Structured Predictions: Practical Advancements and Applications

Kai-Wei Chang

University of Virginia Department of Computer Science

References: <u>http://kwchang.net/talks/sp.html</u>

Supervised learning

Christopher Robin is alive and well. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris ived in a pretty home called **Cotchfield Farm**. When Chris was three years old, his father wrote a poem about **him**. The poem was printed in a magazine for others to read. (Mr. Robin) then wrote a book

Slide modified from Dan Roth

Complex Decision Structure

Christopher Robin is alive and well. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris ived in a pretty home called **Cotchfield Farm**. When Chris was three years old his father wrote a poem about him. The poem was printed in a magazine for others to read. (Mr. Robin) then wrote a book

Why is structure important? Hand written recognition example

What is this letter?

Structured Prediction

Assign values to a set of interdependent output variables

Task	Input	Output
Part-of-speech Tagging	They operate ships and banks.	Pronoun Verb Noun And Noun
Dependency Parsing	They operate ships and banks.	Root They operate ships and banks .
Segmentation		

Challenge: Scalability Issues

Large amount of data Complex decision structure

Solution Methods

Assume a graphical structure; optimize

Use within various structured predictions algorithms (e.g., CRF, Structured Perceptron, M3N, Structured SVM) [Lafferty+ 01, Collins02, Taskar04]

See our AAAI16 tutorial (https://goo.gl/TF7cGj)

- Learning to search approaches
 - Assume the complex decision is incrementally constructed by a sequence of decisions
 - E.g., LASO, dagger, Searn, transition-based methods

See our NAACL15 tutorials (http://hunch.net/~l2s)

Example: Dependency Parsing

Identifying relations between words

Graphical Model Approaches: Graph-Based Parser [McDonald+. 2005]

Consider all word pairs and assign scores

Score of a tree = sum of score of edges

Can be formulated as a MST problem
Chu-Liu-Edmonds

Learning to search approaches Shift-Reduce parser[Nivre03,NIPS16]

- Maintain a buffer and a stack
- Make predictions from left to right
- Three (four) types of actions: Shift, Reduce-Left, Reduce-Right

Credit: Google research blog

What We Care about

Prediction accuracy

Learning signals

POS Tagging (tuned hps)

Training/test/dev speed

Query

0.98

а
а
f

activity	cooking
agent	woman
food	vegetable

Fairness (data biases)

Outline

Training/test/dev speed

10⁰

act
age
foo

activity	cooking
agent	woman
food	vegetable

96.1 <u>96</u>.95.9

OAA

CRF++

L2S → StrPerc L2S (ft) ★★ StrSVM CRFsgd → StrSVM2

Fairness (data biases)

Structured prediction application: ESL Grammar Error Correction [CoNLL 13, 14]

- × situation
- \checkmark a situation
- \checkmark situations
- × a situations

Structured prediction application: Algebra Word Problems [EMNLP 16]

Problem: Maria is now four times as old as Kate. Four years ago, Maria was six times as old as Kate. Find their ages now.

Equations: $m = 4 \times n$ and $m - 4 = 6 \times (n - 4)$

Solution: m = 40, n = 10

Structured prediction application: Co-reference Resolution

Christopher Robin is alive and well. **He** is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called **Cotchfield Farm**. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book

Structured prediction application: Co-reference Resolution

[EMNLP 13a, ICML14, CoNLL 11, 12, 15]

Proposed a novel, principled, linguistically motivated model

Co-reference Resolution Demo

http://bit.ly/illinoisCoref

Co-reference Resolution

 Learn a pairwise similarity meas (local predictor)
Learn a pairwise similarity meas alive and well. He is the same person that you read about in the

Example features:

- same sub-string?
- positions in the paragraph
- other 30+ feature types
- Key components:
 - Pairwise classification
 - Clustering (jointly or not?)

book, Winnie the **Pooh**. As a **boy**, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book

Decoupling Approach

A heuristic to learn the model [Soon+ 01, Bengtson+ 08, CoNLL11]

Decouple learning and inference:

Learn a pairwise similarity function

Cluster based on this function

Decoupling Approach-Learning

As a boy, $Chris_1$ lived in a pretty home called CotchfieldFarm. When $Chris_2$ was three years old, his father₃ wrote a poem about him₄. The poem was printed in a magazine for others to read. Mr. Robin₅ then wrote a book

Positive Samples (Chris₁, him₄) (Chris₂, him₄) (Chris₁, Chris₂) (his father₃, Mr. Robin₅) Negative Samples (Chris₁, his father₃) (Chris₂, his father₃) (him₄, his father₃) (Chris₁, Mr. Robin₅) (Chris₂, Mr. Robin₅) (him₄, Mr. Robin₅)

[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladin Putin], to visit [Russia]. [President Clinton] said that [he] looks forward to strengthening ties

between **[USA]** and **[Russia]**.

[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladimir Putin], to visit [Russia]. [President Clinton] stat [he] looks forward to strengthening ties between [USA] and [Russia].

[Soon+ 01, Bengtson+ 08, CoNLL11]

[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladimir Putin], to visit [Russia]. [President Clinton] said that [he] looks forward to strengthening ties between [USA] and [Russia].

Challenges

Decoupling may lose information

Christopher Robin is alive and well. **He** is the same person that you read about in the book, **Winnie the Pooh**. As a **boy**, **Chris** lived in a pretty home called **Cotchfield Farm**. When **Chris** was three years old, **his father** <u>wrote</u> a poem about **him**. The poem was printed in a magazine for others to read. **Mr. Robin** then <u>wrote</u> a book

Challenges

In addition, we need world knowledge

As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old his father wrote a poem about him.

Complexity: need an efficient algorithm
Modeling: learn the metric while clustering
Knowledge: augment with knowledge

Structured Learning Approach

Update the similarity function

Cluster based on this function.

Learn the similarity function while clustering

Attempt: All-Links Clustering [Mccallum+ 04, CoNLL 11]

Define a global scoring function:
Attempt: using all within-cluster pairs:
Inference problem is too hard

Christopher Robin is alive and well. He is the same person that you read about in the book, Winnie the Post. As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book

Latent Left-Linking Model (L3M) [ICML 14, EMNLP 13]

Score (a clustering C)

- = Score (the best left-linking forest that is consistent with C)
- $= \sum$ Score of edges in the forests

Christopher Robin is alive and well. **He** is the same person that you read about in the book, **Winnie the Posh**. As a **boy**, **Chris** lived in a pretty home called **Cotchfield Farm**. When **Chris** was three years old, **his father** wrote a poem about **him**. The poem was printed in a magazine for others to read. **Mr. Robin** then wrote a book

Linguistic Constraints

Must-link constraints:

- E.g., SameProperName, …
- Cannot-link constraints:
 - ✤E.g., ModifierMismatch, …

[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladimir Putin], to visit [Russia]. [President Clinton] said that [he] looks forward to strengthening ties

between [USA] and [Russia].

Clustering with constraints[(Basu+08, Zhi+14]

Inference in L3M [ICML 14, EMNLP 13]

- Represented using an ILP formulation[Scott+ 2004/2007]
- Inference can be done using a greedy heuristics. $y_{i,i} = 1 \iff i, j$ is an edge in the forest $\begin{array}{ll} \text{ax} & \sum_{c} S_{i,j} | y_{i,j} \\ \hline Ay \leq b; & y_{i,j} \in \{0,1\} \end{array}$ argmax s.t Modeling constraints Linguistic constraints

Learning L3M (simplified version)[ICML 14, EMNLP 13a]

[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladimir Putin], to visit [Russia]. [President Clinton] said that [he] looks forward to strengthening ties

between [USA] and [Russia].

predicted forest

[Bill Clinton], recently elected as the [President of the USA], has been invited by the [Russian President], [Vladimir Putin], to visit [Russia]. [President Clinton] said that [he] looks forward to strengthening ties

between [USA] and [Russia].

Learning L3M (simplified version)[ICML 14, EMNLP 13a]

Loop until stopping condition is met: For each (x_i, y_i) pair: $\overline{y}, \overline{h} = \arg \max_{y,h} w^T \phi(x_i, y, h)$ $\mathbf{h}_i = \arg \max_h w^T \phi(x_i, y_i, h)$ $w \leftarrow w + \eta(\phi(x_i, y_i, h_i) - \phi(x_i, \overline{y}, \overline{h})), \eta$: learning rate

Extension: Probabilistic L3M [ICML 14, EMNLP 13a]

Define a log-linear model Pr [a clustering C]

Pr [a clustering C]

= \sum Pr [forests that are consistent with C]

- $= \sum \Pi \Pr [edges in the forest]$
- $= \prod_i \sum_{j \in e(i)} \Pr\left[\text{edge}(j,i) \right]$

Pr $[edge(j,i)] \sim exp(\mathbf{w} \cdot \phi(j,i)/\gamma)$ (γ : a parameter)

$$\min_{\mathbf{w}} LL(\mathbf{w}) = \beta ||\mathbf{w}||^2 + \sum_d \log Z_d(\mathbf{w})$$
$$- \sum_d \sum_i \log(\sum_{j < i} \exp(\mathbf{w} \cdot \phi(i, j) / \gamma) C_d(i, j))$$

Coreference: OntoNotes-5.0 (with gold mentions)

Latent Left-Linking Model (L3M) [ICML 14, EMNLP 13]

Advantages:

- Complexity: Very efficient
- Modeling: Learn the metric while clustering
- Knowledge: Easy to incorporate constraints (must-link or cannot-link)

Can be applied to other supervised clustering problems! e.g., the posts in a forum, error reports from users ...

Outline

Prediction accuracy

Learning signals

Query

activity	cooking
agent	woman
food	vegetable

Fairness (data biases)

Solution Methods

Assume a graphical structure; optimize
Three ideas for improving learning/inference speed
See our AAAI16 tutorial (https://goo.gl/TF7cGj)

Learning to search approaches

A programmable framework

See our NAACL15 tutorials (http://hunch.net/~l2s)

Graphical model approach: Speed up Inference/Learning

- Observation 1: some decisions are simpler than the others
- Idea: adaptively generate computationally costly features during test-time [AAAI 17]

Graphical model approach: Speed up Inference/Learning

- Observation 2: Many inference problems share the same solution
- Idea: Exploit this redundancy by caching old inference solutions [AAAI 15]

Amortized inference – key components

Formulating the inference as an Integer Linear Programming

$$\arg \max_{\mathbf{y} \in \{0,1\}^n} \qquad \sum_c S_c y_c \qquad s.t \quad A\mathbf{y} \le b$$

A very general formulation [Roth & Yih 04, Sontag 10]
Inference can be solved by any (exact or approximate) method

A condition is being checked to determine if a new inference problem has the same solution as a previously observed problem. [Srikumar+ 12; Kundu+ 13]

Graphical model approach: Speed up Inference/Learning

- Observation 3: Inference can be solved in parallel
- Idea: Decouple inference and learning in the dual space
- Works both in the multi-thread [ECML13] and the multi-machines [NIPS OPT 15, journal in preparation] settings

Learning to search (L2S) approaches

- 1. Define a search space and features
- 2. Construct a reference policy (Ref) based on the gold label
- 3. Learning a policy that imitates Ref

Credit Assignment Problem

When making a mistake, which local decision should be blamed?

Learning to search approaches: Credit Assignment Compiler [NIPS16] Sequential_RUN(*examples*)

- 1: for i = 1 to len(examples) do
- 2: $prediction \leftarrow predict(examples[i], examples[i], label)$
- 3: **loss**(prediction \neq examples[i]. label)
- 4: end for

- Write the decoder, providing some side information for training
- Library functions:
 - predict: returns individual predictions.
 - ✤ loss: declares the joint loss.
- An analogy to Factorie [McCallum+09]

Credit Assignment Compiler [NIPS 16]

Sequential_RUN(examples)

- 1: for i = 1 to len(examples) do
- 2: prediction \leftarrow predict(examples[i], examples[i].label)
- 3: **loss**(prediction \neq examples[i].label)
- 4: end for

Runs Run() many times to learn predict() that yields low loss().

⇒ turns Run() and training data into model updates

Reduce a joint prediction problem to (costsensitive) multi-class problems.

Libraries for Structured Predictions

Illinois-SL: graph-based structured prediction

- Support various algorithms; parallel \Rightarrow very fast
- Vowpal-Wabbit: credit assignment compiler
 - ✤ A general online learning library

Provide a nice platform

- for developing novel methods
- for collaboration
- for education

More easy-access tools; More collaborations

Outline

Prediction accuracy

Training/test speed

Query

activity	cooking
agent	woman
food	vegetable

Fairness (data biases)

Weak Supervision Challenges [CRII grant]

- Implicit Supervision
 - Loss is not decomposable and can be estimated only when the entire output structure is derived
- Structured Contextual Bandit
 - Only a few (single) structured labels can be observed.

Implicit Supervision

Consider algebra word problem

Maria is now four times as old as Kate. Four years ago, Maria was six times as old as Kate. Find their ages now.

✤ Build semantic parser to translate question to an equation system $m = 4 \times n \text{ and } m - 4 = 6 \times (n - 4).$

Then answer can be derived: m=40, n=10

Implicit Supervision [EMNLP 16] $m = 4 \times n$ and $m = 4 \times n$ and m = 40, n=10 $m = 4 \times (n-4)$.

Structured Contextual Bandit Setting [ICML15]

Loss of only a single structured label can be observed

A Search Problem Header Search Me Content Ad nu Query

Outline

Prediction accuracy

Learning signals

Training/test speed

	activity	cooking
	agent	woman
	food	vegetable
Fairness	(data b	iases)

Human Bias in Structured model [in submission]

A visual semantic role labeling system [Mark+16]

Query

activity	cooking
agent	woman
food	vegetable
container	bowl
tool	knife
place	kitchen

Word Embeddings can be Dreadfully Sexist [nips16]

 $v_{man} - v_{woman} + v_{uncle} \sim v_{aunt}$

Debiasing Learning Models

Idea1: Remove problematic correlation
E.g., remove gender bias subspace in WE

 Idea2: Set corpus-wise constraints to calibrate the gender ratios
Technique: Inference can be done by Lagrange relaxation

Structured Prediction – an active direction

Landscape of methods in Deep Structure

Deep learning/hidden representation

 e.g., seq2seq, RNN, SP-energy network

Deep features, traditional factor graph inference

e.g., LSTM+CRF, graph transformer networks,

- What is the right way to encode structures?
 - How to constrain the output
 - How can we leverage different learning signals?

Conclusions

Goal: Practical Structured Prediction Approaches

Tutorials/Workshops:

- 1. AAAI-16: Learning and Inference in SP Models
- 2. NAACL15: Hands-on Learning to Search for SP
- 3. EMNLP 16, 17: workshop SP for NLP

References/Code/Demos:

http://kwchang.net

Illinois-SL: a structured learning package Vowpal Wabbit: an online learning library