Multi-Relational Latent Semantic Analysis

Kai-Wei Chang

Joint work with

Scott Wen-tau Yih, Chris Meek

Microsoft Research

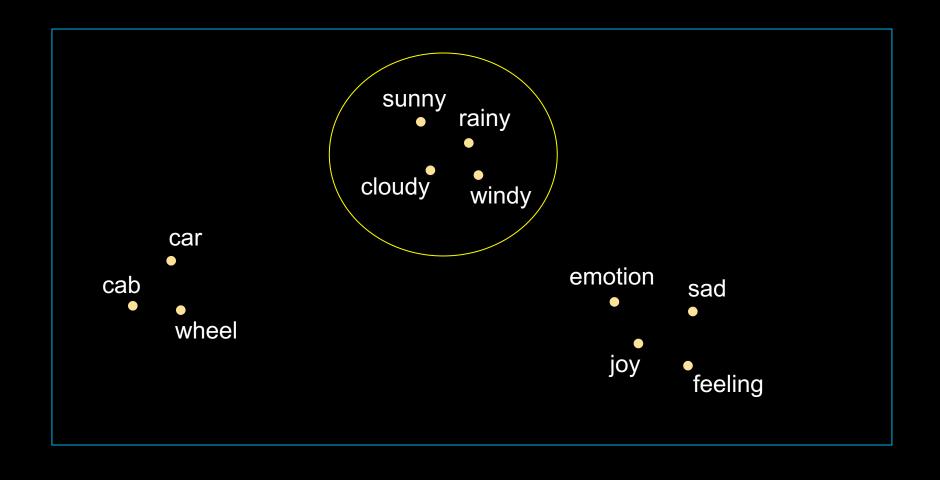
Natural Language Understanding

- Build an intelligent system that can interact with human using natural language
- Research challenge
 - Meaning representation of text
 - Support useful inferential tasks
- Semantic word representation is the foundation
 - Language is compositional
 - Word is the basic semantic unit

Continuous Semantic Representations

- A lot of popular methods for creating word vectors!
 - Vector Space Model [Salton & McGill 83]
 - Latent Semantic Analysis [Deerwester+ 90]
 - Latent Dirichlet Allocation [Blei+ 01]
 - Deep Neural Networks [Collobert & Weston 08]
- Encode term co-occurrence information
- Measure semantic similarity well

Continuous Semantic Representations



Semantics Needs More Than Similarity

will be rainy.

Tomorrow will be sunny.

similo ainy,
sunny)?

antonym(rainy, sunny)?

Leverage Linguistic Resources

- Can't we just use the existing linguistic resources?
 - Knowledge in these resources is never complete
 - Often lack of degree of relations
- Create a continuous semantic representation that
 - Leverages existing rich linguistic resources
 - Discovers new relations
 - Enables us to measure the degree of multiple relations (not just similarity)

Roadmap

- Introduction
- Background
 - Latent Semantic Analysis (LSA)
 - Polarity Inducing LSA (PILSA)
- Multi-Relational Latent Semantic Analysis (MRLSA)
 - Encoding multi-relational data in a tensor
 - Tensor decomposition & measuring degree of a relation
- Experiments

Roadmap

- Introduction
- Background
 - Latent Semantic Analysis (LSA)
 - Polarity Inducing LSA (PILSA)
- Multi-Relational Latent Semantic Analysis (MRLSA)
 - Encoding multi-relational data in a tensor
 - Tensor decomposition & measuring degree of a relation
- Experiments

Latent Semantic Analysis [Deenwester+1990]

- Data representation
 - Encode single-relational data in a matrix
 - Co-occurrence (e.g., from a general corpus)
 - Synonyms (e.g., from a thesaurus)
- Factorization
 - Apply SVD to the matrix to find latent components
- Measuring degree of relation
 - Cosine of latent vectors

Encode Synonyms in Matrix

- Input: Synonyms from a thesaurus
- Joyfulness: joy, gladden
- Sad: sorrow, sadden

Target word: row-

vector

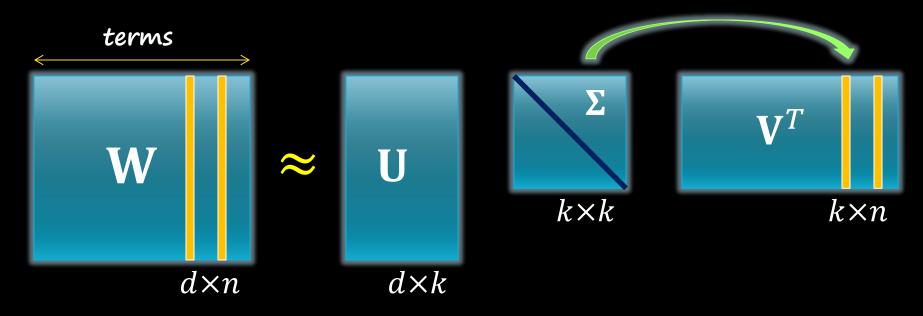
Term: column-

vector

	joy	gladden	sorrow	sadden	goodwill
Group 1: "joyfulness"	1	1	0	0	0
Group 2: "sad"	0	0	1	1	0
Group 3: "affection"	0	0	0	0	1

Cosine Score

Mapping to Latent Space via SVD



- SVD generalizes the original data
 - Uncovers relationships not explicit in the thesaurus
 - Term vectors projected to k-dim latent space
- Word similarity: cosine of two column vectors in EVT

Problem: Handling Two Opposite Relations

- Synonyms & Antonyms
 LSA cannot distinguish antonyms [Landauer 2002]
 - "Distinguishing synonyms and antonyms is still perceived as a difficult open problem." [Poon & Domingos 09]

Polarity Inducing LSA [Yih, Zweig, Platt 2012]

V 90 WD 100

- Data representation
 - Encode two opposite relations in a matrix using "polarity"
 - Synonyms & antonyms (e.g., from a thesaurus)
- Factorization
 - Apply SVD to the matrix to find latent components
- Measuring degree of relation
 - · Cosine of latent vectors

Encode Synonyms & Antonyms in Matrix

Matrix Joyfulness: joy, gladden; sorrow, sadden

Sad: sorrow, sadden; joy, gladden

Target word: row- Inducing polarity

vector

	joy	gladden	sorrow	sadden	goodwill
Group 1: "joyfulness"	1	1	-1	-1	0
Group 2: "sad"	-1	-1	1	1	0
Group 3: "affection"	0	0	0	0	1

Cosine Score: + Synonyms

Encode Synonyms & Antonyms in

Matrix Joyfulness: joy, gladden; sorrow, sadden

Sad: sorrow, sadden; joy, gladden

Target word: row- Inducing polarity

vector

	joy	gladden	sorrow	sadden	goodwill
Group 1: "joyfulness"	1	1	-1	-1	0
Group 2: "sad"	-1	-1	1	1	0
Group 3: "affection"	0	0	0	0	1

Cosine Score: — Antonyms

relation

Problem: How to Handle More Relations?

- Limitation of the matrix representation
 - bet Encode multiple relations
 - Tw in a 3-way tensor (3dim array)!
- Encoaing other binary relations
 - Is-A (hyponym) ostrich is a bird
 - Part-whole engine is a part of car

- Data representation
 - Encode multiple relations in a tensor
 - Synonyms, antonyms, hyponyms (is-a), ... (e.g., from a linguistic knowledge base)
- Factorization
 - Apply tensor decomposition to the tensor to find latent components
- Measuring degree of relation
 - Cosine of latent vectors after projection

- Data representation
 - Encode multiple relations in a tensor
 - Synonyms, antonyms, hyponyms (is-a), ... (e.g., from a linguistic knowledge base)
- Factorization
 - Apply tensor decomposition to the tensor to find latent components
- Measuring degree of relation
 - Cosine of latent vectors after projection

- Data representation
 - Encode multiple relations in a tensor
 - Synonyms, antonyms, hyponyms (is-a), ... (e.g., from a linguistic knowledge base)
- Factorization
 - Apply tensor decomposition to the tensor to find latent components
- Measuring degree of relation
 - Cosine of latent vectors after projection

- Data representation
 - Encode multiple relations in a tensor
 - Synonyms, antonyms, hyponyms (is-a), ... (e.g., from a linguistic knowledge base)
- Factorization
 - Apply tensor decomposition to the tensor to find latent components
- Measuring degree of relation
 - Cosine of latent vectors after projection

- Data representation
 - Encode multiple relations in a tensor
 - Synonyms, antonyms, hyponyms (is-a), ... (e.g., from a linguistic knowledge base)
- Factorization
 - Apply tensor decomposition to the tensor to find latent components
- Measuring degree of relation
 - Cosine of latent vectors after projection

. or logger of cosing

Encode Multiple Relations in Tensor

Represent word relations using a tensor

• Each slice encodes a relation between terms

and target words.

-job godder goding

joyfulness	1	1	0	0
gladden	1	1	0	0
sad	0	0	1	0
anger	0	0	0	0

joyfulness	0	0	0	0
gladden	0	0	1	0
sad	1	0	0	0
anger	0	0	0	0

synonystyuger a tensor withhtongmsliges

Encode Multiple Relations in Tensor

Can encode multiple relations in the tensor

1 1 0 0 0 0 1 0 0 0 0 0	1	1	0	0
	1	1	0	0
0 0 0 0	0	0	1	0
	0	0	0	0

joyfulness 0 0 0 1
gladden 0 0 0 0
sad 0 0 0 1
anger 0 0 0 1

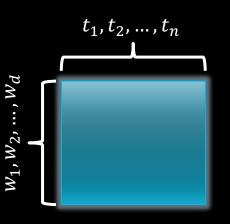
Hyponym layer

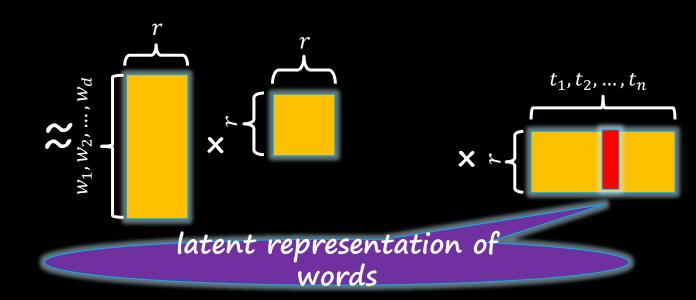
- Data representation
 - Encode multiple relations in a tensor
 - Synonyms, antonyms, hyponyms (is-a), ... (e.g., from a linguistic knowledge base)
- Factorization
 - Apply tensor decomposition to the tensor to find latent components
- Measuring degree of relation
 - Cosine of latent vectors after projection

Tensor Decomposition - Analogy to

SPrive a low-rank approximation to generalize the data and to discover unseen relations

Apply Tucker decomposition and reformulate the results

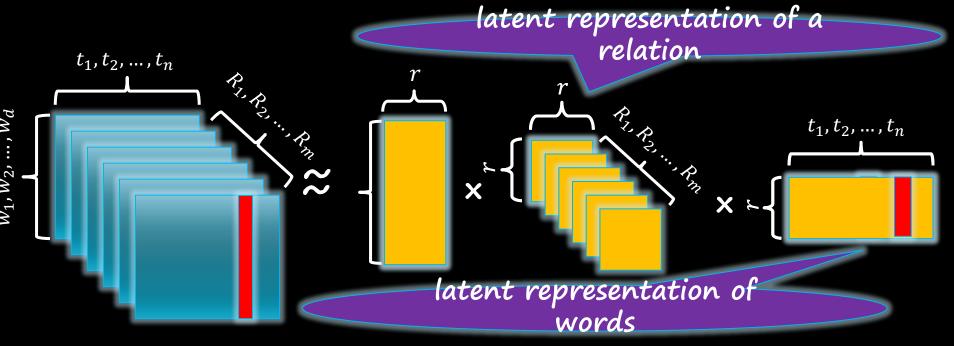




Tensor Decomposition - Analogy to

SPrive a low-rank approximation to generalize the data and to discover unseen relations

Apply Tucker decomposition and reformulate the results



- Data representation
 - Encode multiple relations in a tensor
 - Synonyms, antonyms, hyponyms (is-a), ... (e.g., from a linguistic knowledge base)
- Factorization
 - Apply tensor decomposition to the tensor to find latent components
- Measuring degree of relation
 - Cosine of latent vectors after projection

Measure Degree of Relation

- Similarity
 - Cosine of the latent vectors
- Other relation (both symmetric and asymmetric)
 - Take the latent matrix of the pivot relation (synonym)
 - Take the latent matrix of the relation
 - Cosine of the latent vectors after projection

Measure Degree of Relation Raw Representation

ant(joy, sadden) = $\cos(\mathbf{w}_{:,joy,syn}, \mathbf{w}_{:,sadden,ant})$

ion gager søgerling

joyfulness	1	1	0	0
gladden	1	1	0	0
sad	0	0	1	0
anger	0	0	0	0

Synonym layer

. jos gader søder lins

joyfulness	0	0	0	0
gladden	0	0	1	0
sad	1	0	0	0
anger	0	0	0	0

Antonym layer

Measure Degree of Relation Raw Representation

ant(joy, sadden) = $\cos(\mathbf{w}_{:,joy,syn}, \mathbf{w}_{:,sadden,ant})$

. Jos gaden galing

joyfulness	1	1	0	0
gladden	1	1	0	0
sad	0	0	1	0
anger	0	0	0	0

Synonym layer

. jos glader søder sins

joyfulness	0	0	0	0
gladden	0	0	1	0
sad	1	0	0	0
anger	0	0	0	0

Antonym layer

Estimate the Degree of a Relation Raw Representation

• $Hyper(joy, feeling) = cos(W_{:,joy,syn}, W_{:,feeling,hyper})$

. Jos gaden der lins

joyfulness	1	0	0	0
gladden	1	1	0	0
sad	0	0	1	0
anger	0	0	0	0

Synonym layer

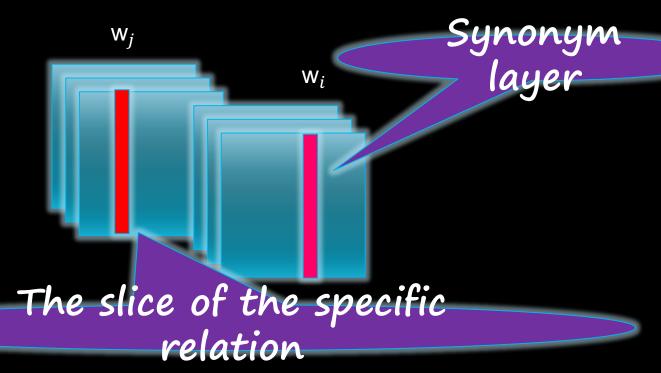
. job bladder sadder firs

joyfulness	0	0	0	1
gladden	0	0	0	0
sad	0	0	0	1
anger	0	0	0	1

Hypernym layer

Measure Degree of Relation Raw Representation

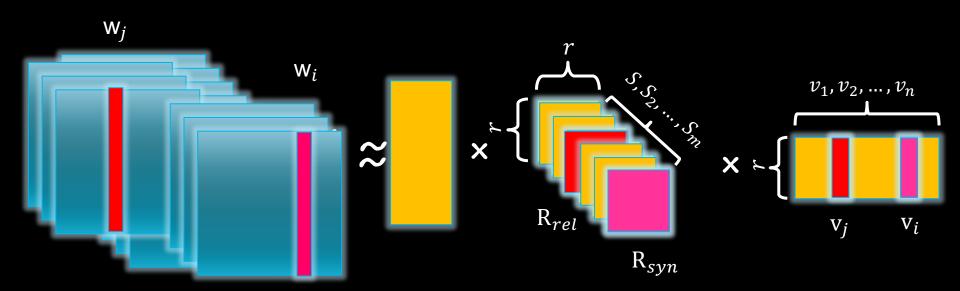
 $\operatorname{vel}(\mathbf{w}_i, \mathbf{w}_j) = \cos(W_{:,\mathbf{W}_i,syn}, W_{:,\mathbf{W}_j,rel})$



Measure Degree of Relation Latent Representation

• $rel(\mathbf{w}_i, \mathbf{w}_j) = cos(\mathbf{S}_{:,:,syn} \mathbf{V}_{i,:}^T, \mathbf{S}_{:,:,rel} \mathbf{V}_{j,:}^T)$

$$Cos (\times , \times)$$



Roadmap

- Introduction
- Background
 - Latent Semantic Analysis (LSA)
 - Polarity Inducing LSA (PILSA)
- Multi-Relational Latent Semantic Analysis (MRLSA)
 - Encoding multi-relational data in a tensor
 - Tensor decomposition & measuring degree of a relation
- Experiments

Experiment: Data for Building MRLSA Model Encarta Thesaurus

- Record synonyms and antonyms of target words
- Vocabulary of 50k terms and 47k target words
- WordNet
 - Has synonym, antonym, hyponym, hypernym relations
 - Vocabulary of 149k terms and 117k target words
- Goals:
 - MRLSA generalizes LSA to model multiple relations

Example Antonyms Output by MRLSA

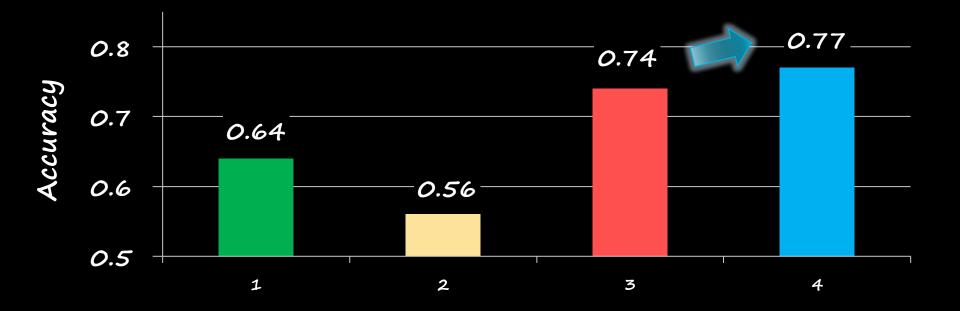
Target	High Score Words
inanimat e	alive, living, bodily, in-the-flesh, incarnate
alleviate	exacerbate, make-worse, in-flame, amplify, stir-up
relish	detest, abhor, abominate, despise, loathe

^{*} Words in blue are antonyms listed in the Encarta thesaurus.

Results – GRE Antonym Test

- Task: GRE closest-opposite questions
 - Which is the closest opposite of *adulterate*?

 (a) renounce (b) forbid (c) purify (d) criticize (e) correct



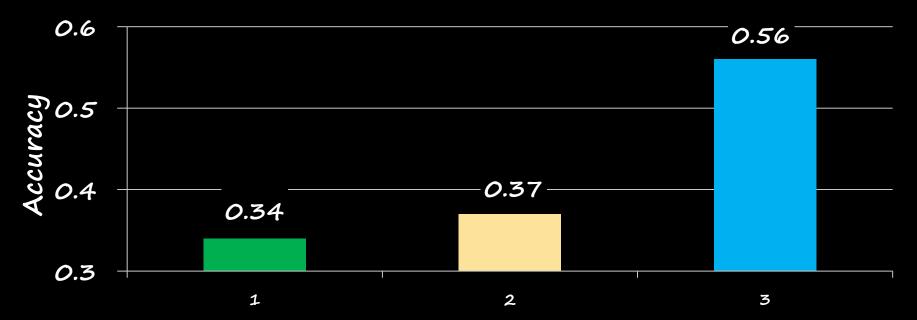
Example Hyponyms Output by MRLSA

Target	High Score Words
bird	ostrich, gamecock, nighthawk, amazon, parrot
automobil e	minivan, wagon, taxi, minicab, gypsy cab
vegetable	buttercrunch, yellow turnip, romaine, chipotle, chilli

Results – Relational Similarity

(SemEval-2012) Task: Class-Inclusion Relation (Y is-a kind of X)

Most/least illustrative word pairs
 (a) art:abstract (b) song:opera (c) footwear:boot (d) hair:brown



Conclusions

- Continuous semantic representation that
 - Leverages existing rich linguistic resources
 - Discovers new relations
 - Enables us to measure the degree of multiple relations
- Approaches
 - Better data representation
 - Matrix/Tensor decomposition
- Challenges & Future Work
 - Capture more types of knowledge in the model
 - Support more sophisticated inferential tasks