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Dataset Gender Bias
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Prediction Gender Bias
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Top Prediction vs. Distribution Prediction

Visual Semantic Role Labelling (vSRL)

CNN: Feature extraction
CRF: Assign every instance a probability

Top prediction (Zhao et. al. 17):

Model is forced to make one decision
Even similar probabilities for “female” and “male” predictions

Potentially amplify the bias

> Distribution of predictions (this work):
A better view of understanding bias amplification
Model is trained using regularized maximum likelihood objective




Bias Amplification in Distribution

Bias in top predictions (Zhao et. al. 17):
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Bias Amplification in Distribution

Bias in posterior distribution:
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Bias Amplification in Distribution

Bias in posterior distribution:
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Bias Amplification in Distribution

Bias in posterior distribution:
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Bias Amplification in Distribution

Bias in posterior distribution:
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Bias Amplification in Distribution

- In top predictions the bias is amplified (left, 81.6% violations).
- Similar to top predictions, the posterior distribution perspective also

indicates bias amplification. (right, 51.4% violations)
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Posterior Regularization (PR) for Mitigation

Define the constraints and the feasible set Q:
the posterior bias should be similar to the bias in the training set.

Minimize the KL-divergence

Do MAP inference based on the regularized distribution

KL(QlIpo)...
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Amplification Mitigation Using PR

vSRL Violation: 51.4% Amplification: 0.032 Accuracy: 23.2%
w/ PR Violation: 2% Amplification: -0.005 Accuracy: 23.1%
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Conclusion

1. Analyze bias amplification from distribution perspectiv, e

2. Remove almost all the bias amplification using PR,

3. Open question: why the bias in posterior distribution is
amplified.

https://github.com/uclanlp/reducingbias




