
Clustering and Sharing Incentives in BitTorrent Systems

Arnaud Legout
I.N.R.I.A.

Sophia Antipolis, France
arnaud.legout@sophia.inria.fr

Nikitas Liogkas, Eddie Kohler,
Lixia Zhang

University of California, Los Angeles
Los Angeles, CA USA

{nikitas, kohler, lixia}@cs.ucla.edu

ABSTRACT
Peer-to-peer protocols play an increasingly instrumental role in In-
ternet content distribution. It is therefore important to gain a com-
plete understanding of how these protocols behave in practice and
how their operating parameters affect overall system performance.
This paper presents the first detailed experimental investigation of
the peer selection strategy in the popular BitTorrent protocol. By
observing more than 40 nodes in instrumented private torrents, we
validate three protocol properties that, though believed to hold,
have not been previously demonstrated experimentally: the clus-
tering of similar-bandwidth peers, the effectiveness of BitTorrent’s
sharing incentives, and the peers’ high uplink utilization. In addi-
tion, we observe that BitTorrent’s modified choking algorithm in
seed state provides uniform service to all peers, and that an un-
derprovisioned initial seed leads to absence of peer clustering and
less effective sharing incentives. Based on our results, we provide
guidelines for seed provisioning by content providers, and discuss
a tracker protocol extension that addresses an identified limitation
of the protocol.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols; C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.4 [Performance of Systems]

General Terms
Algorithms, Measurement, Performance

Keywords
BitTorrent, choking algorithm, clustering, incentives, seed provi-
sioning

1. INTRODUCTION
In just a few years, peer-to-peer content distribution has come

to generate a significant portion of the total Internet traffic [14].
The widespread adoption of such protocols for delivering large data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’07, June 12–16, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-639-4/07/0006 ...$5.00.

volumes in a global scale is arguably due to their scalability and ro-
bustness properties. Understanding the mechanisms that affect the
performance of such protocols and overcoming the existing short-
comings will ensure the continued success of peer-to-peer data de-
livery. To that end, this paper presents a detailed experimental study
of the peer selection strategy in BitTorrent, one of the most popular
peer-to-peer content distribution protocols.

Recently, researchers have formulated analytical models for the
problem of efficient data exchange among peers, and measurement
studies using actual download traces have attempted to shed light
into the success of BitTorrent. However, certain properties of these
studies have interfered with their accurate evaluation of the dynam-
ics of BitTorrent algorithms and their impact on overall system
performance. For example, analytical models can provide valu-
able insight, but they are typically based on unrealistic assump-
tions, such as giving all participants global system knowledge [21];
actual download traces may differ substantially from the their pre-
dictions [11, 20]. Furthermore, most measurement studies have
evaluated peers connected to public torrents—BitTorrent download
sessions [11, 12, 20]. They provide detailed data about the over-
all behavior of deployed BitTorrent systems, however, the inher-
ent limitations in collecting per-peer information in a public torrent
obstructs the understanding of individual peer decisions during the
download. Legout et al. [15] recently attempted to evaluate those
decisions, but only from the viewpoint of a single peer.

To overcome these limitations, we conduct extensive experi-
ments on a private testbed and collect data from all peers in a con-
trolled environment. In particular, we focus on the so-called chok-
ing algorithm for peer selection, which may be the driving factor
behind BitTorrent’s high performance [8]. This approach allows us
to examine the behavior of individual peers under a microscope and
observe their decisions and interactions during the download.

Our main contribution is to demonstrate that the choking al-
gorithm facilitates the formation of clusters of similar-bandwidth
peers, ensures effective sharing incentives by rewarding peers who
contribute data to the system, and maintains high upload utilization
for the majority of the download duration. These properties have
been hinted at in previous work; this study constitutes their first
experimental validation. We also show that, if the seed is under-
provisioned, all peers tend to complete their download around the
same time, independently of how much they upload. Clusters are
no longer formed, and, interestingly, high-capacity peers assist the
seed in disseminating data to low-capacity ones, resulting in every-
one maintaining high upload utilization. Finally, based on our ob-
servations, we provide guidelines for seed provisioning by content
providers, and discuss a tracker protocol extension that addresses
an identified limitation of the protocol, namely the low upload uti-
lization at the beginning of a torrent’s lifetime.

301

The rest of this paper is organized as follows. Section 2 provides
a description of the BitTorrent protocol and an explanation of the
choking algorithm, as implemented in the official BitTorrent client.
Section 3 describes our experimental methodology and the ratio-
nale behind the experiments, while Section 4 presents our results.
Section 5 discusses seed provisioning guidelines and the proposed
tracker protocol extension. Lastly, Section 6 sets this study in the
context of related work, and Section 7 concludes.

2. BACKGROUND
BitTorrent is a peer-to-peer content distribution protocol that

scales well with the number of participating peers. A BitTorrent
system capitalizes on the upload capacity of each peer in order to
increase global system capacity as the number of peers increases.
A major factor behind BitTorrent’s success is a built-in incentives
mechanism, implemented by its choking algorithm, which is de-
signed to encourage peers to contribute data. The rest of this section
introduces the terminology used in the paper and describes BitTor-
rent’s operation in detail, with a particular focus on the choking
algorithm.

2.1 Terminology
The terminology used in the BitTorrent community is not stan-

dardized. For the sake of clarity, we define here the terms used
throughout this paper.

• Torrent. A torrent is the set of peers cooperating to down-
load the same content using the BitTorrent protocol.

• Tracker. The tracker is the only centralized component of
the system. It is not involved in the actual distribution of the
content, but it keeps track of all peers currently participating
in the download, and it collects statistics.

• Pieces and Blocks. Content transferred using BitTorrent is
split into pieces, with each piece being split into multiple
blocks. Although blocks are the transmission unit, peers can
only share complete pieces with others.

• Metainfo file. The metainfo file, also called a torrent file,
contains all the information necessary to download the con-
tent and includes the number of pieces, SHA-1 hashes for all
the pieces that are used to verify received data, and the IP
address and port number of the tracker.

• Interested and Choked. We say that peer A is interested
in peer B when B has pieces of the content that A does not
have. Conversely, peer A is not interested in peer B when B
only has a subset of the pieces of A. We also say that peer
A is choked by peer B when B decides not to send any data
to A. Conversely, peer A is unchoked by peer B when B is
willing to send data to A. Note that this does not necessarily
mean that peer B is uploading data to A, but rather that B will
upload to A if A issues a data request.

• Peer Set. Each peer maintains a list of other peers to which
it has open TCP connections. We call this list the peer set,
and it is also known as the neighbor set.

• Local and Remote Peers. When describing the choking al-
gorithm, we take the viewpoint of a single peer, which we
call the local peer. We refer to the peers in the local peer’s
peer set as remote peers.

• Leecher and Seed. A peer can be in one of two states: the
leecher state, when it is still downloading pieces of the con-
tent, and the seed state, when it has all the pieces and is shar-
ing them with others.

• Initial Seed. The initial seed is the first peer that offers the
content for download. There can be more than one initial
seeds. In this paper, however, we only consider the case of a
single initial seed.

• Rarest-First Algorithm. The rarest-first algorithm is the
piece selection strategy used by BitTorrent clients. It is also
known as the local rarest-first algorithm since it bases the
selection on the available information locally at each peer.
Peers independently maintain a list of the pieces each of their
remote peers has and build a rarest-pieces set containing the
indices of the pieces with the least number of copies. This
set is updated every time a remote peer announces that it ac-
quired a new piece, and is used by the local peer to select the
next piece to download.

• Choking Algorithm. The choking algorithm, also known as
the tit-for-tat algorithm, is the peer selection strategy used by
BitTorrent clients. We provide a detailed description of this
algorithm in Section 2.3.

• Official BitTorrent Client. The official BitTorrent client [1],
also known as the mainline client, was the first BitTorrent
implementation and was initially developed by Bram Cohen,
BitTorrent’s creator.

2.2 BitTorrent Operation
Prior to distribution, the content is divided into multiple pieces,

and each piece into multiple blocks. The metainfo file is then cre-
ated by the content provider. To join a torrent, a peer P retrieves
the metainfo file out of band, usually from a well-known website,
and contacts the tracker that responds with a peer set of randomly
selected peers, possibly including both seeds and leechers. P then
starts contacting peers in this set and requesting different pieces of
the content.

Most clients nowadays use the rarest-first algorithm for piece se-
lection. In this manner, peer selects the next piece to download
from its rarest-pieces set. A local peer determines which pieces its
remote peers have based on bitfield messages exchanged upon es-
tablishing new connections, which contain a list of all the pieces a
peer has. Peers also send have messages to everyone in their peer
set when they successfully receive and verify a new piece.

A peer uses the choking algorithm to decide which peers to ex-
change data with. The algorithm generally gives preference to
those peers who upload data at high rates. Once per rechoke period,
typically set to ten seconds, a peer re-calculates the data receiving
rates from all peers in its peer set. It then selects the fastest ones,
a fixed number of them, and uploads only to those for the duration
of the period. In BitTorrent parlance, a peer unchokes the fastest
uploaders via a regular unchoke, and chokes all the rest. In addi-
tion, it unchokes a randomly selected peer via a so-called optimistic
unchoke. The logic behind this is explained in detail in Section 2.3.

Seeds, who do not need to download any pieces, follow a dif-
ferent unchoke strategy. Most implementations dictate that seeds
unchoke those leechers that download data at the highest rates, in
order to better utilize seed capacity in disseminating the content
as efficiently as possible. However, the official BitTorrent client
recently introduced a modified unchoke algorithm in seed state, in
version 4.0.0. We perform the first detailed experimental evaluation
of this modified algorithm and show that it enables a more uniform
utilization of the seed bandwidth across all leechers.

302

2.3 Choking Algorithm
We now describe the choking algorithm in detail as implemented

in the official client, version 4.0.2. The algorithm was initially
introduced to foster a high level of data exchange reciprocation
and is one of the main factors behind BitTorrent’s fairness model:
peers that contribute data to others at high rates should receive
high download throughput, and free-riders, peers that do not up-
load, should be penalized by being unable to achieve high down-
load rates. It is worth noting that, although the algorithm has been
shown to perform well in a variety of scenarios, it has recently been
found that it does not completely eliminate free-riding [16, 17, 23].
In particular, a peer may improve its download rates by download-
ing from seeds, acquiring a large view of the peers in the torrent, or
benefiting from many optimistic unchokes. We discuss this issue
further in Section 4.1.2.

As we noted earlier, the choking algorithm is different for leech-
ers and seeds. When in leecher state, a peer P unchokes a fixed
number of remote peers. Unless specified explicitly by the user,
this number of parallel uploads is determined by P’s upload band-
width. For example, for an upload limit greater than or equal to 15
kB/s but less than 42 kB/s this number is set to 4. For generality, in
the following we assume that the number of parallel uploads is set
to n.

In leecher state, the choking algorithm is executed periodically
at every rechoke period, i.e., every ten seconds, and in addition,
whenever an unchoked and interested peer leaves the peer set, or
whenever an unchoked peer switches its interest state. As a re-
sult, the time interval between two executions of the algorithm can
sometime be shorter than a rechoke period. Every time the chok-
ing algorithm is executed, we say that a new round starts, and the
following steps are taken.

1. The local peer orders interested remote leechers according
to the rates at which it received data from them, and ignores
leechers that have not sent any data in the last thirty seconds.
These so-called snubbed peers are excluded from consider-
ation in order to guarantee that only contributing peers are
unchoked.

2. The n−1 leechers with the highest rates are unchoked via a
regular unchoke.

3. In addition, every three rounds, an interested candidate peer
is chosen at random to be unchoked via an optimistic un-
choke. If this peer is not unchoked via a regular unchoke,
it is unchoked via an optimistic unchoke and the round com-
pletes. If this peer is already unchoked via a regular unchoke,
a new candidate peer is chosen at random.

(a) If the candidate peer is interested in the local peer, it
is unchoked via an optimistic unchoke and the round
completes.

(b) Otherwise, the candidate peer is unchoked anyway, and
step 3a is repeated with a new randomly chosen can-
didate. The round completes when an interested peer
is found or when there are no more peers to choose,
whichever comes first.

Although more than n peers can be unchoked by the algorithm,
only n interested peers can be unchoked in the same round. Un-
choking non-interested peers improves the reaction time in case
one of those peers becomes interested during the following re-
choke period; data transfer can begin right away without waiting
for the choking algorithm to be executed. Furthermore, optimistic
unchokes serve two major purposes. They function as a resource

discovery mechanism to continually evaluate the upload bandwidth
of peers in the peer set in an effort to discover better partners. They
also enable new peers that do not have any pieces yet to bootstrap
into the torrent by giving them some initial pieces without requiring
any reciprocation.

In the seed state, older versions of the official client, as well as
many current versions of other clients, perform the same steps as
in leecher state, with the only difference being that the ordering in
step 1 is based on data transmission rates from the seed, rather than
to it. Consequently, peers with high download capacity are favored
independently of their contribution to the torrent, a fact that could
be exploited by free-riders [16].

In version 4.0.0, the official client introduced a modified chok-
ing algorithm in seed state. According to this modified algorithm,
a seed performs the same fixed number of n parallel uploads as in
leecher state, but with different peer selection criteria. The algo-
rithm is executed periodically at every rechoke period, i.e., every
ten seconds, and in addition, whenever an unchoked and interested
peer leaves the peer set, or whenever an unchoked peer switches its
interest state. Every time the choking algorithm is executed, a new
round starts, and the following steps are taken.

1. The local peer orders the interested and unchoked remote
leechers according to the time it has sent them an unchoke
message, most recently unchoked peers first. This is the ini-
tial time the local peer had unchoked them; if the local peer
keeps uploading to them for more than one rechoke periods,
it does not send them additional unchoke messages. This step
only considers leechers to which an unchoke message has
been sent recently (less than twenty seconds ago) or leech-
ers that have pending requests for blocks (to ensure that they
get the requested data as soon as possible). In case of a tie,
leechers are ordered according to their download rates from
the seed, fastest ones first, just like the old algorithm did.
Note that, as leechers do not upload anything to seeds, the
notion of snubbed peers does not exist in seed state.

2. The number of optimistic unchokes to perform over the du-
ration of the next three rechoke periods, i.e., thirty seconds,
is determined using a heuristic. These optimistic unchokes
are uniformly spread over this duration, performing no op-
timistic unchokes per rechoke period. Due to rounding is-
sues, no can be different for each of the three rechoke pe-
riods. For instance, when the number of parallel uploads is
4, the heuristic dictates that only two optimistic unchokes be
performed in the entire thirty-second period. Thus, one op-
timistic unchoke is performed during each of the first two
periods and none during the last.

3. At each rechoke period, the first n− no leechers in the list
from step 1 are unchoked via regular unchokes.

Step 1 includes the key feature of the modified algorithm in seed
state. On the one hand, leechers are no longer unchoked based
on their observed download rates from the seed, but mainly based
on the last time an unchoke message was sent to them. Thus, af-
ter a seed has been sending data to a leecher for six rechoke periods
(when the number of parallel uploads is 4), it will stop doing so and
select another leecher to serve. In this manner, a seed will provide
service to all leechers sooner or later, preventing any single leecher
from monopolizing it. On the other hand, according to the official
client’s version notes, this modified choking algorithm in seed state
also aims to reduce the amount of duplicate data a seed needs to
upload before it has pushed out a full copy of the content into the
torrent. It strives to achieve that by keeping leechers unchoked for

303

six rechoke periods, in order to prevent high leecher turnover from
resulting in the transmission of the same pieces to different leech-
ers. Interestingly, the most recent version of the official client has
reverted back to the original choking algorithm in seed state. Al-
though the modified version of the algorithm we described here is
more robust to modified free-riding implementations, it might be
less efficient in torrents with compliant peers. Since the company
behind the official client has been targeting legal content distribu-
tion, where client alteration would arguably be harder, it may aim
to optimize the implementation for this scenario.

Some other implementations have included a super-seeding fea-
ture with similar goals, in particular to assist a service provider with
limited upload capacity in seeding a large torrent. A seed with this
feature masquerades as a normal leecher with no data. As other
peers connect to it, it will advertise a piece that it has never up-
loaded before or that is very rare. After uploading this piece to a
given leecher, the seed will not advertise any new pieces to that
leecher until it sees another peer’s ’have’ message for the piece,
indicating that the leecher has indeed shared the piece with others.
This algorithm has anecdotally resulted in much higher seeding ef-
ficiencies by reducing the amount of duplicate pieces uploaded by
the seed, and limiting the amount of data sent to peers who do not
contribute [2]. A single seed running in this mode is rumored to be
able to upload a full copy of the content after only uploading 105%
of the content data volume. Since the official client has not imple-
mented this feature, our experiments do not measure its effect on
the efficiency of the initial seed. We instead measure the number of
duplicate pieces uploaded when employing the modified choking
algorithm in seed state.

3. METHODOLOGY

3.1 Experimental Setup
All our experiments were performed in private torrents on the

PlanetLab experimental platform [5]. PlanetLab’s convenient tools
for collecting measurements from geographically dispersed clients
greatly facilitated our work. For instance, in order to deploy and
launch BitTorrent clients on PlanetLab nodes, we utilize the pssh
tools [4]. PlanetLab nodes are typically not behind NATs, so each
peer in our experiments can be uniquely identified by its IP address.

We chose to experiment on private torrents, as opposed to sim-
ulation, in order to examine both individual peer decisions and the
resulting impact on the torrent. Although simulation would have
enabled us to run many more experiments, it would have been a
difficult task to accurately model the dynamics of a BitTorrent sys-
tem. Private torrents allow us to observe and record the behavior of
all peers in real scenarios. We can also vary experimental param-
eters, such as peers’ upload rate limits, which helps us distinguish
which factors are responsible for the observed behavior.

We performed experiments with the different torrent configura-
tions described in Section 3.2. There are no agreed-upon parame-
ters in the BitTorrent community, so we set our experiment param-
eters empirically and based on current best practice. During each
experiment, leechers download a single file of 113 MB that consists
of 453 pieces, 256 kB each.

All our experiments were performed with peers that do not
change their available upload bandwidth during the download, or
disconnect before receiving a complete copy of the file. There is a
single initial seed, and in all experiments, all leechers join the tor-
rent at the same time, emulating a flash crowd scenario. Although
the behavior of the system might be different with other peer ar-
rival patterns, we are interested in examining peer decisions under
circumstances of high load. The initial seed stays connected to the

torrent for the duration of the experiment, while leechers discon-
nect immediately after completing their download.

We consider both a well-provisioned and an underprovisioned
initial seed. Seed upload capacity has already been shown to be
critical to the performance at the beginning of a torrent’s lifetime,
before the seed has uploaded a complete copy of the content [7, 15].
However, the impact of an initial seed with limited capacity on sys-
tem properties is not clear. Nevertheless, appropriate provisioning
of initial seeds is of critical importance to content providers. We at-
tempt to sketch recommendations on this issue in Section 5.1 based
on our experimental results.

The available bandwidth of PlanetLab nodes is relatively high
for typical torrents. We define upload limits on the leechers and
seed to model realistic scenarios, but do not define any download
limits, nor do we attempt to match our upload limits to inherent
limitations of PlanetLab nodes. Thus, we might end up defining a
high upload limit on a node that cannot possibly send data that fast,
due to network or other problems. Our results include the effects of
local network fluctuations, but we believe that the conclusions we
draw are not predicated on such effects. Our experiments utilize 41
PlanetLab nodes, of which 2 are located in Canada and the rest are
spread across the continental United States. We conduct all runs of
an experiment consecutively in time on the same set of machines.

We collect our measurements using a modified version of the
official BitTorrent implementation, instrumented to record interest-
ing events and peer interactions. Our instrumented client, which is
based on version 4.0.2 of the official client (released in May 2005),
is publicly available for download [3]. We collect a log of each
message sent or received along with the content of the message, a
log of each state change, the rate estimates for remote peers used
by the choking algorithm, and other relevant information, such as
the internal states of the choking algorithm. Otherwise specified,
we run our experiments with the default client parameters.

3.2 Torrent Configurations
We experimented with several torrent configurations. The pa-

rameters we changed from configuration to configuration are the
upload rate limits for the seed and leechers and the upload band-
width distribution of leechers. As mentioned before, leecher down-
load bandwidth is never artificially limited, although local network
characteristics may impose an effective upload or download limit.

We ran experiments with the following configurations.

• Two-class. Leechers are divided into two categories with dif-
ferent upload limits. This configuration enables us to observe
system behavior in highly bipolar scenarios. Our experi-
ments involve similar numbers of slow peers, with 20 kB/s
upload limit, and fast peers, with 200 kB/s upload limit.

• Three-class. Leechers are divided into three categories with
different upload limits. This configuration helps us identify
the qualitative behavioral differences of more distinct classes
of peers. Our experiments involve similar numbers of slow
peers, with 20 kB/s upload limit; medium peers, with 50 kB/s
upload limit; and fast peers, with 200 kB/s upload limit.

• Uniform-increase. Upload limits are defined on leechers ac-
cording to a uniform distribution, with a small 5 kB/s step.
The slowest leecher has an upload limit of 20 kB/s, the sec-
ond slowest a limit of 25 kB/s, and so on. This configuration
provides insight into the behavior of torrents with more uni-
form distribution of peer bandwidth.

Our graphs in Section 4 correspond to experiments run with the
three-class configuration, but the conclusions we draw accord well

304

with the results of other experiments. We stress distinctions where
appropriate. We also ran preliminary experiments where the ini-
tial seed disconnects after uploading an entire copy of the content,
but leechers remain connected after they complete their download,
serving as seeds for a short time. Peers in these experiments have
somewhat lower completion times thanks to the extra help from
leechers in content dissemination, but appear otherwise similar.

3.3 Experiment Rationale
The goal of our experiments is to understand the dynamics of the

choking algorithm. To that end, we consider four metrics.

Clustering: The choking algorithm aims to encourage high peer
reciprocation by favoring peers who upload. Therefore, we
expect that peers will more frequently unchoke other peers
with similar upload capacities, since those are the ones that
can reciprocate with high enough rates. The rules for peer se-
lection by Qiu et al. [21] also support this hypothesis. Conse-
quently, it is expected that the choking algorithm converges
towards good clustering shortly after the beginning of the
download by grouping together peers with similar upload ca-
pacity. This behavior, however, is not guaranteed and has
never been previously verified experimentally. Indeed, let’s
consider a simple example. Peer A will unchoke peer B if
B has been uploading data at a high rate to A. In order for
B to continue uploading to A, A should also start sending
data to B at a high enough rate. The only way to initiate
such a reciprocal relationship is via an optimistic unchoke.
Yet, since optimistic unchokes are performed at random, it
is not clear whether and when A and B will get a chance
to interact. Therefore, in order to preserve clustering, opti-
mistic unchokes should successfully initiate interactions be-
tween peers with similar upload capacities. In addition, such
interactions should persist despite potential disruptions, such
as optimistic unchokes by others or network bandwidth fluc-
tuations.

Sharing incentives: A major goal of the choking algorithm is to
give peers an incentive to share data. The algorithm strives
to encourage peers to contribute, since doing so will improve
their own download rates. We evaluate the effectiveness of
these sharing incentives by measuring how peers’ upload
contributions affect their download completion time. We ex-
pect that the more a peer contributes, the sooner it will com-
plete its download. However, we do not expect to observe
strict data volume fairness, where all peers contribute the
same amount of data; peers who upload at high rates may
end up contributing more data than others. They should be
rewarded though, by completing their download sooner.

Upload utilization: Upload utilization constitutes a reliable met-
ric of efficiency in peer-to-peer content distribution systems,
since the total upload capacity of all peers represents the
maximum throughput the system can achieve as a whole. As
a result, a peer-to-peer content distribution protocol should
aim at maximizing peers’ upload utilization. We are inter-
ested in measuring this utilization in BitTorrent systems, and
identifying the factors that can adversely affect it.

Seed service: The modified choking algorithm in seed state bases
its decisions on the time peers have been waiting for seed
service, in addition to their download rates from the seed.
Thus, we expect to see uniform sharing of the seed upload
bandwidth among all peers. It should also be impossible for
fast leechers to monopolize the seed.

0 10 20 30 40
0

5

10

15

20

25

30

35

40

Uploading peer ID

Regular Unchoke Duration (All Runs)

D
ow

nl
oa

di
ng

 p
ee

r
ID

0

200

400

600

800

1000

1200

Figure 1: Time duration that peers unchoked each other via a reg-
ular unchoke, averaged over all runs. Darker squares represent
longer unchoke times (the unit of the color bar on the right is in
seconds). Peers 1 to 13 have a 20 kB/s upload limit, peers 14 to 27
have a 50 kB/s upload limit, and peers 28 to 40 have a 200 kB/s up-
load limit. The seed (peer 41) is limited to 200 kB/s. The creation
of clusters is clearly visible.

4. EXPERIMENTAL RESULTS
We now report the results of representative experiments that

demonstrate our main observations. For conciseness, we present
only results drawn from the three-class torrent configuration, but
our conclusions are consistent with our observations from other
configurations as well.

4.1 Well-Provisioned Initial Seed
We first examine a scenario with a well-provisioned initial seed,

i.e., a seed that can sustain high upload rates. We expect this to
be common for commercial torrents, whose service providers typ-
ically make sure there is adequate bandwidth to initially seed the
torrent. An example might be Red Hat distributing its latest Linux
distribution. Section 4.2 shows that peer behavior in the presence
of an underprovisioned initial seed can differ substantially.

We consider an experiment with a single seed and 40 leechers:
13 slow peers (20 kB/s upload limit), 14 medium peers (50 kB/s
upload limit), and 13 fast peers (200 kB/s upload limit). The seed,
which is represented as peer 41 in the following figures, is limited
to upload 200 kB/s, as fast as a fast peer. Different peer upload
limits are defined in order to model different levels of contribution.
The results we report are based on thirteen experiment runs. Al-
though the official BitTorrent implementation would set the num-
ber of parallel uploads based on the defined upload limit (4 for the
slow, 5 for the medium, and 10 for the fast peers and the seed),
we set this number to 4 for all peers, which in fact is what most
other clients would do. This ensures homogeneous conditions in
the torrent and makes it easier to interpret the results.

4.1.1 Clustering
As explained in Section 3.3, we expect to observe clustering

based on peers’ upload capacities. Figure 1 demonstrates that peers
indeed form clusters. The figure plots the total time peers unchoked
each other via a regular unchoke, averaged over all runs of the ex-
periment. It is clear that peers in the same class cluster together,
in the sense that they prefer to upload to each other. This behavior
becomes more apparent when considering a metric such as the clus-

305

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

peer ID

C
lu

st
er

in
g

in
de

x
Regular Unchoke Duration Clustering Index (All Runs)

fast
medium
slow

Figure 2: Clustering index for all peers, averaged over all runs,
in the presence of a well-provisioned seed. Errorbars represent the
10th and 90th percentiles. Peers 1 to 13 have a 20 kB/s upload
limit, peers 14 to 27 have a 50 kB/s upload limit, and peers 28 to
40 have a 200 kB/s upload limit. The seed (peer 41) is limited to
200 kB/s. Peers show a strong preference to unchoke others in the
same class.

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

Completion Time (s)

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 P
ee

rs

Download Completion Time (All Runs)

fast
medium
slow

Figure 3: Cumulative distribution of the download completion
time for the three different classes of leechers, in the presence of
a well-provisioned seed (limited to 200 kB/s), for all runs. The
vertical line represents the earliest possible time that the download
could complete. Fast peers finish much earlier than slow ones.

tering index. We define this for a given peer in a given class (fast,
medium, or slow) as the ratio of the duration of regular unchokes
to the peers of its class over the duration of regular unchokes to
all peers. A high clustering index indicates a strong preference to
upload to peers in the same class. Figure 2 plots this index for all
peers and demonstrates that peers prefer to unchoke other peers in
their own class, thereby forming clusters. Further experiments with
upload limits following a uniform distribution also show that peers
have a clear preference for peers with similar upload capacities.

Although from Figure 1 it might seem that slow peers show a
proportionally stronger preference for their own class, this is an ar-
tifact of the experiment. Slow peers take longer to complete their

0 10 20 30 40
0

10

20

30

40

50

60

Downloading peer ID

Peer Download Speed (All Runs)

T
im

e*
60

s

0

50

100

150

Figure 4: Peer download speeds for all 60-second time intervals
during the download, averaged over all runs. Darker rectangles
represent higher speeds (the unit of the color bar on the right is in
kB/s). Peers 1 to 13 have a 20 kB/s upload limit, peers 14 to 27
have a 50 kB/s upload limit, while peers 28 to 40 have a 200 kB/s
upload limit. The seed (peer 41) is limited to 200 kB/s. Peer 27
achieves lower download rates than other peers in its class, while
peer 8 is the last one to finish.

download (as shown in Figure 3), and so they perform a higher
number of regular unchokes on average than fast peers. Also no-
tice that medium peer 27 interacts frequently with slow peers. This
peer’s download capacity is inherently limited, arguably due to ma-
chine or local network limitations, as seen in Figure 4 that plots
observed peer download speeds over time. As a result, it stays con-
nected to the torrent even after all other peers of its class have com-
pleted their download. During that last period it has to interact with
slow leechers, since those are the only ones left.

Figure 1 also shows that reciprocation is not necessarily mutual.
Slow peers frequently unchoke medium peers, but the favor is not
returned. Indeed, the slow peers unchoked medium peers for a total
of 501,844 seconds, as shown by the relatively dark center-left par-
tition. However, the medium peers unchoked slow peers for only
273,985 seconds, as shown by the lighter bottom-center. This lack
of reciprocation is due to the fact that slow peers are of little use to
medium ones, since they cannot offer high enough upload rates.

In summary, the choking algorithm facilitates clustering, where
peers mostly interact with others in the same class, with the occa-
sional exception of random optimistic unchokes.

4.1.2 Sharing Incentives
We now examine whether BitTorrent’s choking algorithm pro-

vides effective sharing incentives, in the sense that a peer who con-
tributes more to the torrent is rewarded by completing its download
sooner than the rest. Figure 3 indeed demonstrates this to be the
case. We plot the cumulative distribution of completion time for
the three classes of leechers in the previous experiment. The ver-
tical line in the figure represents the optimal completion time, the
earliest possible time that any peer could complete its download.
This is the time the seed finished uploading a complete copy of
the content. On average, this time is around 650 seconds for the
experiment.

Fast leechers complete their download soon after the optimal
completion time. Medium and, especially, slow leechers take sig-

306

0 10 20 30 40
0

5

10

15

20

25

30

35

40

Uploading peer ID

Aggregate Amount of Uploaded Data (All Runs)

D
ow

nl
oa

di
ng

 p
ee

r
ID

0

1

2

3

4

5

6
x 10

7

Figure 5: Total number of bytes uploaded by peers to each other,
averaged over all runs. Darker squares represent more data (the unit
of the color bar on the right is in bytes). Peers 1 to 13 have a 20
kB/s upload limit, peers 14 to 27 have a 50 kB/s upload limit, and
peers 28 to 40 have a 200 kB/s upload limit. The seed (peer 41)
is limited to 200 kB/s. Fast peers upload much more data than the
rest.

nificantly longer to finish. Contributing to the torrent enables a
leecher to enter the fast cluster and receive data at higher rates. This
in turn ensures a short download completion time. The choking al-
gorithm does indeed foster reciprocation by rewarding contributing
peers. In experiments with upload limits following a uniform distri-
bution, the peer completion time is also uniform: completion time
decreases when a peer’s upload contribution increases. This fur-
ther indicates the algorithm’s consistent properties with respect to
effective sharing incentives.

Note, however, that this does not imply any notion of data vol-
ume fairness. Fast peers end up uploading significantly more data
than the rest. Figure 5, which plots the actual volume of uploaded
data averaged over all runs, demonstrates that fast peers are the ma-
jor contributors to the torrent. Most of their bandwidth is expended
on other fast peers, per the clustering principle. Interestingly, the
slow leechers end up downloading more data from the seed. The
seed provides equal service to peers of any class, as we show in
Section 4.1.4, but slow peers have more opportunities than others
to download from the seed, since they take longer to complete.

In summary, BitTorrent provides effective incentives for peers
to contribute, as doing so will reward a leecher with significantly
higher download rates. Recent studies [16, 17, 23] have shown that
limited free-riding is possible in BitTorrent under specific circum-
stances, although such free-riders do not appear to severely impact
the quality of service for compliant peers. However, these studies
do not significantly challenge the effectiveness of sharing incen-
tives enforced by the choking algorithm. Although free-riding is
possible, such peers typically achieve lower download rates than
they could if they followed the protocol. As a result, if peers wish
to obtain the highest possible rates, it is in their best interest to
conform to the protocol.

4.1.3 Upload Utilization
We now turn our attention to performance by examining whether

the choking algorithm can maintain high utilization of peers’ up-
load bandwidth. Figure 6 is a scatterplot of such utilization in the
aforementioned setup. A utilization of 1 represents taking full ad-

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Time slot (60s)

U
pl

oa
d

ut
ili

za
tio

n

Global Upload Utilization (All Runs)

Figure 6: Scatterplot of peers’ upload utilization for all 60-second
time intervals during the download, in the presence of a well-
provisioned seed (limited to 200 kB/s). Each point represents the
average upload utilization over all peers for a given experiment run.
Utilization is kept high during most of the download session.

vantage of the available upload capacity. Average utilization for
each of the thirteen runs is plotted once per minute. The metric is
torrent-wide: for each minute, we sum the upload bandwidth used
by the peers during that minute, and divide by the upload capac-
ity available over that minute for all peers still connected at the
minute’s end. The total capacity decreases over time as peers com-
plete their downloads and disconnect. Utilization is low at the be-
ginning and the end of the session, but close to optimal for the
majority of the download. It rises slightly after approximately 15
minutes, which corresponds to when fast peers leave the torrent.
Perhaps the four-peer limit on parallel uploads restricts fast peers’
utilization. In any case, utilization is good overall.

In summary, the choking algorithm, in cooperation with other
BitTorrent mechanisms such as rarest-first piece selection, does
a good job of ensuring high utilization of the upload capacity of
leechers during most of the download. Low utilization during the
startup period may pose a problem for small contents, for which
it could dominate the total download time. We discuss a potential
solution to this in Section 5.2.

4.1.4 Seed Service
The official client introduced a modified choking algorithm in

seed state, as described in Section 2.3, although it reverted back to
the original in the most recent version. The client’s version notes
claim that the modified algorithm aims to reduce the amount of
duplicate data a seed needs to upload before it has pushed out a
full copy of the content into the torrent. We study this modified
algorithm for the first time and examine this claim.

Figure 7 shows the duration of unchokes, both regular and opti-
mistic, performed by the seed in a representative run of the afore-
mentioned setup. Leechers are unchoked in a uniform manner, re-
gardless of upload speed. Fast peers, those with higher peer IDs,
complete their download sooner, after which time the seed divides
its upload bandwidth among the remaining leechers. Leecher 8 is
the last to complete (as shown in Figure 4), and receives exclusive
service from the seed during the end of its download. We therefore
see that the modified choking algorithm in seed state provides uni-
form service; this is because it bases its unchoking decisions on the

307

0 1000 2000 3000
0

5

10

15

20

25

30

35

40

Time (s)

D
ow

nl
oa

di
ng

 p
ee

r
ID

Seed Unchoke Events

Figure 7: Duration of all unchokes (regular and optimistic) per-
formed by a well-provisioned seed to each peer. Results for a single
representative run. Peers 1 to 13 have a 20 kB/s upload limit, peers
14 to 27 have a 50 kB/s upload limit, and peers 28 to 40 have a 200
kB/s upload limit. The seed (peer 41) provides uniform service to
all leechers.

0 1000 2000 3000 4000
0

500

1000

1500

2000

2500

Time (s)

C
um

ul
at

iv
e

nu
m

be
r

of
 p

ie
ce

s

Pieces Uploaded by the Seed

Unique
Total

Figure 8: Number of pieces uploaded by the seed (limited to 200
kB/s), for a single representative run. The Unique line represents
the pieces that had not been previously uploaded, while the Total
line represents the total number of pieces uploaded so far. We ob-
serve a 14% duplicate piece overhead.

time peers have been waiting for seed service. As a result, the risk
of fast leechers downloading the entire content and quickly discon-
necting from the torrent is significantly reduced. Furthermore, this
behavior would mitigate the effectiveness of exploits that attempt
to monopolize seeds [16].

According to anecdotal evidence [2], initial seeds using the old
algorithm might have to upload 150% to 200% of the total content
size before other peers become seeds. Our experiments show that
the modified algorithm avoids this problem. Figure 8 plots the num-
ber of pieces uploaded by the seed during the download session for
a representative run. 527 pieces are sent out before an entire copy
of the content (453 pieces) has been uploaded. Thus, the duplicate
piece overhead is around 14%, indicating that the modified chok-

0 10 20 30 40
0

5

10

15

20

25

30

35

40

Uploading peer ID

Regular Unchoke Duration (All Runs)

D
ow

nl
oa

di
ng

 p
ee

r
ID

0

50

100

150

200

250

300

Figure 9: Time duration that peers unchoked each other via a reg-
ular unchoke, averaged over all runs. Darker squares represent
longer unchoke times (the unit of the color bar on the right is in
seconds). Peers 1 to 12 have a 20 kB/s upload limit, peers 13 to
26 have a 50 kB/s upload limit, and peers 28 to 40 have a 200 kB/s
upload limit. The seed (peer 27) is limited to 100 kB/s. There is no
discernible clustering.

ing algorithm in seed state avoids unnecessarily uploading dupli-
cate pieces to a certain extent. This number was consistent across
all our experiments, ranging from 11 to 15%. However, to the best
of our knowledge, there has been no experimental evaluation of the
corresponding overhead in the old algorithm, so it is not clear how
much of an improvement this is.

In any case, 14% duplication represents an opportunity for im-
provement. The official client always issues requests for pieces in
the rarest-pieces set in the same order. As a result, leechers might
end up requesting the same piece from the seed at approximately
the same time. It would be preferable for leechers to request rarest
pieces in random order instead.

4.2 Underprovisioned Initial Seed
We now turn our attention to a scenario with an underprovisioned

initial seed and demonstrate that the seed upload capacity is critical
to performance during the beginning of a torrent’s lifetime. The
experiment we present here involves a single seed and 39 leechers,
12 slow, 14 medium, and 13 fast. These nodes are different than
the nodes used in the previous experiment. The initial seed, rep-
resented as peer 27 in the following figures, is in this case limited
to 100 kB/s, instead of 200 kB/s. We set the number of parallel
uploads again to four for the seed and all the leechers. The results
we present are based on eight experiment runs and are consistent
with our observations from experiments with other torrent configu-
rations. Peer behavior in the presence of an underprovisioned initial
seed is substantially different than with a well-provisioned one.

4.2.1 Clustering
Figure 9 shows the total time peers unchoked each other via a

regular unchoke, averaged over all runs of the experiment. In con-
trast to Figure 1, there is no discernible clustering among peers in
the same class. The lack of clustering in the presence of an un-
derprovisioned initial seed becomes more apparent when consider-
ing the clustering index metric defined in Section 4.1.1. Figure 10

308

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

peer ID

C
lu

st
er

in
g

in
de

x
Regular Unchoke Duration Clustering Index (All Runs)

fast
medium
slow

Figure 10: Clustering index for all peers in the presence of an
underprovisioned seed, averaged over all runs. Errorbars represent
the 10th and 90th percentiles. Peers 1 to 12 have a 20 kB/s upload
limit, peers 13 to 26 have a 50 kB/s upload limit, and peers 28 to 40
have a 200 kB/s upload limit. The seed (peer 27) is limited to 100
kB/s. Peers do not show a clear preference to unchoke other peers
in any particular class.

0 10 20 30 40
0

5

10

15

20

25

30

35

40

Uploading peer ID

Peer Availability (All Runs)

D
ow

nl
oa

di
ng

 p
ee

r
ID

0

0.2

0.4

0.6

0.8

1

Figure 11: Normalized interested time duration for each peer pair,
averaged over all runs. Darker squares represent higher peer avail-
ability. Peers 1 to 12 have a 20 kB/s upload limit, peers 13 to 26
have a 50 kB/s upload limit, and peers 28 to 40 have a 200 kB/s
upload limit. The seed (peer 27) is limited to 100 kB/s. Fast peers
have poor peer availability to all other peers.

shows this metric for all peers. They are all similar, indicating a
lack of preference to unchoke peers in any particular class.

Figure 11 attempts to explain this behavior by plotting the peer
availability of each peer to every other peer, averaged over all runs
of the experiment. We define the peer availability of a download-
ing peer Y to an uploading peer X as the ratio of the time X was
interested in Y to the time that Y spent in the peer set of X . A peer
availability of 1 means that the uploading peer was always inter-
ested in the downloading peer, while a peer availability of 0 means
that the uploading peer was never interested in the downloading
peer.

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

Completion Time (s)

C
um

ul
at

iv
e

F
ra

ct
io

n
of

 P
ee

rs

Download Completion Time (All Runs)

fast
medium
slow

Figure 12: Cumulative distribution of the download completion
time for the three different classes of leechers, in the presence of
an underprovisioned seed (limited to 100 kB/s), for all runs. The
vertical line represents the earliest possible time that the download
could complete. Most peers complete at approximately the same
time, regardless of their contribution, soon after the seed finishes
uploading a complete copy of the content.

We can see that the fast peers have poor peer availability to all
other peers. This is because the seed is uploading new pieces at
a low rate, so even if it uploaded only to fast peers, those would
quickly replicate every piece as it was completed, remaining non-
interested for the rest of the time. The same is not true for slow
peers, however, since they upload even more slowly than the seed.
In addition, when a fast leecher is unchoked by a slow leecher, it
will always reciprocate with high rates, and thereby be preferred
by the slow leecher. As a result, fast peers will get new pieces
even from medium and slow peers. In this manner, fast peers pre-
vent clustering by taking up slower peers’ unchoke slots and thus
breaking any clusters that might be starting to form. This prevents
medium and slow peers from clustering together, even though the
seed is fast enough with respect to them. Further experiments with
other torrent configurations, including one with the initial seed fur-
ther limited to 20 kB/s, confirm this conclusion.

In summary, when the initial seed is underprovisioned, the chok-
ing algorithm does not enable peer clustering. We study in the next
section how this lack of clustering affects the effectiveness of shar-
ing incentives.

4.2.2 Sharing Incentives
We now examine how the lack of clustering affects the effective-

ness of sharing incentives. In particular, we investigate whether fast
peers still complete their download sooner than the rest. Figure 12
shows that this is no longer the case. Most peers complete their
download at approximately the same time. The points in the tail of
the figure are due to a single slow peer, peer 8, which completed
its download last in every run. This PlanetLab node has a poor
effective download speed independently of the choking algorithm,
likely due to machine or local network limitations. All other peers,
for all runs, complete their download less than 2,000 seconds after
the beginning of a run. Clearly, seed upload capacity is the per-
formance bottleneck. Once the seed finishes uploading a complete
copy of the content, all peers complete soon thereafter. Since up-
loading data to others does not shorten a peer’s completion time,

309

0 10 20 30 40
0

5

10

15

20

25

30

35

40

Uploading peer ID

Aggregate Amount of Uploaded Data (All Runs)

D
ow

nl
oa

di
ng

 p
ee

r
ID

0

1

2

3

4

5

6

x 10
7

Figure 13: Total number of bytes peers uploaded to each other,
averaged over all runs. Darker squares represent more data (the
unit of the color bar on the right is in bytes). Peers 1 to 12 have a
20 kB/s upload limit, peers 13 to 26 have a 50 kB/s upload limit,
and peers 28 to 40 have a 200 kB/s upload limit. The seed (peer 27)
is limited to 100 kB/s. Fast peers upload the most data, spreading
their bandwidth evenly.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

Time slot (60s)

U
pl

oa
d

ut
ili

za
tio

n

Global Upload Utilization (All Runs)

Figure 14: Scatterplot of peers’ upload utilization for all 60-second
time intervals during the download, in the presence of an underpro-
visioned seed (limited to 100 kB/s). Each point represents the av-
erage upload utilization over all peers for a given experiment run.
Utilization is kept at acceptable levels despite the seed limitation.

BitTorrent’s sharing incentives do not seem to be effective in this
situation.

Fast peers are again the major contributors in the torrent, but in
this case their upload bandwidth is expended equally across other
fast and slower peers alike. Figure 13, which plots the amount of
uploaded data between each peer pair, shows that fast peers made
the most contributions, distributing their bandwidth evenly to all
other peers.

In summary, when the initial seed is underprovisioned, the chok-
ing algorithm does not provide effective incentives to contribute.
Nevertheless, the available upload capacity of fast peers is effec-
tively utilized to replicate the pieces being uploaded by the seed.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Time slot (60s)

U
pl

oa
d

ut
ili

za
tio

n

Global Upload Utilization (All Runs)

Figure 15: Scatterplot of peers’ upload utilization for all 60-second
time intervals during the download, in the presence of a severely
underprovisioned seed (limited to 20 kB/s). Each point represents
the average upload utilization over all peers for a given experiment
run. Utilization is poor when the seed is very slow.

4.2.3 Upload Utilization
Interestingly, even with a slow seed, upload utilization remains

relatively high, as shown in Figure 14. Leechers manage to ex-
change data productively among themselves once new pieces are
downloaded from the seed, so that the lack of clustering does not
degrade overall performance significantly. The BitTorrent design
seems to lead the system to do the right thing: fast peers contribute
their bandwidth to reduce the burden on the initial seed, helping
disseminate the available pieces to slower peers. Although this de-
stroys clustering, it improves overall efficiency, which is a reason-
able trade-off given the situation.

We also experimented with a seed limited to an upload capacity
of 20 kB/s. Figure 15 shows that, with this extremely low seed ca-
pacity, there are few new pieces available to exchange at any point
in time, and each new piece gets disseminated rapidly after it is re-
trieved from the seed. The overall upload utilization is now low.
Slow peers exhibit slightly higher utilization than the rest, since
they do not need many available pieces to use up their available
upload capacity.

In summary, even in situations where the initial seed is underpro-
visioned, the global upload utilization can be high. However, our
experiments only involve compliant clients, who do not try to adapt
their upload contributions according to a utility function of the ob-
served download speed. On the other hand, in an environment with
free-riders and an underprovisioned seed, one might expect a lower
upload utilization due to the lack of altruistic peer contributions.

5. DISCUSSION
We now discuss two limitations of the choking algorithm that we

identified through our experiments: the initial seed upload capac-
ity is fundamental to the proper operation of the incentives mech-
anism, and peers take some time to reach full upload utilization at
the beginning of the download session.

5.1 Seed Provisioning
When the initial seed is underprovisioned, the choking algorithm

does not lead to the clustering of similar-bandwidth peers. Even

310

without clustering, however, we observed high upload utilization.
Interestingly, in the presence of a slow initial seed, the protocol
mechanisms lead the fast leechers to contribute to the download of
all other peers, fast or slow, thereby improving performance.

However, whenever feasible, one should engineer adequate ini-
tial seed capacity in order to allow fast leechers to achieve optimal
performance. Our results show that the lack of clustering occurs
when fast peers cannot maintain their interest in other fast peers. In
order to avoid this situation, the initial seed should at least be able
to upload data at a speed that matches that of the fastest peers in the
torrent. This suggestion is of course a rule-of-thumb guideline, and
assumes that the service provider knows a priori the maximum up-
load capacity of the peers that may join the torrent in the future. In
practice, reasonable bounds could be derived from measurements
or from an analysis of deployed network technologies. Further re-
search is needed to evaluate the exact impact of initial seed capac-
ity. We are currently developing an analytical model that attempts
to express the effect of this parameter on peer performance.

5.2 Tracker Protocol Extension
When a new leecher first joins the torrent, it connects to a random

subset of already-connected peers that are returned by the tracker.
However, in order to reach its optimal bandwidth utilization, this
new leecher needs to exchange data with those peers that have a
similar upload capacity to itself. If there are few such peers in the
torrent, it may take some time to discover them, since this has to
be done via random optimistic unchokes that occur only once every
30 seconds.

Consequently, it might be preferable to utilize the tracker in
matching similar-bandwidth leechers. In this manner, the duration
of the discovery period could decrease and the upload utilization
would be high even at the beginning of a peer’s download. The new
leecher could report its available upload capacity to the tracker
when joining the torrent. This parameter can be configured in the
client software, or may possibly be the actual maximum upload rate
measured during previous downloads. The tracker would then re-
ply with a random subset of peers as usual, along with their upload
capacities. The new leecher could optionally perform optimistic
unchokes first to peers with similar upload capacity, in an effort to
discover the best partners sooner.

Using this new tracker protocol extension, if the peer set contains
only a few leechers with similar upload capacity, they will discover
each other quickly. Leechers should employ some means of de-
tecting and punishing others who lie about their available upload
capacity. For instance, if a leecher does not respond to an opti-
mistic unchoke with an upload rate close to the one it announced to
the tracker, that leecher will not be unchoked again for some period
of time. In this manner, the possibility of a remote leecher initiating
a new interaction is left open, yet the benefit from free-riding be-
havior is limited since free-riders will eventually end up choked by
most peers. Since the tracker still returns a random subset of peers,
independently of the advertised upload capacity, there is no risk of
creation of disconnected clusters. In a collaborative environment,
however, the tracker might even want to return peers based on their
capacity, as previously proposed [7], in order to speed up cluster
creation even more. Of course, although the proposed tracker ex-
tension is promising, further investigation is required to verify that
it will work as expected.

6. RELATED WORK
There has been a fair amount of work on the performance and

behavior of BitTorrent systems. Bram Cohen, the protocol’s cre-
ator, has described BitTorrent’s main mechanisms and their design
rationale [8]. There have been several measurement studies exam-
ining real BitTorrent traffic. Izal et al. [12] measure several peer
characteristics derived from the tracker log for the Redhat Linux
9 ISO image, including the number of active peers, the propor-
tion of seeds and leechers, and the geographical spread of peers.
They observe that while there is a correlation between upload and
download rates, indicating that the choking algorithm is working,
the majority of content is contributed by only a few leechers and
the seeds. Pouwelse et al. [20] study the content availability, in-
tegrity, and download performance for torrents on an once-popular
tracker website. They observe that the centralized tracker compo-
nent could potentially be a bottleneck. Andrade et al. [6] study
BitTorrent sharing communities. They find that sharing-ratio en-
forcement and the use of RSS feeds to advertise new content may
improve peer contributions, yet torrents with a large number of
seeds present ample opportunity for free-riding. Furthermore, Guo
et al. [11] demonstrate that the peer arrival and departure rate is
exponential, and that performance fluctuates widely in small tor-
rents. Inter-torrent collaboration is proposed as an alternative to
providing extra incentives for leechers to stay connected after the
completion of their download. A more recent study by Legout et
al. [15] presents the results of extensive experiments on real tor-
rents. They show that the rarest-first and choking algorithms play
a critical role in BitTorrent’s performance, and claim that the re-
placement with a volume-based tit-for-tat algorithm, as proposed
by other researchers [13], is not appropriate. However, they do not
identify the reasons behind the properties of the choking algorithm
and fail to examine its dynamics due to the single-peer viewpoint.

Several analytical studies have formulated models for
BitTorrent-like protocols. Qiu et al. [21] provide a solution
to a fluid model of BitTorrent, where they study the choking algo-
rithm and its effect on performance. They observe that optimistic
unchoking may provide a way for peers to free-ride on the system.
Their model assumes peer selection based on global knowledge of
all peers in the torrent, as well as uniform distribution of pieces.
Massoulie et al. [18] introduce a probabilistic model of BitTorrent-
like systems and argue that overall system performance does not
depend critically on either altruistic peer behavior or the rarest-first
piece selection strategy. Fan et al. [9] characterize the complete
design space of BitTorrent-like protocols by providing a model
that captures the fundamental trade-off between performance and
fairness. Whereas all these models provide valuable insight into
the behavior of BitTorrent systems, unrealistic assumptions limit
their applicability in real scenarios [11, 20].

Other researchers have relied on simulations to understand Bit-
Torrent’s properties. Felber et al. [10] conducted an initial investi-
gation of the impact of different peer arrival rates, peer capacities,
and peer and piece selection strategies. Bharambe et al. [7] utilize a
discrete event simulator to evaluate the impact of BitTorrent’s core
mechanisms and observe that the rate-based tit-for-tat strategy is in-
effective in preventing unfairness in peer contributions. They also
find that the rarest-first algorithm outperforms alternative piece se-
lection strategies. However, they do not evaluate a peer set larger
than 15 peers, whereas the official implementation has a default
value of 80. This may affect the results since the accuracy of the
piece selection strategy is affected by the peer set size. Further-
more, Tian et al. [24] study peer performance towards the end of
the download and propose a new peer selection strategy which en-

311

ables more clients to complete their download after the departure
of all the seeds.

Researchers have also looked into the feasibility of selfish behav-
ior, when peers attempt to circumvent BitTorrent mechanisms to
gain unfair benefit. Shneidman et al. [22] were the first to demon-
strate that BitTorrent exploits are feasible. They briefly describe an
attack to the tracker and an exploit involving leechers lying about
the pieces they have. Jun et al. [13] argue that the choking al-
gorithm is not sufficient to prevent free-riding and propose a new
algorithm to enforce fairness in peers’ data exchanges. Liogkas et
al. [16] design and implement three exploits that allow a peer who
does not contribute to maintain high download rates under specific
circumstances. Even though such selfish peers can obtain more
bandwidth, there is no considerable degradation of the overall sys-
tem’s quality of service. Locher et al. [17] extend the work in [16]
and demonstrate that limited free-riding is feasible even in the ab-
sence of seeds. They also describe selfish behavior in BitTorrent
sharing communities. In addition, Sirivianos et al. [23] evaluate
an exploit based on maintaining a larger-than-normal view of the
torrent. Piatek et al. [19] observe that high-capacity peers typi-
cally provide low-capacity ones with an unfair share of the data.
They design a choking algorithm optimization that reallocates the
superfluous upload bandwidth to others in order to maximize peer
download rates.

Our work differs from all previous studies in its approach and
results. We perform the first extensive experimental study of Bit-
Torrent in a controlled environment, by monitoring all peers in the
torrent and examining peer behavior in a variety of scenarios. Our
results validate protocol properties that have not been previously
demonstrated experimentally, and identify new properties related
to the impact of the initial seed on clustering and sharing incen-
tives.

7. CONCLUSION
In this paper we presented the first experimental investigation

of BitTorrent systems that links per-peer decisions and overall tor-
rent behavior. Our results validate three BitTorrent properties that,
though believed to hold, have not been previously demonstrated ex-
perimentally. We show that the choking algorithm enables cluster-
ing of similar-bandwidth peers, fosters effective sharing incentives
by rewarding peers who contribute, and achieves high peer upload
utilization for the majority of the download duration. We also ex-
amined the properties of the modified choking algorithm in seed
state and the impact of initial seed capacity on the overall system
performance. In particular, we showed that an underprovisioned
initial seed does not facilitate the clustering of peers and does not
provide effective sharing incentives. However, even in such a case,
the choking algorithm facilitates efficient utilization of the avail-
able resources by having fast peers help others with their down-
load. Based on our observations, we offered guidelines for content
providers regarding seed provisioning, and discussed a proposed
tracker protocol extension that addresses an identified limitation of
the protocol.

This work opens up many avenues for future research. We are
currently developing an analytical model to express the impact of
seed capacity on peer performance. It would also be interesting to
run experiments with the old choking algorithm in seed state and
compare its properties to the modified algorithm, especially with
respect to the upload of duplicate pieces. In addition, we would
like to investigate the impact of different numbers of regular and
optimistic unchokes on the protocol’s properties. It has recently
been argued that there is a fundamental trade-off between these two
kinds of unchokes [9]. The current values used by the protocol are

intuition-based engineering choices; we would like to conduct a
systematic evaluation of system behavior under different parameter
values.

Acknowledgments
We wish to thank the anonymous reviewers and Michael Sirivianos
for their invaluable feedback.

8. REFERENCES
[1] BitTorrent mainline client.

http://www.bittorrent.com/download.html.
[2] BitTorrent Specification wiki.

http://wiki.theory.org/BitTorrentSpecification/.
[3] Instrumented BitTorrent client. http://www-sop.inria.fr/

planete/Arnaud.Legout/Projects/p2p_cd.html#software.
[4] Parallel openssh tools. http://www.theether.org/pssh/.
[5] PlanetLab platform. http://www.planet-lab.org.
[6] N. Andrade, M. Mowbray, A. Lima, G. Wagner, and M. Ripeanu. Influences

on Cooperation in BitTorrent Communities. In Proc. of the Workshop on
Economics of Peer-to-Peer Systems (P2PEcon’05), Philadelphia, PA, August
2005.

[7] A. R. Bharambe, C. Herley, and V. N. Padmanabhan. Analyzing and
Improving a BitTorrent Network’s Performance Mechanisms. In Proc. of
Infocom’06, Barcelona, Spain, April 2006.

[8] B. Cohen. Incentives Build Robustness in BitTorrent. In Proc. of the Workshop
on Economics of Peer-to-Peer Systems (P2PEcon’03), Berkeley, CA, June
2003.

[9] B. Fan, D.-M. Chiu, and J. C. Lui. The Delicate Tradeoffs in BitTorrent-like
File Sharing Protocol Design. In Proc. of ICNP’06, Santa Barbara, CA,
November 2006.

[10] P. A. Felber and E. W. Biersack. Self-scaling Networks for Content
Distribution. In Proc. of the International Workshop on Self-* Properties in
Complex Information Systems (Self-*’04), Bertinoro, Italy, May 31–June 2,
2004.

[11] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang. Measurements,
Analysis, and Modeling of BitTorrent-like Systems. In Proc. of IMC’05,
Berkeley, CA, October 2005.

[12] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. A. Hamra, and
L. Garcés-Erice. Dissecting BitTorrent: Five Months in a Torrent’s Lifetime.
In Proc. of PAM’04, Antibes Juan-les-Pins, France, April 2004.

[13] S. Jun and M. Ahamad. Incentives in BitTorrent Induce Free Riding. In Proc.
of the Workshop on Economics of Peer-to-Peer Systems (P2PEcon’05),
Philadelphia, PA, August 2005.

[14] T. Karagiannis, A. Broido, N. Brownlee, kc claffy, and M. Faloutsos. Is P2P
dying or just hiding? In Proc. of Globecom’04, Dallas, TX, November
29–December 3, 2004.

[15] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest First and Choke
Algorithms Are Enough. In Proc. of IMC’06, Rio de Janeiro, Brazil, October
2006.

[16] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploring the Robustness of
BitTorrent Peer-to-Peer Systems. Concurrency and Computation: Practice
and Experience, 2007. DOI: 10.1002/cpe.1187.

[17] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free Riding in BitTorrent
is Cheap. In Proc. of HotNets-V, Irvine, CA, November 2006.

[18] L. Massoulie and M. Vojnovic. Coupon Replication Systems. In Proc. of
SIGMETRICS’05, Banff, Canada, June 2005.

[19] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkataramani.
Do incentives build robustness in BitTorrent? In Proc. of NSDI’07,
Cambridge, MA, April 2007.

[20] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The BitTorrent P2P
file-sharing system: Measurements and Analysis. In Proc. of IPTPS’05,
Ithaca, NY, February 2005.

[21] D. Qiu and R. Srikant. Modeling and Performance Analysis of
BitTorrent-Like Peer-to-Peer Networks. In Proc. of SIGCOMM’04, Portland,
OR, August 30–September 3, 2004.

[22] J. Shneidman, D. Parkes, and L. Massoulie. Faithfulness in Internet
Algorithms. In Proc. of the Workshop on Practice and Theory of Incentives
and Game Theory in Networked Systems (PINS’04), Portland, OR, September
2004.

[23] M. Sirivianos, J. H. Park, R. Chen, and X. Yang. Free-riding in BitTorrent
Networks with the Large View Exploit. In Proc. of IPTPS’07, Bellevue, WA,
February 2007.

[24] Y. Tian, D. Wu, and K. W. Ng. Modeling, Analysis and Improvement for
BitTorrent-Like File Sharing Networks. In Proc. of Infocom’06, Barcelona,
Spain, April 2006.

312

