
 1

Efficient Contextual Representation Learning With Continuous Outputs

Liunian Harold Li
UCLA

Cho-Jui Hsieh
UCLA

Kai-Wei Chang
UCLA

Patrick H. Chen
UCLA

 2

Motivation: Efficient Contextual Representation Learning

Energy implication of popular NLP models (Strubell et al., 2019).

C

C

C

C

C

C

 3

Background: Language Model Pre-training

Softmax Layer

Sequence Encoder: LSTM / Transformer

Input Layer: Subwords / CNN

The quick dog

…

Language Model Objectives: forward / backward / masked

An illustration of popular pre-trained language models, such as ELMo, GPT, and BERT.

C

C

C

C

C

 4

The quick dog

…C

Loss function with a softmax layer:quick <eos>brown

Forward language modeling of ELMo

c: context vector from the sequence encoder

W: V x m matrix, with V being the vocabulary size

Background: Softmax Layer

V could become extremely large (800K for ELMo)

W takes up 80% of parameters of ELMo

Softmax layer becomes the speed bottleneck!

C

C

C

C

C

 5

Approach: Accelerating Language Model Training with Continuous Output

The quick dog

…C

Loss function with a continuous output layer*:
quick <eos>brown

Forward language modeling of ELMo

c: context vector from the sequence encoder

w: pre-trained word embedding of w

d: distance function such as cosine distance

*Von mises-fisher loss for training sequence to sequence models
with continuous outputs. Sachin Kumar and Yulia Tsvetkov. 2018.

Predicting the word embedding instead of the word!

 6

Approach: Computational Efficiency

Time complexity:
 O(|vocabulary|) -> O(|embedding|)
 Negligible

Trainable parameter size:
 Hundreds of Millions -> 0
 80% parameter reduction for ELMo

Significant efficiency improvement over existing methods

Related work

 Sampling
 Adaptive softmax
 Subword
 …

 7

Approach: Computational Efficiency

Efficiency improvement of the output layer

Optimizer overhead

GPU memory consumption

Communication cost

Efficiency improvement for the entire model

ELMo training: 14 days x 3 GPUs -> 2.5 days x 4 GPUs

Time complexity:
 O(|vocabulary|) -> O(|embedding|)
 Negligible

Trainable parameter size:
 Hundreds of Millions -> 0
 80% parameter reduction for ELMo

 8

Approach: Open-vocabulary Training

Loss function with a continuous output layer:

w: pre-trained word embedding of w

What if w is not in the vocabulary?

Open-vocabulary word embedding
such as FastText / MIMICK:

MIMICK (Pinter et al., 2017)

 9

Experiment

All models pre-trained on One Billion Word Benchmark for 10 epochs.

ELMo-C, ELMo-A, and ELMo-Sub trained with the exact same hyper-parameters.

ELMo-A achieves a perplexity of 35.8, lower than 39.7 of the original ELMo.

 10

Experiment

ELMo-C is 4.2x faster and 6x more memory efficient than ELMo

Training time (Day x GPU), batch size (per GPU), trainable parameters of four ELMo variants

 11

Experiment

ELMo-A and ELMo-Sub are more efficient than ELMo
ELMo-C is still 1.6x - 2.3x faster

Training time (Day x GPU), batch size (per GPU), trainable parameters of four ELMo variants

 12

Experiment

ELMo-C is comparable with ELMo on four tasks except SRL.

Performance on five downstream tasks following settings of the original ELMo

 13

Experiment

ELMo-C rivals or outperforms ELMo-A and ELMo-Sub.

Performance on five downstream tasks following settings of the original ELMo

 14

Analysis: The Continuous Output Layer with Different Sequence Encoders

Time needed to finish training on one million words using 4 GPUs.

Consistent efficiency improvement over other variants (1.44x - 8.31x),
even when the sequence encoder is very large.

 15

Conclusion

Predicting word embedding instead of softmaxing accelerates ELMo training

The resulting model ELMo-C retains comparable performance as ELMo

Computational efficiency sustains when applied to large transformers

https://github.com/uclanlp/ELMO-C

https://github.com/uclanlp/ELMO-C

