
Learning Word Embeddings
for Low-resource Languages

by PU Learning

Chao Jiang, Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang

1

Word Embeddings are useful

•Many successful stories
•Named entity recognition
•Document ranking
• Sentiment analysis
•Question answering
• Image captioning

•Pre-trained word vectors have been widely used
•GloVe [Pennington+14]: 3900+ citations
•Word2Vec[Mikolov+13]: 7600+ citations

2

Existing English Embeddings are
trained on a large collection of text

•Word2Vec is trained on
the Google News dataset.

•GloVe is trained on a
crawled corpus.

840 billion
tokens

100 billion
tokens

3

How about other
language?

4

How about other language?

•# Wikipedia articles in different languages
•English: ~ 2.5 M
•German: ~ 800 K
• French: ~ 700 K
•…
•Czech: ~100 K
•Danish: ~95K
•…
•Chichewa: 58

5

High-resource languages:
23 languages have more
than 100K articles

low-resource languages:
60 languages have
10K ~ 100K articles

very low-resource languages:
183 languages have less
than 10K articles

Sparsity of the co-occurrence matrix

•Word Embeddings are trained based on
co-occurrence statistics
•When training corpus is small

•Many word pairs are unobserved
•Co-occurrence matrix is very sparse

•Example: The text8 data
•17,000,000 tokens and 71,000 distinct words
•Co-occurrence matrix has more than

5,000,000,000 entries, > 99% are zeros.

6

Zeros in the co-occurrence matrix
•True zeros

•Word pairs which are unlikely to co-occur
•Missing entries

•Word pairs can co-occur
•Unobserved in the training data

7

7

0.8 0.1 - 0 0

0 0 - 0 0

- - - - -

0 0.2 - 0 0

0 0 - 0 0.7

alien
table

…
cake

space

alien
table … cake

space

Center word

co
nt

ex
t w

or
d

True 0

Missing

Motivation

•

8

Our contributions

9

1. Propose a PU-Learning framework for training
word embedding

2. Design an efficient learning algorithm to deal
with all negative pairs

3. Demonstrate that unobserved word pairs
provide valuable information

PU-Learning for Training
Word Embedding

10

PU Learning Framework

1. Pre-processing:
Building co-occurrence matrix

2. Matrix factorization by PU-Learning

3. Post-processing

11

Step 1 – Building co-occurrence matrix

•Count words co-occurrence statistics
•We follow [Levy+15] to scale the co-occurrence

counts by PPMI metric

12

0.8 0.1 - 0 0

0 0 - 0 0

- - - - -

0 0 - 0 0

0.2 0 - 0 0.2

the
black

…
likes
milk

cat dog … table
happy

Center word

co
nt

ex
t w

or
d

… the black cat likes milk …

context window

Scaled by PPMI

(cat, the)
(cat, black)
(cat, likes)
(cat, milk) ...

13

0.8 0.1 - 0 0

0.5 0 - 0 0

- - - - -

0 0 - 0 0

0.2 0 - 0 0.2

black
blue
…

yellow
milk

cat dog … table
happy

Center word

co
nt

ex
t w

or
d

frequent

zeros

Step 2 - PU-Learning for matrix
factorization

14

0.3 0.1 … 0.2 0.3

0.1 0.1 … 0.1 0.1

… … … … …

0.1 0.1 -

0.1 0.2 -

- - -

0.1 0.1 -

0.2 0.2 -

0.8

Step 2 - PU-Learning for matrix
factorization

15

0.3 0.1 … 0.2 0.3

0.1 0.1 … 0.1 0.1

… … … … …

0.1 0.1 -

0.1 0.2 -

- - -

0.1 0.1 -

0.2 0.2 -

0.8

Weighting function

Reconstruction error
Regularization

Step 2 – Weighting function

16

0.3 0.1 … 0.2 0.3

0.1 0.1 … 0.1 0.1

… … … … …

0.1 0.1 -

0.1 0.2 -

- - -

0.1 0.1 -

0.2 0.2 -

frequent

zeros

Step 2 - PU-Learning for matrix
factorization

17

•We consider all entries
•Both positive and zero entries

17

Weighting function

Reconstruction error
Regularization

Step 2 - PU-Learning for matrix
factorization

18

0.3 0.1 … 0.2 0.3

0.1 0.1 … 0.1 0.1

… … … … …

0.1 0.1 -

0.1 0.2 -

- - -

0.1 0.1 -

0.2 0.2 -

• We design efficient coordinate descent algorithm
(see paper for details)

Step 2 - PU-Learning for matrix
factorization

19

0.3 0.1 … 0.2 0.3

0.1 0.1 … 0.1 0.1

… … … … …

0.1 0.1 -

0.1 0.2 -

- - -

0.1 0.1 -

0.2 0.2 -

• We design efficient coordinate descent algorithm
(see paper for details)

Step 2 - PU-Learning for matrix
factorization

20

0.3 0.1 … 0.2 0.3

0.1 0.1 … 0.1 0.1

… … … … …

0.1 0.1 -

0.1 0.2 -

- - -

0.1 0.1 -

0.2 0.2 -

• We design efficient coordinate descent algorithm
(see paper for details)

Step 2 - PU-Learning for matrix
factorization

21

0.3 0.1 … 0.2 0.3

0.1 0.1 … 0.1 0.1

… … … … …

0.1 0.1 -

0.1 0.2 -

- - -

0.1 0.1 -

0.2 0.2 -

• We design efficient coordinate descent algorithm
(see paper for details)

Step 2 - PU-Learning for matrix
factorization

22

0.3 0.1 … 0.2 0.3

0.1 0.1 … 0.1 0.1

… … … … …

0.1 0.1 -

0.1 0.2 -

- - -

0.1 0.1 -

0.2 0.2 -

• We design efficient coordinate descent algorithm
(see paper for details)

Step 3 -- Post-processing

•

23

Experiments

24

Results on English

25

Simulate the low-resource setting: Embedding is
trained on a subset of Wikipedia with 32M tokens

Analogy Task on Google Dataset Word Similarity Task on WS353

Results on Danish (more results in
paper)

26

Analogy Task on Google Dataset Word Similarity Task on WS353

Danish Wikipedia with 64M tokens
Test set are translated by Google translation
(w/ 90% accuracy verified by native speakers)

27

•Weight for zero entries in co-occurrence matrix
•Zero entries can be true 0 or missing
•𝜌 reflects how confident that the zero entries are true zero

Take home messages

•A PU-Learning framework for learning word
embedding in the low resource setting
•Unobserved word pairs provide valuable information

28

Thanks!

