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Word Embeddings are useful

* Many successful stories | WOMAN
o N d titv r nition / AUNT
amed entity recognitio - A
* Document ranking UNCLE

QUEEN

* Sentiment analysis

e Question answering e

* |mage captioning

*Pre-trained word vectors have been widely used
e GloVe [Pennington+14]: 3900+ citations
* Word2Vec|mikolov+13]: 7600+ citations



Existing English Embeddings are
trained on a large collection of text

e \WWord2Vec is trained on GloVe is trained on a
the Google News dataset. crawled corpus.

100 billion
tokens

840 billion
tokens

\




How about other
language?



How about other language?

*# Wikipedia articles in different languages

*English: ~ 2.5 M
* German: ~ 800 K
* French: ~ 700 K

}

High-resource languages:
23 languages have more
than 100K articles

e Czech: ~“100 K
e Danish: 95K

}

low-resource languages:
60 languages have
10K ~ 100K articles

* Chichewa: 58

}

very low-resource languages:
183 languages have less
than 10K articles



Sparsity of the co-occurrence matrix

*Word Embeddings are trained based on
co-occurrence statistics

*When training corpus is small
* Many word pairs are unobserved
* Co-occurrence matrix is very sparse

*Example: The text8 data
* 17,000,000 tokens and 71,000 distinct words

* Co-occurrence matrix has more than
5,000,000,000 entries, > 99% are zeros.



Zeros in the co-occurrence matrix

*True zeros

* Word pairs which are unlikely to co-occur
* Missing entries
* Word pairs can co-occur
* Unobserved in the training data | Center word
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Motivation

«Small size text corpus
= Extremely sparse co-occurrence matrix

* Existing approaches do not use unobserved
word pairs effectively
* E.g., Word2Vec subsamples only some negative
word pairs (negative sampling)
 Similar problem is faced by recommendation
system
e User-Product matrix
* Positive Unlabeled learning



Our contributions

1. Propose a PU-Learning framework for training
word embedding

2. Design an efficient learning algorithm to deal
with all negative pairs

3. Demonstrate that unobserved word pairs
provide valuable information



PU-Learning for Training
Word Embedding



PU Learning Framework

1. Pre-processing:
Building co-occurrence matrix

2. Matrix factorization by PU-Learning

3. Post-processing
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... the black cat likes milk ...

Step 1 — Building co-occurrence matrix

 Count words co-occurrence statistics

* We follow [Levy+15] to scale the co-occurrence

counts by PPMI metric

\_'_I

context window

context word

(cat, the)
(cat, black)
(cat, likes)
(cat, milk) ...

Center word
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Scaled by PPMI
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context word

Center word

0.2

frequent
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context word

Step 2 - PU-Learning for matrix

factorization

Center word
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Step 2 - PU-Learning for matrix

factorization
A ~ wT H
Center word /) c 3
enter wor
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Regularization
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| context word |

& o

Step 2 — Weighting function

Center word

/s O'oé,

hH
fe b/@ ‘9,0 ,01/

frequent
_1reql
57 | 0

0.2 0

Three types of entries:

1. Co-occurrence count > X, 4«
Cij ="1

2. Co-occurrence count < X,
Cij = count / X qs
3. Co-occurrence count = 0
Cij =p
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Step 2 - PU-Learning for matrix
factorization

min z Ci; (AU w;h; — b' — Ej)z + Zlillwillz +Z’ij”hj”2
i J

I,j€E

J

\
| |
Regularization
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*\We consider all entries
*Both positive and zero entries
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Step 2 - PU-Learning for matrix

context word

factorization
A ~ wT H
l(_:lenterword /)
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 We design efficient coordinate descent algorithm
(see paper for details)
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Step 2 - PU-Learning for matrix
factorization

Centerword ~ WT H

p R O,Og ‘96/@ /)'9'0,01, Center word
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 We design efficient coordinate descent algorithm
(see paper for details)
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context word

Step 2 - PU-Learning for matrix

factorization
ter word /)
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 We design efficient coordinate descent algorithm

(see paper for details)

20



Step 2 - PU-Learning for matrix

factorization .
A ~ W H
Center word
p C@f O'Og f&b /G /)9,0,0 2 Center word 4
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 We design efficient coordinate descent algorithm

(see paper for details)
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Step 2 - PU-Learning for matrix

factorization .
A = w H
Center word
Cop O,Og R b/@ 66'0,01, Center word /;e 5
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 We design efficient coordinate descent algorithm
(see paper for details)
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Step 3 -- Post-processing

 Each word is represented by a word vector w/'and a
context vector h;

* We follow [Pennington+14, Levy+15] to use the average of
w; and h; as word vector for word i
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Experiments



Results on English

Simulate the low-resource setting: Embedding is
trained on a subset of Wikipedia with 32M tokens
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Results on Danish (more results in

Igalo.er) e
anish Wikipedia with 64M tokens

Test set are translated by Google translation
(w/ 90% accuracy verified by native speakers)
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INnterpretation of

Parameters - .
* Weight for zero entries in co-occurrence matrix

eZero entries can be true 0 or missing

*o reflects how confident that the zero entries are true zero

rho V.S. Performance
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Take home messages

* A PU-Learning framework for learning word
embedding in the low resource setting

* Unobserved word pairs provide valuable information

Thanks!
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