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Word Embeddings are useful

•Many successful stories
•Named entity recognition
•Document ranking
• Sentiment analysis
•Question answering
• Image captioning

•Pre-trained word vectors have been widely used
•GloVe [Pennington+14]: 3900+ citations
•Word2Vec[Mikolov+13]: 7600+ citations
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Existing English Embeddings are 
trained on a large collection of text

•Word2Vec is trained on 
the Google News dataset.

•GloVe is trained on a 
crawled corpus.

840 billion 
tokens

100 billion 
tokens
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How about other 
language?
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How about other language?

•# Wikipedia articles in different languages
•English: ~ 2.5 M
•German: ~ 800 K
• French: ~ 700 K
•…
•Czech: ~100 K
•Danish: ~95K
•…
•Chichewa: 58
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High-resource languages:
23 languages have more 
than 100K articles

low-resource languages:
60 languages have 
10K ~ 100K articles

very low-resource languages:
183 languages have less
than 10K articles



Sparsity of the co-occurrence matrix

•Word Embeddings are trained based on 
co-occurrence statistics
•When training corpus is small

•Many word pairs are unobserved
•Co-occurrence matrix is very sparse

•Example: The text8 data
•17,000,000 tokens and 71,000 distinct words
•Co-occurrence matrix has more than 

5,000,000,000 entries, > 99% are zeros.
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Zeros in the co-occurrence matrix
•True zeros

•Word pairs which are unlikely to co-occur
•Missing entries

•Word pairs can co-occur
•Unobserved in the training data
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Motivation

•  
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Our contributions
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1. Propose a PU-Learning framework for training 
word embedding

2. Design an efficient learning algorithm to deal 
with all negative pairs

3. Demonstrate that unobserved word pairs 
provide valuable information



PU-Learning for Training 
Word Embedding
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PU Learning Framework

1. Pre-processing: 
Building co-occurrence matrix

2. Matrix factorization by PU-Learning

3. Post-processing
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Step 1 – Building co-occurrence matrix

•Count words co-occurrence statistics 
•We follow [Levy+15] to scale the co-occurrence 

counts by PPMI metric
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Step 2 - PU-Learning for matrix 
factorization
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Step 2 - PU-Learning for matrix 
factorization
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Weighting function

Reconstruction error 
Regularization



Step 2 – Weighting function
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Step 2 - PU-Learning for matrix 
factorization
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•We consider all entries
•Both positive and zero entries
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Weighting function

Reconstruction error 
Regularization



Step 2 - PU-Learning for matrix 
factorization
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• We design efficient coordinate descent algorithm 
(see paper for details)



Step 2 - PU-Learning for matrix 
factorization
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Step 2 - PU-Learning for matrix 
factorization
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Step 2 - PU-Learning for matrix 
factorization
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Step 2 - PU-Learning for matrix 
factorization
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Step 3 -- Post-processing

•  
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Experiments
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Results on English
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Simulate the low-resource setting: Embedding is 
trained on a subset of Wikipedia with 32M tokens

Analogy Task on Google Dataset Word Similarity Task on WS353



Results on Danish (more results in 
paper)

26

Analogy Task on Google Dataset Word Similarity Task on WS353

Danish Wikipedia with 64M tokens
Test set are translated by Google translation
(w/ 90% accuracy verified by native speakers)
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•Weight for zero entries in co-occurrence matrix
•Zero entries can be true 0 or missing
•𝜌 reflects how confident that the zero entries are true zero



Take home messages

•A PU-Learning framework for learning word 
embedding in the low resource setting
•Unobserved word pairs provide valuable information
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Thanks!


