Efficient Contextual Representation Learning With Continuous Outputs

Liunian Harold Li Patrick H. Chen Cho-Jui Hsieh Kai-Wei Chang
UCLA UCLA UCLA UCLA

Motivation: Efficient Contextual Representation Learning

Consumption COse (Ibs)
Model CO2e Cloud compute cost American life, avg, 1 year 36.156
ELMo 262 $433-$1472
BERT,,, .. 1438 $3751-$12,571 Training one model (GPU)
GPT-2 — $12,902-$43,008 NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468

Energy implication of popular NLP models (Strubell et al., 2019).

Background: Language Model Pre-training

Language Model Objectives: forward / backward / masked

Softmax Layer

@ @ @ Sequence Encoder: LSTM / Transformer

Input Layer: Subwords / CNN
The quick dog

An illustration of popular pre-trained language models, such as ELMo, GPT, and BERT.

Background: Softmax Layer

Loss function with a softmax layer:

l(c,w) = —logp(wlc)
— log softmaz(cW?)

c: context vector from the sequence encoder

W:V x m matrix, with V being the vocabulary size

V could become extremely large (800K for ELMo)

The quick dog

W takes up 80% of parameters of ELMo

Forward language modeling of ELMo Softmax layer becomes the speed bottleneck!

Approach: Accelerating Language Model Training with Continuous Output

Loss function with a continuous output layer*:

[(c,w) = d(c,w).

c: context vector from the sequence encoder

w: pre-trained word embedding of w

d: distance function such as cosine distance

The quick dog Predicting the word embedding instead of the word!

Forward language modeling of ELMo

*Von mises-fisher loss for training sequence to sequence models
with continuous outputs. Sachin Kumar and Yulia Tsvetkov. 2018.

Approach: Computational Efficiency

Time complexity: Related work
O(|vocabulary |) -> O(| embedding |)
Negligible Sampling

Adaptive softmax

Trainable parameter size: Subword
Hundreds of Millions -> 0
80% parameter reduction for ELMo

Significant efficiency improvement over existing methods

Approach: Computational Efficiency

Time complexity:
O(|vocabulary|) -> O(| embedding |) Optimizer overhead

Negligible
:> GPU memory consumption

Hundreds of Millions -> 0 Communication cost

Trainable parameter size:

80% parameter reduction for ELMo

Efficiency improvement of the output layer Efficiency improvement for the entire model

ELMo training: 14 days x 3 GPUs -> 2.5 days x 4 GPUs

Approach: Open-vocabulary Training

Open-vocabulary word embedding

Loss function with a continuous output layer:
such as FastText / MIMICK:

l C. W) = d C.Ww). © 0000 O O O) Mimicked Embedding
, . ©0]00)
w: pre-trained word embedding of w S~

What if w is not in the vocabulary?

) 1y 1) T

[©09©0o0©0oo©C00)

Character
embeddings

m a k e
MIMICK (Pinter et al., 2017)

Experiment

Model ‘ Input Sequence Encoder Output

ELMo CNN LSTM Sampled Softmax
ELMo-C (0URS) | FASTTEXT. LSTM w/ LN CoNT W/ FASTTEXT,
ELMo-A FASTTEXT LSTM w/ LN Adaptive Softmax
ELMo-Sub Subword LSTM w/ LN Softmax

All models pre-trained on One Billion Word Benchmark for 10 epochs.
ELMo-C, ELMo-A, and ELMo-Sub trained with the exact same hyper-parameters.

ELMo-A achieves a perplexity of 35.8, lower than 39.7 of the original ELMo.

Experiment

ELMo ELMo-C

Time 14 x 3 2.5x4
Batch 128 768
Params 499M 76M

Training time (Day x GPU), batch size (per GPU), trainable parameters of four ELMo variants

ELMo-C is 4.2x faster and 6x more memory efficient than ELMo

10

Experiment

ELMo-A ELMo-Sub ELMo-C

Time 5.7x4 39x4 2.5x4
Batch 256 320 768
Params 196 M O2M 76M

Training time (Day x GPU), batch size (per GPU), trainable parameters of four ELMo variants

ELMo-A and ELMo-Sub are more efficient than ELMo
ELMo-C is still 1.6x - 2.3x faster

11

Experiment

El.Mo

SNLI 88.5
Coref 72.9
SST-5 52.96 -

= 2.26

NER 92.51 -
SRLL 83.4

- 0.28

ELMo-C
38.8

72.9

53.80 = 0.73
92.24 &= 0.10
32.4

Performance on five downstream tasks following settings of the original ELMo

ELMo-C is comparable with ELMo on four tasks except SRL.

12

Experiment

ELMo-A ELMo-
SNLI 338.9 87.1
Coref 72.9 72.4
SST-5 53.58 = 0.77 53.02 -
NER 02.28 £ 0.20 92.17 -
SRL 82.7 82.4

Sub ELMo-C
88.8
72.9

-2.08 53.80 £ 0.73

- 0.56 92.24 + 0.10
82.4

Performance on five downstream tasks following settings of the original ELMo

ELMo-C rivals or outperforms ELMo-A and ELMo-Sub.

13

Analysis: The Continuous Output Layer with Different Sequence Encoders

LSTM LSTMx2 TRraNs BASE ELMo TRrans LARGE GPT

ConT 3.97s 10.42s 15.87s 34.58s 48.55s 43.53s
SUBWORD 2.32Xx 1.49x 1.78x 1.55x 1.72x 1.44x
ADAPTIVE 4.58x 2.20x 2.62x 1.89x 3.28x 2.33x

SAMPLED 2.50x 1.60x 2.91x 1.91x OOM 8.31x

Time needed to finish training on one million words using 4 GPUs.

Consistent efficiency improvement over other variants (1.44x - 8.31x),
even when the sequence encoder is very large.

14

Conclusion

Predicting word embedding instead of softmaxing accelerates ELMo training
The resulting model ELMo-C retains comparable performance as ELMo

Computational efficiency sustains when applied to large transformers

E 1l #;".

Y,

o (]

https://github.com/uclanip/ELMO-C

15

https://github.com/uclanlp/ELMO-C

