},\hat{\mathbf{y}})\right)}$ $\phi(\mathbf{x}, \mathbf{y}) = \phi(x_1, y_1) + \phi(y_1, y_2, y_3) + \phi(x_3, y_2, y_3) + \phi(x_1, x_2, y_2)$

CRF can be incorporated with deep learning

Conditional Random Field 46

Kai-Wei Chang (kwchang.net/talks/sp.html)

Yatskar et al. CVPR '16, Yang et al. NAACL '16, Gupta and Malik arXiv '16

Learning in log-linear model Partition function Assumption: $P(y|x,w) = \frac{\exp(w^T\phi(x,y))}{\sum_{v'\in Y}\exp(w^T\phi(x,y'))}$ Learning: Summation over exponentially large output space

 $\min_{w} \frac{1}{2} w^T w + C \sum_{i} \left[\log \sum_{y' \in Y} \exp(w^T \phi(x_i, y')) - w^T \phi(x_i, y_i) \right]$

Computational questions

1. Learning: Given a training set {<**x**_i, **y**_i>}

Train via maximum likelihood (typically regularized)

$$\max_{\mathbf{w}} \sum_{i} \log P(\mathbf{y}_{i} | \mathbf{x}_{i}, \mathbf{w}) = \max_{\mathbf{w}} \sum_{i} \mathbf{w}^{T} \phi(\mathbf{x}_{i}, \mathbf{y}_{i}) - \log \mathbb{Z}_{\mathbf{w}}(\mathbf{x}_{i})$$

$$\texttt{Need to compute partition function during training}$$

$$Z_{\mathbf{w}}(\mathbf{x}_i) = \sum_{\mathbf{y}} \exp(\mathbf{w}^T \phi(\mathbf{x}_i, \mathbf{y})$$

Computational questions

1. Learning: Given a training set {<**x**_i, **y**_i>}

Train via maximum likelihood (typically regularized)

$$\max_{\mathbf{w}} \sum_{i} \log P(\mathbf{y}_{i} | \mathbf{x}_{i}, \mathbf{w}) = \max_{\mathbf{w}} \sum_{i} \mathbf{w}^{T} \phi(\mathbf{x}_{i}, \mathbf{y}_{i}) - \log Z_{\mathbf{w}}(\mathbf{x}_{i})$$

Need to compute partition function during training

$$Z_{\mathbf{w}}(\mathbf{x}_i) = \sum_{\mathbf{y}} \exp(\mathbf{w}^T \phi(\mathbf{x}_i, \mathbf{y}) -$$

2. Prediction: $\max_{\mathbf{v}} \mathbf{w}^T \phi(\mathbf{x}, \mathbf{y})$

- Go over all possible assignments to the y's
- Find the one with the highest probability/score

Inference in graphical models

In general, compute probability of a subset of states

- $P(\mathbf{x}_A)$, for some subsets of random variables \mathbf{x}_A
- Exact inference
 - Variable elimination
 - Marginalize by summing out variables in a "good" order i
 - Belief propagation (exact only for graphs without loops)
 - Nodes pass messages to each other about their estimate of what the neighbor's state should be
 - Generally efficient for trees, sequences (and maybe other graphs too)
- Approximate" inference

3

Inference in graphical models

In general, compute probability of a subset of states

 $\mathbf{r} \mathbf{P}(\mathbf{x}_A)$, for some subsets of random variables \mathbf{x}_A

Exact inference

NP-hard in general, works for simple graphs

1

2

- Approximate" inference
 - Markov Chain Monte Carlo
 - Gibbs Sampling/Metropolis-Hastings
 - Variational algorithms
 - Frame inference as an optimization problem, perturb it to an approximate one and solve the approximate problem
 - Loopy Belief propagation
 - Run BP and hope it works!

5

Constrained Conditional Model

Consistency of outputs

Or: How to introduce knowledge into prediction

Suppose we have a sequence labeling problem where the outputs can be one of A or B

Consistency of outputs

Or: How to introduce knowledge into prediction

Suppose we have a sequence labeling problem where the outputs can be one of A or B

We want to add a condition:

There should be no more than one B in the output

Consistency of outputs

Or: How to introduce knowledge into prediction

Suppose we have a sequence labeling problem where the outputs can be one of A or B We want to add a condition:

There should be no more than one B in the output

Potential function that ensures this condition

y1	y2	у3	f
А	А	А	0
А	А	В	0
А	В	А	0
А	В	В	-1
В	А	А	0
В	А	В	-1
В	В	А	-1
В	В	В	-1

Should we learn what we can write down easily? Especially for such large, computationally cumbersome factors

Entity Relation Extraction task

Consistency constraint: A spouse relation can only hold between two person entities and cannot hold between two location entities

ILP Formulation for Entity Relation Task

Dole				
PER	0.5			
LOC	0.3			
ORG	0.2			

Elizabeth			
PER	0.6		
LOC	0.1		

0.3

Dole-Elizabeth

spouse	0.7
born_in	0.1
Located_at	0.1
No-relation	0.1

ORG

ILP Formulation						mayimiza			
Dole Elizabeth			$0.5y(1 \pm 0.2y(2 \pm 0.2y(2 \pm$						
PER	0.5	У	1	Ρ	PER		5	y4	0.3y1 + 0.3y2 + 0.2y3 +
LOC	0.3	У	2	L	LOC		1	y5	0.6 <mark>y4 + 0.1y5 + 0.3y6 +</mark>
ORG	0.2	У	3	0	ORG		3	y6	
Dole-Flizabeth						0.7y7 + 0.1y8 + 0.1y9 + 0.1y10			
spouse C		0.	7	y7					
ho	rn in		0	1	V	8			subj to yi ∈ {0,1}
			0.	• -	y				y1 + y2 + y3 = 1
Loca	ated_a	t	0.	.1	y y	9			v4 + v5 + v6 = 1
No-relation		0.	.1	y10				y7 + y8 + y9 + y10 = 1	
									2y7-y1-y4<=0

A spouse relation can only hold between two person entities

Amortized Inference for ILP

```
♦ We can write the ILP as
max_{y} cy
Ay \leq b
y_{i} \in \{0,1\}
```

 Inference problems discussed in previous sections can be represented as 0-1 ILPs.

```
maximize
0.5y1 + 0.3y2 + 0.2y3 +
0.6y4 + 0.1y5 + 0.3y6 +
0.7y7 + 0.1y8 + 0.1y9 + 0.1y10
subj to yi \in \{0,1\}
y1 + y2 + y3 = 1
y4 + y5 + y6 = 1
y7 + y8 + y9 + y10 = 1
2y7-y1-y4<=0
```

Inference with constraints

- Combinatorial optimization problems can be often written as integer linear programs (ILP)
 - The conversion is not always trivial
 - Allows injection of "knowledge" in the form of constraints
- Different ways of solving ILPs
 - Commercial solvers: CPLEX, Gurobi, etc
 - Specialized solvers if you know something about your problem
 - Lagrangian relaxation, amortized inference, etc
 - Can approximate to linear programs and hope for the best

Integer linear programming

In general

Geometry of integer linear programming

0-1 integer linear programming

In general

An instance of integer linear programs
 Still NP-hard

Geometry: We are only considering points that are vertices of the Boolean hypercube

Back to structured prediction

```
\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} f(y; w, x)
output space
+ expert constraints
```

 General idea: Frame the argmax problem as a 0-1 integer linear program
 Allows addition of arbitrary constraints

Example application: Co-reference Resolution

Christopher Robin is alive and well. **He** is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called **Cotchfield Farm**. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book

Co-reference Resolution Demo

Kai-Wei Chang (kwchang.net/talks/sp.html)

Co-reference Resolution

Learn a pairwise similarity score function (local predictor)

Example features:

- same sub-string?
- positions in the paragraph
- other 30+ feature types
- Key components:
 - Pairwise classification
 - Clustering (jointly or not?)

Kai-Wei Chang (kwchang.net/talks/sp.html)

Christopher Robipis alive and well. He is the same person that you read about in the book, Winnie the **Pooh**. As a **boy**, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book

Approaches

Approach1: Decoupling Approach(CoNLL11)

Approach2: Latent Structured Learning (ICML 14, EMNLP 13)

Kai-Wei Chang (kwchang.net/talks/sp.html)

Baseline: Decoupling Approach

A heuristic to learn the model [Soon+ 01, Bengtson+ 08, CoNLL11]

Decouple learning and inference:

Learn a pairwise similarity function

Cluster based on this function

Decoupling Approach-Learning

As a boy, $Chris_1$ lived in a pretty home called CotchfieldFarm. When $Chris_2$ was three years old, his father₃ wrote a poem about him₄. The poem was printed in a magazine for others to read. Mr. Robin₅ then wrote a book

Positive Samples (Chris₁, him₄) (Chris₂, him₄) (Chris₁, Chris₂) (his father₃, Mr. Robin₅) Negative Samples (Chris₁, his father₃) (Chris₂, his father₃) (him₄, his father₃) (Chris₁, Mr. Robin₅) (Chris₂, Mr. Robin₅) (him₄, Mr. Robin₅)

Greedy Best-Left-Link Clustering

[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladin Putin], to visit [Russia]. [President Clinton] said that [he] looks forward to strengthening ties between [USA] and [Russia].

Greedy Best-Left-Link Clustering

[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladimir Putin], to visit [Russia]. [President Clinton] state [he] looks forward to strengthening ties between [USA] and [Russia].
Greedy Best-Left-Link Clustering

[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladimir Putin], to visit [Russia]. [President Clinton] said that [he] looks forward to strengthening ties between [US] [and [Russia].

Greedy Best-Left-Link Clustering

[Soon+ 01, Bengtson+ 08, CoNLL11]

[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladimir Putin], to visit [Russia]. [President Clinton] said that [he] looks forward to strengthening ties

between [USA] and [Russia].

Can we do better?

Decoupling may lose information

Christopher Robin is alive and well. **He** is the same person that you read about in the book, **Winnie the Pooh**. As a **boy**, **Chris** lived in a pretty home called **Cotchfield Farm**. When **Chris** was three years old, his father <u>wrote</u> a poem about him. The poem was printed in a magazine for others to read. **Mr. Robin** then <u>wrote</u> a book

Structured Learning Approach

Update the similarity function

Cluster based on this function.

Learn the similarity function while clustering

Kai-Wei Chang (kwchang.net/talks/sp.html)

Attempt: All-Links Clustering [Mccallum+ 04, CoNLL 11]

Define a global scoring function:
 Attempt: using all within-cluster pairs:
 Inference problem is too hard

Christopher Robin is alive and well. He is the same person that you read about in the book, Winnie the Pool. As a boy, Chris lived in a protty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book

Latent Left-Linking Model (L3M)

Score (a clustering C)

- = Score (the best left-linking forest that is consistent with C)
- $= \sum$ Score of edges in the forests

Christopher Robin is alive and well. **He** is the same person that you read about in the book, **Winnie the Posh**. As a **hoy**, **Chris** lived in a pretty home called **Cotchfield Farm**. When **Chris** was three years old, **his father** wrote a poem about **him**. The poem was printed in a magazine for others to read. **Mr. Robin** then wrote a book

Linguistic Constraints

Must-link constraints:

- E.g., SameProperName, …
- Cannot-link constraints:
 - E.g., ModifierMismatch, …

[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladimir Putin], to visit [Russia]. [President Clinton] said that [he] looks forward to strengthening ties

between [USA] and [Russia].

Clustering with constraints[(Basu+08, Zhi+14]

Inference in L3M [ICML 14, EMNLP 13]

- Represented using an ILP formulation[Scott+ 2004/2007]
- Inference can be done using a greedy heuristics.

Kai-Wei Chang (kwchang.net/talks/sp.html)

Log linear model: Probabilistic L3M [ICML 14, EMNLP 13a]

Define a log-linear model

- Pr [a clustering C]
- = \sum Pr [forests that are consistent with C]
- $= \sum \Pi \Pr [edges in the forest]$
- $= \prod_i \sum_{j \in e(i)} \Pr\left[\text{edge}(j,i)\right]$
- Pr [edge(j,i)] ~ exp($\mathbf{w} \cdot \phi(j,i)/\gamma$) (γ : a parameter)

Regularized Maximum Log-Likelihood Estimation:

$$\min_{\mathbf{w}} LL(\mathbf{w}) = \beta ||\mathbf{w}||^2 + \sum_d \log Z_d(\mathbf{w})$$
$$- \sum_d \sum_i \log(\sum_{j < i} \exp(\mathbf{w} \cdot \phi(i, j) / \gamma) C_d(i, j))$$

Structured Prediction Models

How to model?

Learning signals

Kai-Wei Chang (kwchang.net/talks/sp.html)

Training/test/dev speed

Query

activity	cooking
agent	woman
food	vegetable

Fairness (data biases)

Idea 1: Adaptive feature selection [AAAI 17]

Observation: some decisions are simpler than the others

Idea: adaptively generate computationally costly features during test-time

Idea 2: Amortized inference

Observation: Many inference problems share the same solution

S1	POS
Не	Pronoun
is	VerbZ
reading	VerbG
a	Det
book	Noun

POS	S2
Pronoun	She
VerbZ	is
VerbG	watching
Det	a
Noun	movie

Idea 2: Amortized inference

Idea: Exploit this redundancy by caching old inference solutions [AAAI 15]

Idea 2: Amortized inference

Idea: Exploit this redundancy by caching old inference solutions [AAAI 15]

Amortized inference – key components

- A general inference framework
 - ... to represent inference problems
- A condition
 - ... to check if two problems have the same solution

Solution Methods

Assume a graphical structure; optimize

Use within various structured predictions algorithms (e.g., CRF, Structured Perceptron, M3N, Structured SVM) [Lafferty+ 01, Collins02, Taskar04]

See our AAAI16 tutorial (https://goo.gl/TF7cGj)

Learning to search approaches

Assume the complex decision is incrementally constructed by a sequence of decisions

E.g., LASO, dagger, Searn, transition-based methods

See our NAACL15 tutorials (http://hunch.net/~l2s)

Libraries for Structured Predictions

Illinois-SL: graph-based structured prediction

- Support various algorithms; parallel \Rightarrow very fast
- Vowpal-Wabbit: credit assignment compiler
 - ✤ A general online learning library
 - Support search-based structured prediction

Learning to search approaches: Credit Assignment Compiler [NIPS16]

Sequential_RUN(examples)

- 1: for i = 1 to len(examples) do
- 2: prediction \leftarrow predict(examples[i], examples[i].label)
- 3: **loss**(prediction \neq examples[i].label)
- 4: end for

- Write the decoder, providing some side information for training
- Library translates this piece of program with data to the update rules of model
- Applied to dependency parsing, Name entity recognition, relation extraction, POS tagging...

his he Stuart Broad England captain Broad Broad he

NLP Applications

Training/test speed

Query

activity	cooking
agent	woman
food	vegetable

Fairness (data biases)

Kai-Wei Chang (kwchang.net/talks/sp.html)

Learning with Implicit/Partial Supervision

[ICML15, EMNLP16, AAAI workshop17]

Consider algebra word problem

Maria is now four times as old as Kate. Four years ago, Maria was six times as old as Kate. Find their ages now.

✤ Build semantic parser to translate question to an equation system $m = 4 \times n \text{ and } m - 4 = 6 \times (n - 4).$

Then answer can be derived: m=40, n=10

Learning with Implicit/Partial Supervision [EMNLP16] Z_1 y_1 m+n=4; m-n = 6 M=5; n=-1 Z_2 Maria is now four times as old as Kate. y_2 Four years ago, Maria was six times as old as Kate. Find their ages now. M=40; n=10 m=4n; m-4=6(n-4)Х *y*₃ m=4n; m-6n=-20 Z_K y_N

Kai-Wei Chang (kwchang.net/talks/sp.html)

Kai-Wei Chang (kwchang.net/talks/sp.html)

solution matches the implicit signal

Structured Contextual Bandit Setting [ICML15, AAAI workshop17, IJCNLP 17] w/ Akshay Krishnamurthy, Alekh Agarwal, Hal Daume; III, John Langford w/ Kenneth Arnold, Adam Kalai

Loss of only a single structured label can be observed

is my favorite restaurant in harvard square. i love italian food and this is one of the best places nearby for a variety of delicious italian dishes. i often get the same thing every time i go there i have the rigatoni with meat sauce and sometimes the veal. the lunch menu

Prediction ≠ Suggestion, especially in writing

- Baseline: an N-gram model doesn't work
- Accurate predictions may be poor suggestions
 - E.g., most frequent phrases in Yelp: this place is great!; Love it, love it, love it!; I love this place
 - E.g., most frequent short email replies [Kannan+ 16]:
 I love you; Thanks; sounds good
- Writers prefer suggestions occur less frequently but more creative/enthusiastic/informative:
 - e.g., this was truly a wonderful experience

Key ideas

1. Discriminative language model

Allow to add features
 ⇒ Tune the model to favor phrases with some properties

Key ideas

- 1. Discriminative language model
- 2. Counterfactual learning
 - Cannot get full feedback
 - Only candidates presented to users are annotated

. . .

. . .

How can we estimate the model parameter unbiasedly?

is my favorite restaurant in harvard square. i love italian food and this is one of the best places nearby for a variety of delicious italian dishes. i often get the same thing every time i go there i have the rigatoni with meat sauce and sometimes the veal. the lunch menu

is	was	has	
very reasonably priced ,	great , the food is	something for everyone	
5%	3%	7%	

is very delicious2%has a drink option1%is not worthwhile6%is good.8%

Counterfactual learning

- Collect behavior data using a reference model (suggested phrase, reward, probability, context)
 - Reference model: a tri-gram language model with Kneser-Ney smoothing & temperature parameter
 - reward = # words accepted

is my favorite restaurant in harvard square. i love italian food and this is one of the best places nearby for a variety of delicious italian dishes. i often get the same thing every time i go there i have the rigatoni with meat sauce and sometimes the veal. the lunch menu is was has very reasonably priced, great, the food is something for everyone

NLP Applications

Training/test speed

Learning signals

Kai-Wei Chang (kwchang.net/talks/sp.html)

TUZ

The photo you want to upload does not meet our criteria because:

Subject eyes are closed

Please refer to the technical requirements. You have 9 attempts left.

Check the pho o requirements.

Subject eyes closed

After your tenth attempt you will need to start again and re-enter the CAPTCHA security check.

Reference number: 20161206-81

Filename: Untitled.jpg

If you wish to <u>contact us</u> about the photo, you must provide us with the reference number given above.

Please print this information for your records.

https://www.reuters.com/article/usnewzealand-passport-error/newzealand-passport-robot-tellsapplicant-of-asian-descent-to-openeyes-idUSKBN13W0RL

A screenshot of New Zealand man Richard Lee's passport photo rejection notice, supplied to Reuters December 7, 2016. Richard Lee/Handout via REUTERS

Word Embeddings can be Dreadfully Sexist [nips16, reported by NPR, MIT tech review]

$$v_{man} - v_{woman} + v_{uncle} \sim v_{aunt}$$

We use Google w2v embedding trained from the news

Kai-Wei Chang (kwchang.net/talks/sp.html)

Project occupations in gender direction

Extreme he occupations

- 1. maestro
- 4. philosopher
- 7. financier
- 10. magician
- 2. skipper
- 5. captain
- 8. warrior
- 11. figher pilot

- 3. protege
- 6. architect
- 9. broadcaster
- 12. boss

he

- Extreme she occupations
- 2. nurse

5. socialite

- 3. receptionist
- 6. hairdresser
- 9. stylist
- 12. guidance counselor

- 1. homemaker
- 4. librarian
- 7. nanny
- 10. housekeeper
- bookkeeper
 interior designer

Dhillon's Work : Eigenwords 🖉

Huang's Work : Improving Word Representations Via Global Context And Multiple Word Prototypes 🗗

Google	word2vec resume
Scholar	About 93 results (0.02 sec)
Articles Case law My library	Machine Learned Resume-Job Matching Solution Y Lin, H Lei, PC Addo, X Li - arXiv preprint arXiv:1607.07657, 2016 - arxiv.org We use LDA to classify resumes into 32 and 64 topics respectively each Chinese phrase as a word and each list of phrases as a sentence, after word2vec training, each In this paper, we have considered the resume-job matching problem and pro- posed a solution by using Cite Save
Any time Since 2016 Since 2015 Since 2012 Custom range	[PDF] SKILL: A System for Skill Identification and Normalization. <u>M Zhao, F Javed</u> , F Jacob, M McNair - AAAI, 2015 - pdfs.semanticscholar.org ThiS dictionary capacitateS 90% of noiSe exhibited in reSume SkillS SectionS iS initiated firSt for the input queY ry (aka, Seed Skill phraSeS from reSumeS) for proper implement and produce highly precise and relevant skills recognition system, we utilize word2vec (Mikolov et Cited by 4 Related articles All 3 versions Cite Save More
Sort by relevance Sort by date	Word2Vec vs DBnary ou comment (ré) concilier représentations distribuées et réseaux lexico-sémantiques? Le cas de l'évaluation en traduction automatique <u>C Servan, Z Elloumi</u> , H Blanchon, <u>L Besacier</u> - TALN 2016, 2016 - hal.archives-ouvertes.fr
 ✓ include patents ✓ include citations 	merezentations RESUME Cet article présente une approche associant réseaux lexico-sémantiques et représentations distribuées de mots appliquée à l'évaluation de la traduction automatique Cite Save
☑ Create alert	Macau: Large-scale skill sense disambiguation in the online recruitment domain <u>Q Luo, M Zhao, F Javed</u> , F Jacob - Big Data (Big Data), 2015, 2015 - ieeexplore.ieee.org Contexts are extracted from either skill section(s) of resumes or requirement section(s) of job postings. We used a popular tool word2vec [12] with parameter

DEFINITIONAL

(related [Schmidt '15])

DEFINITIONAL

(related [Schmidt '15])

Debiasing algorithm (Soft version)

Find a linear transformation T of the gender-neutral words to reduce the gender component while not moving the words too much.

W = matrix of all word vectors.

N =matrix of neutral word vectors.

 $\min_{T} ||(TW)^{T}(TW) - W^{T}W||_{F}^{2} + \lambda ||(TN)^{T}(TB)||_{F}^{2}$ don't move too minimize gender much component

Human Bias in Structured Prediction Models

[EMNLP 17*] w/ Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez

What's the agent for this image?

Cooking			
Role	Object		
agent	?		
food	vegetable		
container	bowl		
tool	knife		
place	kitchen		

An example from a vSRL (visual Semantic Role Labeling) system

*Best Long Paper Award at EMNLP 17

Kai-Wei Chang (kwchang.net/talks/sp.html)

Dataset Gender Bias

imsitu.org

Model Bias After Training

<u>84%</u>

W N /

• J 🔍 spour

<u>|6%</u>

Male

driftsh

16

Kai-Wei Chang (kwchang.net/talks/sp.html)

imSitu Visual Semantic Role Labeling (vSRL)

Conditional Random Field 118

Kai-Wei Chang (kwchang.net/talks/sp.html)

Yatskar et al. CVPR '16, Yang et al. NAACL '16, Gupta and Malik arXiv '16

imSitu Visual Semantic Role Labeling (vSRL)

Conditional Random Field 119

Kai-Wei Chang (kwchang.net/talks/sp.html)

Yatskar et al. CVPR '16, Yang et al. NAACL '16, Gupta and Malik arXiv '16

COCO Multi-Label Classification (MLC)

a woman is smiling in a kitchen near a pizza on a stove

COCO Objects	WOMAN	(objects)] ← Caption Inferred	
	PIZZA	yes	Label	
	ZEBRA	no		
	FRIDGE	yes		
	CAR	no		
		000		

Kai-Wei Chang (kwchang.net/talks/sp.html)

COCO Multi-Label Classification (MLC)

Kai-Wei Chang (kwchang.net/talks/sp.html)

Conditional Random Field

Defining Dataset Bias (events)

Training Gender Ratio (verb)

cooking

woman

man

Defining Dataset Bias (objects)

Training Gender Ratio (A noun)

Training Set

Gender Dataset Bias

Kai-Wei Chang (kwchang.net/talks/sp.html)

Model Bias Amplification

♦ imSitu Verb▲ COCO Noun

Kai-Wei Chang (kwchang.net/talks/sp.html)

Model Bias Amplification

Kai-Wei Chang (kwchang.net/talks/sp.html)

- Corpus level constraints on model output (ILP)
 - Doesn't require model retraining
- Reuse model inference through Lagrangian relaxation
 - Can be applied to any structured model

Reducing Bias Amplification (RBA)

131

Reducing Bias Amplification (RBA)

• Lagrange Multiplier (λ) Per Constraint

Sontag et al., 2011; Rush and Collins, 2012; Chang and Collins, 2011; Peng et al., 2015, Chang et al., 2013; Dalvi, 2015

135

update λ update potentials

136

Sontag et al., 2011; Rush and Collins, 2012; Chang and Collins, 2011; Peng et al., 2015, Chang et al., 2013; Dalvi, 2015

Gender Bias De-amplification in imSitu

imSituVerb Violation: 72.6% .050 |bias†| 24.07 acc.

Gender Bias De-amplification in COCO

COCO Noun Violation: 60.6% .032 |biast| 45.27 mAP

Gender Bias De-amplification in COCO

Future Work

What We Care about

NLP Applications

Learning signals

0.80L 10 10 10 Training time (minutes) Training/test/dev speed

POS Tagging (tuned hps)

96.95.9

CRF++

StrPerc L2S (ft)

StrSVM

OAA

L2S

Query

0.98

0.96

0.94

Accuracy (per word) 0.90 88.0 98.0 98.0

0.84

0.82

activity	cooking
agent	woman
food	vegetable

Fairness (data biases)

Kai-Wei Chang (kwchang.net/talks/sp.html)

Collaborators

Academic

- Hal Daume (UMD)
- Chih-Jen Lin (NTU)
- Dan Roth (Upenn)
- Venkatesh Saligrama (BU)
- Alexander Rush (Harvard)
- Cho-Jui Hsieh (UCDavis)
- Vivek Srikumar (Utah)
- Hongning Wang (UVa)
- Vicente Ordonez (UVa)

John Langford (MSR)

- Adam Kalai (MSR)
- Ming-Wei Chang (Google)
- Scott Yih (Al2)
- Hoifung Poon (MSR)
- Mark Yatskar (Al2)

Students

Industrial

- Wasi Ahmad (UCLA)
- Jieyu Zhao (UCLA)
- Rizwan Parvez (UCLA)
- Tianlu Wang (UVa)
- Ken Arnold (Havard)
- Shyam Upaphaya (UIUC) 144
Conclusions

Goal: Practical Structured Prediction Approaches Tutorials/Workshops:

- 1. AAAI-16: Learning and Inference in SP Models
- 2. NAACL15: Hands-on Learning to Search for SP
- 3. EMNLP 16, 17: workshop SP for NLP

References/Code/Demos:

http://kwchang.net

Illinois-SL: a structured learning package Vowpal Wabbit: an online learning library