On the Robustness of Language Encoders against Grammatical Errors

Fan Yin¹, Quanyu Long², Tao Meng³, Kai-Wei Chang³ ¹Peking University ²Shanghai Jiaotong University ³UCLA

ACL 2020

Language Encoders for English Text

Pre-trained encoder facilitates many NLP tasks

Many variants: ELMo, BERT, RoBERTa...

Treating Grammatical Errors as Noise

- Frequently occur in materials of non-native speakers
- Resources: Grammatical Error Correction benchmarks

[Hwee Tou Ng et al. 2014]

Prep	Preposition errors	This essay will [discuss about → discuss] whether a carrier should tell his relatives or not.
	1	
	/	Ungrammatical
Erro	r type	sentence annotated

Key Contribution 1: Evaluate Language Encoders against Grammatical Errors

- Analyze how grammatical errors affect model behavior
- Understand if grammar structure is encoded

Key Contribution 2: Automatic Grammatical Error Simulation

Our automatic grammatical error simulator considers two scenarios: ^[1]

- Average case: conforms to the real error distribution estimated from an ESL corpus
- Worst case: analyzes the brittleness of models by treating grammatical errors as adversarial attacks

Background & Motivation

Grammatical Error Simulation

Evaluation

Summary

Grammatical Error Simulation

Collect and mimic the real error distribution

- Collect errors from NUCLE a grammatical error correction benchmark
 [Dahlmeieretal et al. 2013]
- Construct a pool of possible candidates

Inject errors

- Token-level transformation
- Probabilistic and worst-case transformation

2.

Collect and Mimic Error Distribution

Select frequent error types (Similar as [Lui et al. 2019])

	Error type	Error Description	Confusion Set		
	ArtOrDet	Article/determiner errors	$\{a, an, the, \phi\}$		
Both	K		{ on, in, at, from, for, under, over, with, into,		
	Pren	Preposition errors	during, until, against, among, throughout, to,		
	гтер	r reposition errors	by, about, like, before, across, behind, but,		
		Semantics	out, up, after, since, down, off, of, ø}		
Synta		1	{and, but, so, however, as, that, thus, also, be-		
	Irans	Link words/phrase errors	cause, therefore, if, although, which, where,		
		/	moreover, besides, of, ø}		
	Nn	Noun number errors	$\{SG, PL\}$		
	SVA	Subject-verb agreement errors	{3SG, not 3SG}		
	Vform	Verb form errors	{Present, Past, Progressive, Perfect}		
	Wchoice	Word choice errors	{Ten synonyms from WordNet Synsets}		
	Worder	Word positions errors	{Adverb w/ Adjective, Participle, Modal}		

Collect and Mimic Error Distribution

Construct confusion sets for error types from an ESL corpus (Similar as [Lui et al. 2019])

p(error correct)	а	An	the	Ø
а		0.01	0.27	0.73
an	0.2		0.25	0.55
the	0.12	0.02		0.86
Ø	0.13	0.02	0.84	

(This table is modified from http://www.cs.cmu.edu/~aanastas/research/GECNMT.pdf)

Inject Errors -- Average Case Analysis

- ***** Sample an error type \boldsymbol{X}
- Syntactic parse tree to decide a plausible position
- Sample a substitution from confusion sets of \boldsymbol{X}

Inject Errors – Worst Case Analysis

- For each position, check all confusion sets for possible substitutions, maintain an operation set
- Using three search algorithms to select operations from operation sets
 - greedy search
 - beam search
 - genetic algorithm

Inspired by the literature of adversarial attacks [Jin et al. 2020; Alzantot et al. 2018]

Example of Greedy Search

Input: it's of the quality of a lesser harrison ford movie - six days, seven nights, maybe, or that direful sabrina remake. (from SST-2)

Step 1: rank token importance

Step 2: try replacements in turn

Background & Motivation

Grammatical Error Simulation

Evaluation

Summary

Experiment Analysis

Our goal is to study

- How grammar errors affect performance on downstream tasks?
 - Are language encoders robust against perturbations?
 - Which error types affect the models the most?
 - Which downstream tasks are more sensitive?
- Investigate with probing tasks
 - How models capture grammatical errors with contexts?

Experiment Setup

Language encoders: ELMo, BERT, RoBERTa, InferSent

- Downstream datasets: MRPC, MNLI,QNLI, SST-2, CONLL-2013 NER
- Probing tasks: Masked LM, binary linguistic acceptability, error location prediction

Downstream Task Evaluation

Attacked examples MRPC (in percentage)

Attacked examples QNLI (in percentage)

16

- The robustness of models varies
- RoBERTa is less sensitive to grammatical errors

Error Types v.s. Model Performance

- Models are brittle to word choice (Wchoice) and subject-verb agreement errors (SVA)
- Relatively robust to word order errors (Worder)

Masked Language Model

	-6	-5	-4	-3	-2	-1	1	2	3	4	5	6
Prep	0.00	-0.00	0.01	0.02	0.02	0.09	0.02	0.02	0.02	0.01	0.01	0.00
Art	0.00	0.01	0.00	0.00	0.01	0.02	0.06	0.03	0.01	0.00	0.00	-0.00
Wcl	0.01	0.01	0.00	0.01	0.03	0.05	0.05	0.02	0.02	0.01	0.01	0.01
Tras	0.00	0.00	-0.00	-0.02	0.01	0.01	0.04	-0.00	-0.01	0.00	-0.00	-0.02
Nn	0.00	0.01	0.00	0.02	0.03	0.06	0.04	0.00	0.00	0.00	0.01	0.01
SVA	-0.00	0.00	0.00	0.01	0.02	0.04	0.01	0.00	0.00	-0.00	0.01	0.00
Vform	0.01	0.00	0.00	0.01	0.06	0.14	0.03	0.00	0.00	-0.00	0.00	0.00
Vt	0.00	0.00	0.00	0.01	0.02	0.06	0.01	0.00	0.00	0.00	0.00	0.00

The decrease of likelihood on specific positions are greater than others

- ✓ This would thus reduce the financial burden of this group of people based on their income ceilings. This would thus reduce the financial burden of these group of people based on their income ceil
 - ings .

ourden	of	this (these)	group	of
0.01	0.09	-	0.41	0.02

Determiner-noun dependency

Summary

We propose a new method to simulate grammatical errors, considering real errors and search algorithms in adversarial attacks

We perform a systematical evaluation and analysis towards models based on our proposed method

Source code are available at:

https://github.com/uclanlp/ProbeGrammarRobustness Thank you!

