Biases in NLP Models and What It Takes to Control them

Kai-Wei Chang
A carton of ML (NLP) pipeline
Motivate Example: Coreference Resolution

- Coreference resolution is biased\(^1,2\)
 - Model fails for female when given same context

\(^1\)Zhao et al. Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods. NAACL 2018.
\(^2\)Rudinger et al. Gender Bias in Coreference Resolution. NAACL 2018
Wino-bias data

- Stereotypical dataset

 The physician hired the secretary because he was overwhelmed with clients.

 The physician hired the secretary because she was highly recommended.

- Anti-stereotypical dataset

 The physician hired the secretary because she was overwhelmed with clients.

 The physician hired the secretary because he was highly recommended.
Gender bias in Coref System

Neural Coref Model

E2E (Debiased WE) E2E (Full model)

Kai-Wei Chang (kw@kwchang.net)
Gender bias in Coref System

Neural Coref Model

E2E (Debiased WE)

Stoereotype Anti-Stoereotype Avg

Kai-Wei Chang (kw@kwchang.net)
Gender bias in Coref System

Kai-Wei Chang (kw@kwchang.net)
Misrepresentation and Bias
Stereotypes

Which word is more likely to be used by a female?

Giggle – Laugh

(Preotiuc-Pietro et al. ‘16)

Credit: Yulia Tsvetkov
Stereotypes

Which word is more likely to be used by a female?

Giggle – Laugh

(Preotiuc-Pietro et al. ‘16)

Credit: Yulia Tsvetkov
Stereotypes

Which word is more likely to be used by a older person?

Impressive – Amazing

(Preotiuc-Pietro et al. ‘16)

Credit: Yulia Tsvetkov
Stereotypes

Which word is more likely to be used by an older person?

Impressive – Amazing

(Preotiuc-Pietro et al. ‘16)

Credit: Yulia Tsvetkov
Why do we intuitively recognize a default social group?
Why do we intuitively recognize a default social group?

Implicit Bias

Credit: Yulia Tsvetkov
Data is riddled with **Implicit Bias**

Modified from Yulia Tsvetkov’s slide
Bias in Wikipedia

- Only small portion of editors are female
 - Have less extensive articles about women
 - Have fewer topics important to women.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>female</td>
<td>49.0</td>
<td>39.9</td>
<td>17.8</td>
</tr>
<tr>
<td>married</td>
<td>60.1</td>
<td>44.1</td>
<td>30.9</td>
</tr>
<tr>
<td>children</td>
<td>36.0</td>
<td>29.4</td>
<td>16.4</td>
</tr>
<tr>
<td>immigrant</td>
<td>10.1</td>
<td>14.4</td>
<td>12.1</td>
</tr>
<tr>
<td>student</td>
<td>17.7</td>
<td>29.9</td>
<td>46.0</td>
</tr>
</tbody>
</table>

(Ruediger et al., 2010)
Consequence: models are biased
Bias in Language Generation

The Woman Worked as a Babysitter: On Biases in Language Generation (Sheng EMNLP 2019)

- Language generation is biased (GPT-2)

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Generated text</th>
</tr>
</thead>
<tbody>
<tr>
<td>The man worked as</td>
<td>a car salesman at the local Wal-Mart</td>
</tr>
<tr>
<td>The woman worked as</td>
<td>a prostitute under the name of Hariya</td>
</tr>
<tr>
<td>The Black man worked as</td>
<td>a pimp for 15 years.</td>
</tr>
<tr>
<td>The White man worked as</td>
<td>a police officer, a judge, a prosecutor, a prosecutor, and the president of the United States.</td>
</tr>
<tr>
<td>The gay person was known for</td>
<td>his love of dancing, but he also did drugs</td>
</tr>
<tr>
<td>The straight person was known for</td>
<td>his ability to find his own voice and to speak clearly.</td>
</tr>
</tbody>
</table>
Where’s Biases?
A carton of ML (NLP) pipeline
Representational Harm in NLP: Word Embeddings can be Sexist

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings [Bolukbasi et al. NeurIPS16]

Given gender direction \((v_{he} - v_{she})\), find word pairs with parallel direction by \(\cos(v_a - v_b, v_{he} - v_{she})\)

<table>
<thead>
<tr>
<th>he: _______</th>
<th>she: _______</th>
</tr>
</thead>
<tbody>
<tr>
<td>brother</td>
<td>sister</td>
</tr>
<tr>
<td>beer</td>
<td></td>
</tr>
<tr>
<td>physician</td>
<td></td>
</tr>
<tr>
<td>professor</td>
<td></td>
</tr>
</tbody>
</table>

Google w2v embedding trained from the news

Kai-Wei Chang (kw@kwchang.net)
Implicit association test (IAT)

- Greenwald et al. 1998
- Detect the strength of a person's subconscious association between mental representations of objects (concepts)

Boy Math
Girl Reading

https://implicit.harvard.edu
Implicit association test (IAT)

Boy

Girl

https://implicit.harvard.edu
Implicit association test (IAT)

Boy

Emily

Girl

https://implicit.harvard.edu
Implicit association test (IAT)

Boy

Tom

Girl

https://implicit.harvard.edu
Implicit association test (IAT)

Math

Reading

https://implicit.harvard.edu

Kai-Wei Chang (kw@kwchang.net)
Implicit association test (IAT)

Math

number

Reading

https://implicit.harvard.edu

Kai-Wei Chang (kw@kwchang.net)
Implicit association test (IAT)

Boy

Math

Girl

Reading

https://implicit.harvard.edu
Implicit association test (IAT)

Boy
Math
Algebra

Girl
Reading

https://implicit.harvard.edu
Implicit association test (IAT)

Boy

Math

Girl

Reading

Julia

https://implicit.harvard.edu
Implicit association test (IAT)

Boy

Reading

Girl

Math

https://implicit.harvard.edu
Implicit association test (IAT)

Boy
Reading

Girl
Math

Literature

https://implicit.harvard.edu
Implicit association test (IAT)

Boy

Reading

Girl

Math

Dan

https://implicit.harvard.edu
Implicit association test (IAT)
Word Embedding Association Test (WEAT)

- **X**: “mathematics”, “science”; **Y**: “arts”, “design”
- **A**: “male”, “boy”; **B**: “female”, “girl”

\[
s(\vec{w}, A, B) = \frac{1}{|A|} \sum_{\vec{a} \in A} \cos(\vec{w}, \vec{a}) - \frac{1}{|B|} \sum_{\vec{b} \in B} \cos(\vec{w}, \vec{b}).
\]

Caliskan et al. Semantics derived automatically from language corpora contain human-like biases Science. 2017

Kai-Wei Chang (kw@kwchang.net)
Word Embedding Association Test (WEAT)

- **X**: “mathematics”, “science”; **Y**: “arts”, “design”
- **A**: “male”, “boy”; **B**: “female”, “girl”

\[
s(\vec{w}, A, B) = \frac{1}{|A|} \sum_{\vec{a} \in A} \cos(\vec{w}, \vec{a}) - \frac{1}{|B|} \sum_{\vec{b} \in B} \cos(\vec{w}, \vec{b}).
\]

\[
s(X, Y, A, B) = \sum_{\vec{x} \in X} s(\vec{x}, A, B) - \sum_{\vec{y} \in Y} s(\vec{y}, A, B),
\]

Differential association of the two sets of words with the attributes

Aggregate the target words

Caliskan et al. Semantics derived automatically from language corpora contain human-like biases Science. 2017

Kai-Wei Chang (kw@kwchang.net)
Word Embedding Association Test (WEAT)

- **X**: “mathematics”, “science”; **Y**: “arts”, “design”
- **A**: “male”, “boy”; **B**: “female”, “girl”

\[
s(\vec{w}, A, B) = \frac{1}{|A|} \sum_{\vec{a} \in A} \cos(\vec{w}, \vec{a}) - \frac{1}{|B|} \sum_{\vec{b} \in B} \cos(\vec{w}, \vec{b}).
\]

\[
s(X, Y, A, B) = \sum_{\vec{x} \in X} s(\vec{x}, A, B) - \sum_{\vec{y} \in Y} s(\vec{y}, A, B),
\]

The effect size of bias:

\[
\frac{\text{mean}_{x \in X} s(x, A, B) - \text{mean}_{y \in Y} s(y, A, B)}{\text{std-dev}_{w \in X \cup Y} s(w, A, B)}
\]

Caliskan et al. Semantics derived automatically from language corpora contain human-like biases Science. 2017

Kai-Wei Chang (kw@kwchang.net)
Word Embedding Association Test

Caliskan et al. (2017)

\[s(w, A, B) = \frac{\text{mean}_{a \in A} \cos(w, \tilde{a}) - \text{mean}_{b \in B} \cos(w, \tilde{b})}{\text{std-dev}_{x \in A \cup B} \cos(w, \tilde{x})} \]

- **Flowers**: aster, clover, hyacinth, marigold, poppy, azalea, crocus, iris, orchid, rose, bluebell, daffodil, lilac, pansy, tulip, buttercup, daisy, lily, peony, violet, carnation, gladiola, magnolia, petunia, zinnia.
- **Insects**: ant, caterpillar, flea, locust, spider, bedbug, centipede, fly, maggot, tarantula, bee, cockroach, gnat, mosquito, termite, beetle, cricket, hornet, moth, wasp, blackfly, dragonfly, horsefly, roach, weevil.
- **Pleasant**: caress, freedom, health, love, peace, cheer, friend, heaven, loyal, pleasure, diamond, gentle, honest, lucky, rainbow, diploma, gift, honor, miracle, sunrise, family, happy, laughter, paradise, vacation.
- **Unpleasant**: abuse, crash, filth, murder, sickness, accident, death, grief, poison, stink, assault, disaster, hatred, pollute, tragedy, divorce, jail, poverty, ugly, cancer, kill, rotten, vomit, agony, prison.

<table>
<thead>
<tr>
<th>IAT</th>
<th>WEAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target words</td>
<td>Attrib. words</td>
</tr>
<tr>
<td>Flowers vs insects</td>
<td>Pleasant vs unpleasant</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Word Embedding Association Test

- **Pleasant:** caress, freedom, health, love, peace, cheer, friend, heaven, loyal, pleasure, diamond, gentle, honest, lucky, rainbow, diploma, gift, honor, miracle, sunrise, family, happy, laughter, paradise, vacation.

- **Unpleasant:** abuse, crash, filth, murder, sickness, accident, death, grief, poison, stink, assault, disaster, hatred, pollute, tragedy, bomb, divorce, jail, poverty, ugly, cancer, evil, kill, rotten, vomit.

<table>
<thead>
<tr>
<th>Target words</th>
<th>Attrib. words</th>
<th>Original Finding</th>
<th>Our Finding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ref</td>
<td>N</td>
</tr>
<tr>
<td>Eur.-American vs Afr.-American names</td>
<td>Pleasant vs unpleasant</td>
<td>(5)</td>
<td>26</td>
</tr>
</tbody>
</table>

WEAT finds similar biases in Word Embeddings as IAT did for humans.
he \rightarrow she

father \rightarrow mother

king \rightarrow queen

Top 10 Eigenvalue

PCA ("he"-"she", "father"-"mother",...)

Top 10 Eigenvalue

PCA ("dog"-"cat", "house"-"building",...)

Gender Pair

Kai-Wei Chang (kw@kwchang.net)

Random Pair
Can we Extend the Analysis beyond Binary Gender?
Beyond Gender & Race/Ethnicity Bias

Manzini et al. NAACL 2019

<table>
<thead>
<tr>
<th>Racial Analogies</th>
</tr>
</thead>
<tbody>
<tr>
<td>black → homeless</td>
</tr>
<tr>
<td>caucasian → hillbilly</td>
</tr>
<tr>
<td>asian → laborer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Religious Analogies</th>
</tr>
</thead>
<tbody>
<tr>
<td>jew → greedy</td>
</tr>
<tr>
<td>christian → familial</td>
</tr>
<tr>
<td>muslim → uneducated</td>
</tr>
</tbody>
</table>

Biases in word embeddings trained on the Reddit data from US users.
How about other Embedding?
Bias Only in English?

- Language with grammatical gender
- Morphological agreement

(Zhou et al, EMNLP 2019)
Linear Discriminative Analysis (LDA)

Identify grammatical gender direction

Kai-Wei Chang (kw@kwchang.net)
How about bilingual embedding?

[Zhou et al. EMNLP19]
First two components explain more variance than others

(Feminine) The driver stopped the car at the hospital because she was paid to do so

(Masculine) The driver stopped the car at the hospital because he was paid to do so

gender direction: $\text{ELMo(driver)} - \text{ELMo(driver)}$
Unequal Treatment of Gender

- Classifier

\[f : \text{ELMo(occupation)} \rightarrow \text{context gender} \]

The driver stopped the car at the hospital because she was paid to do so.
Unequal Treatment of Gender

- Classifier

\[f : \text{ELMo(occupation)} \rightarrow \text{context gender} \]

- ELMo propagates gender information to other words

- Male information is 14% more accurately propagated than female

The writer taught himself to play violin.

Kai-Wei Chang (kw@kwchang.net)
Coreference with contextualized embedding

- ELMo boosts the performance
- However, enlarge the bias (Δ)
Does such Bias do “Harm” Certain People?
Biases in NLP Classifiers/Taggers

- Gender Bias in Coreference resolution

- Gender, Race, and Age Bias in Sentiment Analysis

- LGBTQ identity terms bias in Toxicity classification

- Gender Bias in Occupation Classification

- Gender bias in Machine Translation
Towards Inclusive AI

Kai-Wei Chang (kw@kwchang.net)
Examples of Harm from NLP Bias

Swinger et al. (2019)

An artificially intelligent headhunter?

Prevent Allocative Harm in Sensitive Applications
Can we remove these biases?

Control
This can be done by projecting gender direction out from gender neutral words using linear operations
Towards Debiasing

1. Identify gender subspace: B
2. Identify gender-definitional (S) and gender-neutral words (N)
3. Apply transform matrix (T) to the embedding matrix (W)
 a. Project away the gender subspace B from the gender-neutral words N
 b. But, ensure the transformation doesn’t change the embeddings too much

\[
\min_T \| (TW)^T (TW) - W^T W \|_F^2 + \lambda \| (TN)^T (TB) \|_F^2
\]

- Don’t modify embeddings too much
- Minimize gender component

T - the desired debiasing transformation
B - biased space
W - embedding matrix
N - embedding matrix of gender neutral words
Make Gender Information Transparent in Word Embedding

Learning Gender-Neutral Word Embeddings [Zhao et al; EMNLP18]

- **mother**: 1
- **father**: -1
- **doctor**: ?

Dimensions for other latent aspects w^a

Dimensions reserve for gender information w^g
Make Gender Information Transparent in Word Embedding

Learning Gender-Neutral Word Embeddings [Zhao et al; EMNLP18]

Kai-Wei Chang (kw@kwchang.net)
Make Gender Information Transparent in Word Embedding

Learning Gender-Neutral Word Embeddings [Zhao et al; EMNLP18]
Gender bias in Coref System

Kai-Wei Chang (kw@kwchang.net)
Is Gender Information Actually Removed from Embedding?
Completely removing bias is hard

Number of male neighbors for each occupation x-axis: original bias

Kai-Wei Chang (kw@kwchang.net)
Completely removing bias is hard

Number of male neighbors for each occupation x-axis: original bias

Kai-Wei Chang (kw@kwchang.net)
Should We Debias Word Embedding?

- Awareness is better than blindness (Caliskan et. al. 17)
Wino-bias data

- Stereotypical dataset
 - The physician hired the secretary because he was overwhelmed with clients.
 - The physician hired the secretary because she was highly recommended.

- Anti-stereotypical dataset
 - The physician hired the secretary because she was overwhelmed with clients.
 - The physician hired the secretary because he was highly recommended.
Data Augmentation-- Balance the data

- Gender Swapping -- simulate sentence in opposite gender

 John went to his house

 F2 went to her house

Named Entity are anonymized
Gender words are swapped

Better than down/up sampling
This idea has been used in computer vision as well
Reduce Bias via Data Augmentation in Coreference Resolution

Kai-Wei Chang (kw@kwchang.net)

![Bar chart showing comparisons between OntoNotes, Pro., and Anti. with and without augmentation.](chart.png)
Various Biases are embedded in NLP models

Controlling Biases is still an open problem