

Gender Bias in Contextualized Word Embeddings

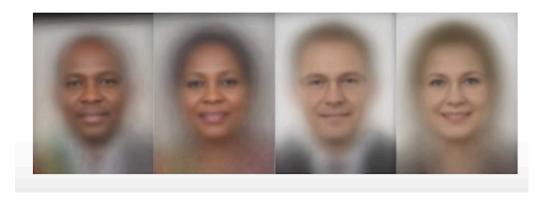
Jieyu Zhao¹, Tianlu Wang², Mark Yatskar³, Ryan Cotterell⁴, Vicente Ordonez², Kai-Wei Chang¹

¹UCLA, ²University of Virginia, ³Allen Institute for AI, ⁴University of Cambridge

Two Perspectives of Fairness in ML/NLP

• ML/NLP models should work for everyone

Gender Classifier	Darker Male	Darker Female	Lighter Male	Lighter Female	Largest Gap
Microsoft	94.0%	79.2%	100%	98.3%	20.8%
FACE**	99.3%	65.5%	99.2%	94.0%	33.8%
IBM	88.0%	65.3%	99.7%	92.9%	34.4%



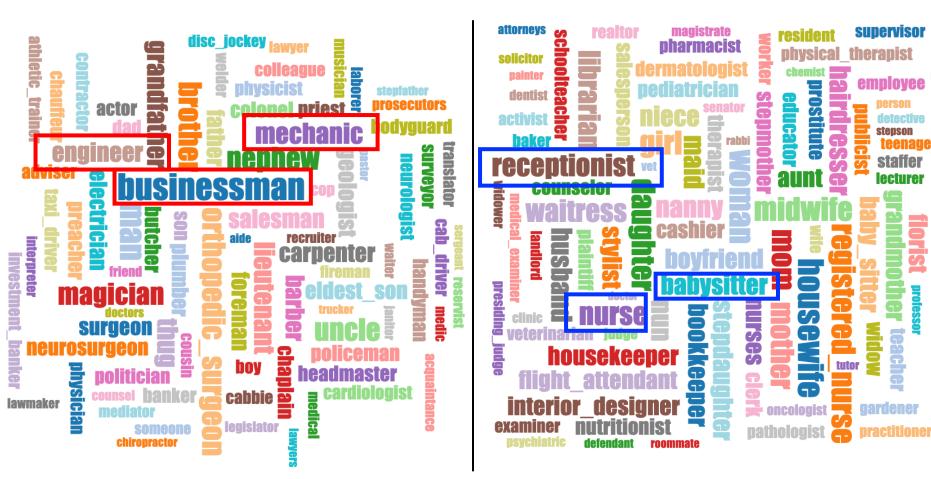
Two Perspectives of Fairness in ML/NLP

• ML/NLP models should work for everyone

• ML/NLP models should be aware of potential stereotypes existing in the data/model and avoid affecting downstream tasks

Bias in NLP: Word Embeddings

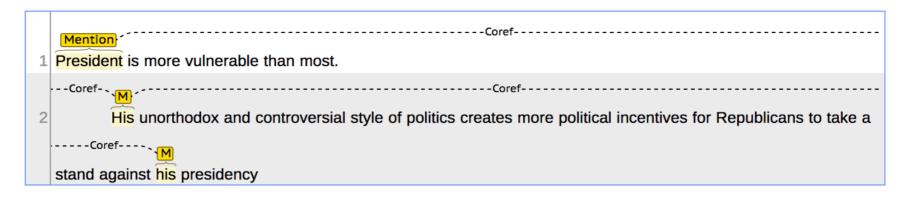
he



she

Bias in NLP: Downstream Task

- Coreference resolution
 - Model fails for "she" when given same context



President is more vulnerable than most.

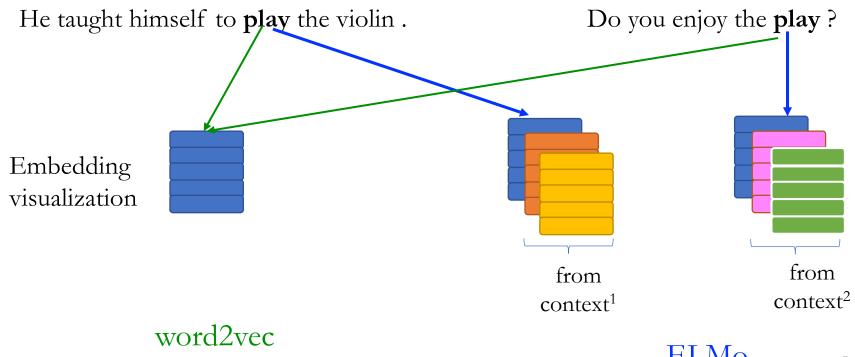
2 Her unorthodox and controversial style of politics creates more political incentives for Republicans to take a stand against her presidency

Outline

- Training corpus for ELMo is biased
- Visualize gender geometry in ELMo
- Bias propagates to downstream tasks
- Mitigate the bias

Background: ELMo

- Take LM information
- Assign words with different embeddings based on the surrounding contexts



ELMo

- Bias Analysis
 - Training Dataset Bias
 - Geometry of the Gender
 - Unequal Treatment of Gender in ELMo
 - Downstream task Coreference resolution

Bias in ELMo

Training Dataset Bias

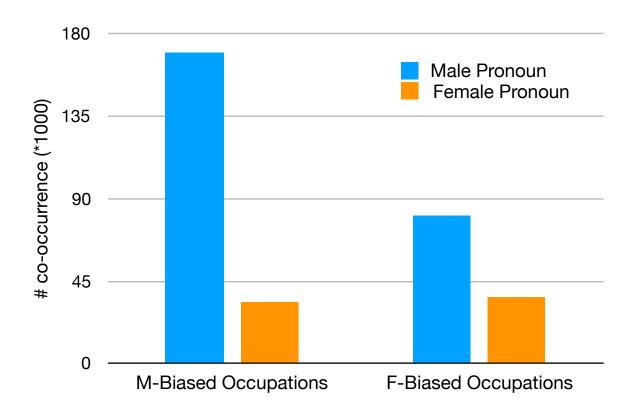
- Dataset is biased towards male

Gender	Male Pronouns	Female Pronouns
Occurrence (*1000)	5,300	1,600

• Male pronouns (he, him, his) occur 3 times more often than females' (she, her)

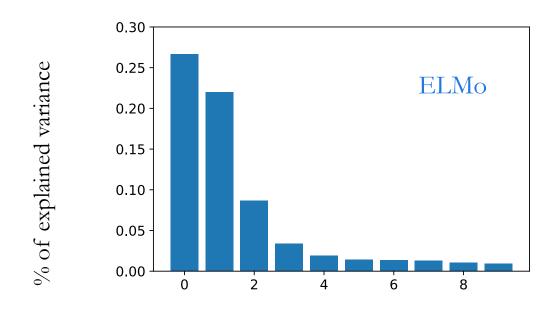
Bias in ELMo (continued)

• Male pronouns co-occur more frequently with occupation words¹



Geometry of Gender in ELMo

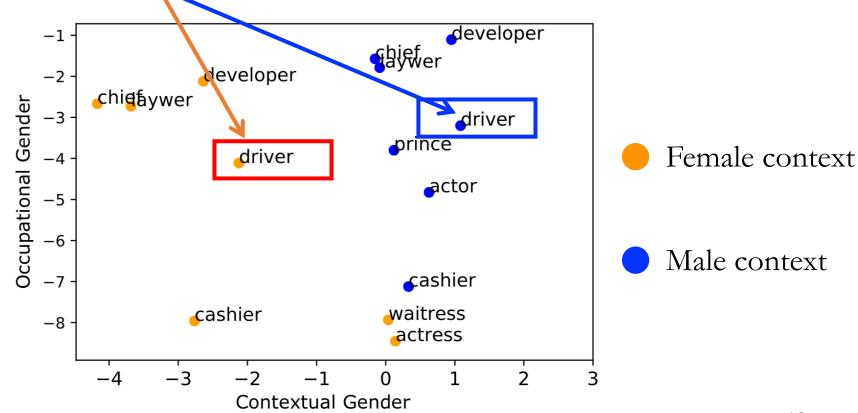
• ELMo has two principle components



principle components

Geometry of Gender in ELMo

- The driver transported the counselor to the hospital because she was paid
- The driver transported the counselor to the hospital because he was paid

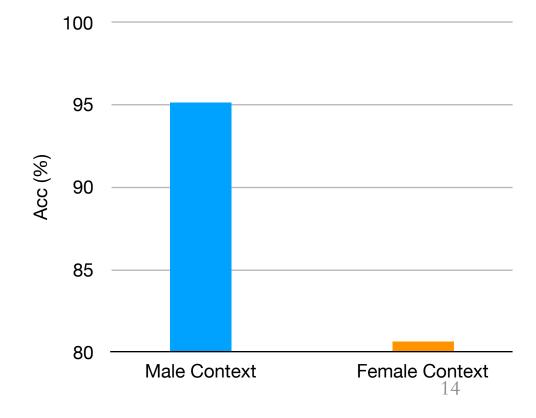


Unequal Treatment of Gender

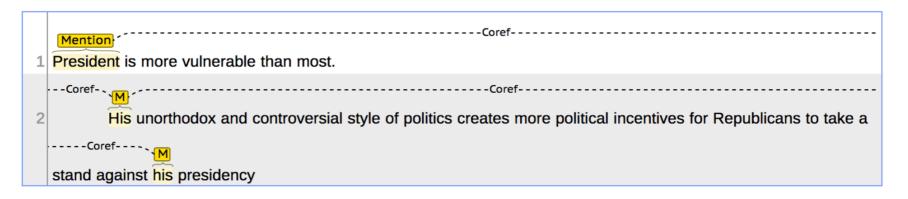
Classifier

$$f: ELMo(occupation) \rightarrow context gender$$

- ELMo propagates gender information to other words
- Male information is 14% more accurately propagated than female



Bias in Downstream Task -- Coreference Resolution

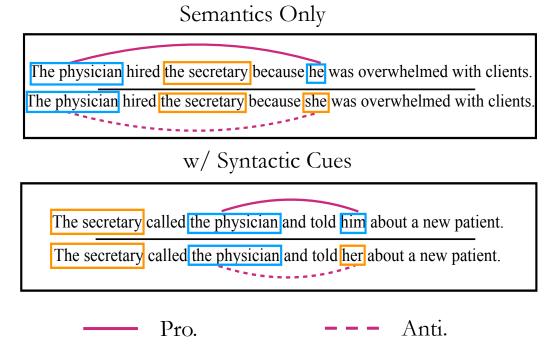


President is more vulnerable than most.

2 Her unorthodox and controversial style of politics creates more political incentives for Republicans to take a stand against her presidency

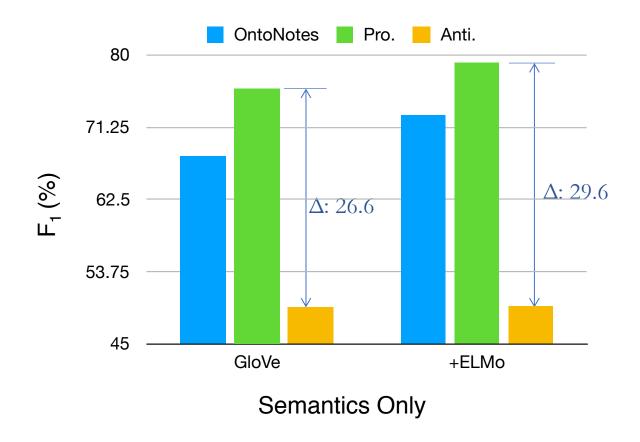
Bias in Downstream Task: Coreference Resolution

- WinoBias dataset¹
 - Pro-Stereotypical and Anti-Stereotypical dataset
- Bias: different performance between Pro. and Anti. dataset.



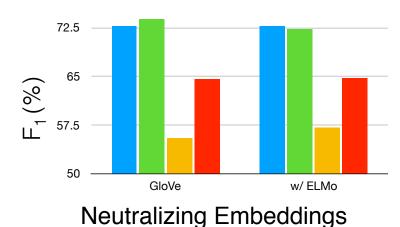
Bias in Coreference

- ELMo boosts the performance
- However, enlarge the bias (Δ)



Mitigate Bias (Method 1)

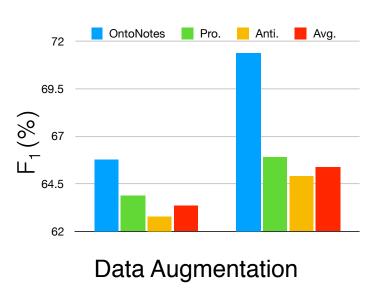
- Neutralizing ELMo Embeddings
 - Generating gender swapped test variants
 - Average the ELMo embeddings for test dataset
 - Do not need retrain; keeps the performance
 - lightweight



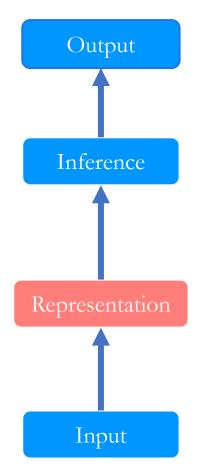
Mitigate Bias (Method 2)

- Data Augmentation
 - Generate gender swapped training variants
 - Better mitigation; need retrain

Semantics Only



Bias in NLP/ML



- **Zhao** et al. Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints
- Bolukbasi et al. Man is to Computer Programmer as Woman is to Homemaker?
 Debiasing Word Embeddings
- **Zhao** et al. Learning Gender-Neutral Word Embeddings
- Elazar & Goldberg. Adversarial Removal of Demographic Attributes from Text Data
- Wang et al. Adversarial Removal of Gender from Deep Image Representations
- Xie et al. Controllable Invariance through Adversarial Feature Learning
- **Zhao** et al. Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods
- Park et al. Reducing Gender Bias in Abusive Language Detection

ACM Conference on Fairness,
Accountability, and
Transparency (ACM FAT*)

An interdisciplinary conference that brings together researchers and practitioners interested in fairness accountability, and transparency in socio-technical systems.

AAAI / ACM conference on ARTIFICIAL INTELLIGENCE, ETHICS, AND SOCIETY

Thank you!