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Motivation: Efficient Contextual Representation Learning

Energy implication of popular NLP models (Strubell et al., 2019).
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Background: Language Model Pre-training

Softmax Layer

Sequence Encoder:  LSTM / Transformer

Input Layer: Subwords / CNN

The quick dog

…

Language Model Objectives: forward / backward / masked

An illustration of popular pre-trained language models, such as ELMo, GPT, and BERT.
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The quick dog

…C

Loss function with a softmax layer:quick <eos>brown

Forward language modeling of ELMo

c: context vector from the sequence encoder 

W: V x m matrix, with V being the vocabulary size

Background: Softmax Layer

V could become extremely large (800K for ELMo) 

W takes up 80% of parameters of ELMo 

Softmax layer becomes the speed bottleneck!
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Approach: Accelerating Language Model Training with Continuous Output

The quick dog

…C

Loss function with a continuous output layer*:
quick <eos>brown

Forward language modeling of ELMo

c: context vector from the sequence encoder 

w: pre-trained word embedding of w 

d: distance function such as cosine distance

*Von mises-fisher loss for training sequence to sequence models 
with continuous outputs. Sachin Kumar and Yulia Tsvetkov. 2018. 

Predicting the word embedding instead of the word!
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Approach: Computational Efficiency

Time complexity: 
         O(|vocabulary|) -> O(|embedding|) 
         Negligible 

Trainable parameter size:  
         Hundreds of Millions -> 0 
         80% parameter reduction for ELMo 

Significant efficiency improvement over existing methods

Related work 
      
     Sampling 
     Adaptive softmax 
     Subword 
     … 
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Approach: Computational Efficiency

Efficiency improvement of the output layer

Optimizer overhead 

GPU memory consumption 

Communication cost

Efficiency improvement for the entire model

ELMo training: 14 days x 3 GPUs -> 2.5 days x 4 GPUs

Time complexity: 
         O(|vocabulary|) -> O(|embedding|) 
         Negligible 

Trainable parameter size:  
         Hundreds of Millions -> 0 
         80% parameter reduction for ELMo 
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Approach: Open-vocabulary Training

Loss function with a continuous output layer:

w: pre-trained word embedding of w 

What if w is not in the vocabulary? 

Open-vocabulary word embedding  
such as FastText / MIMICK: 

MIMICK (Pinter et al., 2017)
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Experiment

All models pre-trained on One Billion Word Benchmark for 10 epochs. 

ELMo-C, ELMo-A, and ELMo-Sub trained with the exact same hyper-parameters. 

ELMo-A achieves a perplexity of 35.8, lower than 39.7 of the original ELMo.
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Experiment

ELMo-C is 4.2x faster and 6x more memory efficient than ELMo

Training time (Day x GPU), batch size (per GPU), trainable parameters of four ELMo variants
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Experiment

ELMo-A and ELMo-Sub are more efficient than ELMo 
ELMo-C is still 1.6x - 2.3x faster  

Training time (Day x GPU), batch size (per GPU), trainable parameters of four ELMo variants
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Experiment

ELMo-C is comparable with ELMo on four tasks except SRL.

Performance on five downstream tasks following settings of the original ELMo
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Experiment

ELMo-C rivals or outperforms ELMo-A and ELMo-Sub.

Performance on five downstream tasks following settings of the original ELMo
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Analysis: The Continuous Output Layer with Different Sequence Encoders

Time needed to finish training on one million words using 4 GPUs.

Consistent efficiency improvement over other variants (1.44x - 8.31x), 
even when the sequence encoder is very large.
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Conclusion

Predicting word embedding instead of softmaxing accelerates ELMo training 

The resulting model ELMo-C retains comparable performance as ELMo 

Computational efficiency sustains when applied to large transformers

https://github.com/uclanlp/ELMO-C

https://github.com/uclanlp/ELMO-C

