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¥\ NLP
Two Perspectives of Fairness in MLL/NLP

* MLL/NLP models should work for everyone

Gender Darker Darker Lighter Lighter Largest

Classifier Male Female Male Female Gap

=' Microsoft 94.0% 79.2% 100% 98.3% 20.8%
s S — N

b - FACE** 99.3% 65.5% 99.2% 94.0% 33.8%
e N

TR 88.0% 65.3% 99.7% 92.9% 34.4%
[ N N

Gender shade: https://www.youtube.com/watch?v=TWWsW1w-BVo [Buolamwini& Gebru 18] 3
kwchang.net/talks/sp.html
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Two Perspectives of Fairness in ML/NLP

* ML./NLP models should work for everyone

* MLL/NLP models should be aware of potential stereotypes existing in
the data/model and avoid affecting downstream tasks

4
kwchang.net/talks/sp.html



Bias in NLP: Word Embeddings
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http:// wordbias.umiacs.umdedu/
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Bias in NLP: Downstream Task

e (Coreference resolution
* Model fails for “she” when given same context
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Outline

* Training corpus for ELLMo 1s biased
* Visualize gender geometry in ELMo
* Bias propagates to downstream tasks

* Mitigate the bias
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Background: ELLMo

e Take LM information

* Assign words with different embeddings based on the surrounding
contexts

He taught himself to play the violin . Do you enjoy the play ?

Embedding
visualization
\—Y—J
from from
context! context?

word2vec BT Mo 8



* Bias Analysis
* Training Dataset Bias
* Geometry of the Gender

Bias in ELLMo ‘s * Unequal Treatment of Gender in
| ElLMo
* Downstream task — Coreference
resolution
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Bias in EI.LMo

Tmining Dataset Bias

- Dataset is biased towards male

Gender Male Female

Pronouns Pronouns
Occurrence 5,300 1,600
(*1000)

* Male pronouns (he, him, his) occur 3 times more
often than females’ (she, her)
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Bias in EL.LMo (continued)

* Male pronouns co-occur more frequently with
occupation words!
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M-Biased Occupations F-Biased Occupations
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Zhao et al. Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods NAACL. 2018



Geometry of Gender in |

H1.Mo

* ELMo has two principle components

% of explained variance
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El.Mo

VeV.8 NLP
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Geometry of Gender in ELLMo
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© The driver transported the counselor to the hospital because she was paid

Occupational Gender
I
w

_ gleveloper
§2iRler
eveloper
chighywer
giriver
I driver I @rince
g ctor
gashier
cashier waitress
actress
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Contextual Gender

r\transported the counselor to the hospital because he was paid

Female context

@ Male context
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Unequal Treatment of Gender

e Classifier

f . ELMo(occupation) —» context gender :
100
* ELMo propagates
gender information to o5
other words
S
. .. g %0
* Male information is <
14% more accurately
85
propagated than female
80 |

Male Context Female Context
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Bias in Downstream Task -- Coreference
Resolution
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Bias in Downstream Task: Coreference

Resolution

e WinoBias dataset!

* Pro-Stereotypical and Anti-
Stereotypical dataset

e Bias: different

performance between Pro.

and Anti. dataset.

Semantics Only

The physician hired the secrem was overwhelmed with clients.

| he physician| hired the secretary because she/ was overwhelmed with clients.

=

~ -
- -
-y -
-----
-----------

w/ Syntactic Cues

—
The secretary calledmand told |hin] about a new patient.

=
______
--------

— Pro. - = = Antl.

6
https://uclanlp.github.io / corefBias
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Bias in Coreference

* ELMo boosts the performance
* However, enlarge the bias (A)

B OntoNotes [ Pro. | Anti.
80

71.25

62.5

Fy (%)

53.75

45

GloVe +ELMo

Semantics Only -
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Mitigate Bias (Method 1)

* Neutralizing E.Mo Embeddings

* Generating gender swapped test variants
* Average the ELLMo embeddings for test dataset
* Do not need retrain; keeps the performance

* lightweight

72.5

65

(%)

T 575

50
GloVe w/ ELMo

Neutralizing Embeddings
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Mitigate Bias (Method 2)

* Data Augmentation
* Generate gender swapped training variants
* Better mitigation; need retrain

Semantics Only

29 M OntoNotes [ Pro. Anti. [l Avg.
69.5
&\o/ 67
m
64.5
62
Data Augmentation
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Bias in NLP/ML
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ACM Conference on Fairness,
Accountability, and
Transparency (ACM FAT?)

An interdisciplinary conference that brings together researchers and practitioners interested in fairness,

accountability, and transparency in socio-technical systems.

Zhao et al. Men Also Like Shopping: Reducing Gender Bias Amplification
using Corpus-level Constraints

Bolukbasi et al. Man is to Computer Programmer as Woman is to Homemaker?
Debiasing Word Embeddings

Zhao et al. Learning Gender-Neutral Word Embeddings

Elazar & Goldberg. Adversarial Removal of Demographic Attributes from Text

Data
Wang et al. Adversarial Removal of Gender from Deep Image Representations
Xie et al. Controllable Invariance through Adversarial Feature Learning

Zhao et al. Gender Bias in Coreference Resolution: Evaluation and Debiasing

Methods
Park et al. Reducing Gender Bias in Abusive Language Detection

Twitter Hashtag: #EthNLP e_o

o AAAIl /| ACM conference on
Et h i CS .x;.z. ARTIFICIAL INTELLIGENCE,
) B ._I ETHICS, AND SQ&:IETY

in Natural Language Processing L
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Thank youl
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