
A Brief Introduction to Named Data Networking
Alex Afanasyev

FIU
aa@cs.fiu.edu

Lan Wang
University of Memphis
lanwang@memphis.edu

Jeff Burke
UCLA

jburke@remap.ucla.edu

Beichuan Zhang
University of Arizona

bzhang@cs.arizona.edu

Tamer Refaei
The MITRE Corporation †

mrefaei@mitre.org

Lixia Zhang
UCLA

lixia@cs.ucla.edu

Abstract—As a proposed Internet architecture, Named Data
Networking (NDN) is designed to network the world of computing
devices by naming data instead of naming data containers as IP
does today. With this change, NDN brings a number of benefits to
network communication, including built-in multicast, in-network
caching, multipath forwarding, and securing data directly. NDN
also enables resilient communication in intermittently connected
and mobile ad hoc environments, which is difficult to achieve by
today’s TCP/IP architecture. This paper offers a brief introduc-
tion to NDN’s basic concepts and operations, together with an
extensive reference list for the design and development of NDN
for readers interested in further exploration of the subject.

Index Terms—Network architecture, Named Data Networking

I. INTRODUCTION

In a nutshell, a network ships data bits. It is the job of the
network architecture to define how this data shipping is real-
ized. A network architecture design makes two fundamental
decisions: (1) what namespaces are used for data delivery, and
(2) what the specific mechanisms are for the delivery.

There are two main options for the first design decision:
(1) name the locations to ship the bits to; or (2) name the
bits themselves.The second design decision depends on the
first: if named by location, data bits to be sent from host A
to host B may either be delivered along an established path
between the two communicating endpoints (virtual circuit), or
travel through the network as independent pieces to reach B
(datagrams). If one names the data bits directly, then one needs
to fetch data by names as the data does not go anywhere on
its own. 1

Today’s TCP/IP protocol architecture picked the first option
of network namespace design, naming locations, the same
communication model used by circuit-switched telephone net-
works. A telephone network assigns a phone number to each

This work is partially supported by US National Science Foundation under
award CNS-1719403, CNS-1629769, CNS-1629009 and CNS-1629922.

†Author’s affiliation with The MITRE Corporation is provided for iden-
tification purposes only, and is not intended to convey or imply MITRE’s
concurrence with, or support for, the positions, opinions or viewpoints
expressed by the author. It is approved for Public Release; Distribution
Unlimited. Case Number 18-2363.

1One might speculate whether an architecture design could support naming
both locations and data. Although nothing seems wrong about this proposal
on the surface, naming locations or naming data each leads to fundamentally
different network designs. We leave this explanation to another paper.

1

applications and
application protocols

IP

transport

link layer
transmission

media

NDN

transport

link layer
Including IP/TCP/UDP

transmission
media

App & network share the
same data namespace

applications and
application protocols

Push packets
to destination
addresses

Fetch data
chunks by
names

Fig. 1. Comparing IP and NDN protocol hourglasses

telephone set wired at a specific location and sets up a circuit
between two calling parties. From telephony to IP networking,
phone numbers are replaced by IP addresses, circuit switching
by packet switching with datagram delivery, but the same
location-based, point-to-point communication model remains.

Named Data Networking (NDN) [1], [2] takes the second
option of network namespace design, naming bits. As a
proposed Internet architecture, NDN is designed to network
the world of computing devices, ranging from IoT sensors to
cloud servers, by naming data bits. As we show in Figure 1,
named (and secured as will be shown later) data chunks make
the centerpiece in the NDN network architecture, and the NDN
network layer uses application data names to communicate.
This design empowers the network to retrieve named data
by any means necessary; treating networking, storage, and
computing resources in the same manner (Section IV), and
enables one to secure data directly (Section V).

This paper provides a brief introduction to NDN’s basic
concepts and operations, together with an extensive reference
list that points to the major results from the NDN design and
development efforts over the last eight years. Although space
limitations require that we must leave a detailed description
of the overall NDN design to another paper, we hope that this
paper offers the reader an overall picture of NDN’s basic prin-
ciples, concepts, operations, and properties. Interested readers
are encouraged to explore the references to learn more details.

Taking a different approach from the earlier work on NDN
introduction [2], in this paper we introduce the basic concepts

in the NDN design through comparisons with two designs
that most people should be familiar with: HTTP and TCP/IP
protocol stack (Sections II and III). We then sketch NDN’s
basic approaches to network forwarding (Section IV), se-
cure communication (Section V), and dataset synchronization
(Sync), which plays the role of transport services in the
NDN protocol stack (Section VI). We wrap up the paper
with discussions on several topics related to the NDN design
(Section VII), including (i) NDN’s applicability to battlefield
applications, (ii) where the basic ideas in the NDN design
came from, and (iii) the role of applications in the NDN
architecture development.

II. NDN AS A DATA RETRIEVAL PROTOCOL

From 10,000 feet, NDN’s basic idea might be seen as
shifting HTTP’s semantics of request, for a named data object,
and response, containing the requested object, to the network
layer. Being a network layer protocol, NDN’s requests and
responses work at a network packet granularity (Figure 2)
—each request, carried in an NDN Interest packet, contains
the name of the requested data and fetches one NDN Data
packet back.2 If the size of an application data object is large,
the object is segmented, with the segment number being a
component in the data packet name.3 Both packet types carry
the data name; neither contains an address nor any information
about the requester.

Data
Consumer

Interest Packet

Data Packet NDN network

Content
Signature

Content Name

Other Optional
Parameters

Content Name

ProducerRepository

Fig. 2. In an NDN network, one Interest packet can fetch one Data packet
back from either the original data producer, or a router cache, or from a
dedicated data repository (see Section IV)

Most of today’s Internet applications are built on web
protocols that request content by names. NDN adopts this
request-reply communication model and directly uses applica-
tion data names at the network layer to make network services
best match application communication patterns. However, in
contrast to URLs used in HTTP requests, which are used
by applications only, NDN data names are also used by the
network layer to fetch data, as explained in Section IV, and
to define security policies and automate data authentication
and confidentiality control (Section V). Consequently, names-
pace design is the most important step, and often the most
challenging one, in all NDN application and protocol designs,

2In the rest of the paper, we may shorten Interest packets to Interests, and
Data packets to simply Data.

3If a data fragment is still bigger than the link MTU it needs to cross, NDN
performs hop-by-hop fragmentation and reassumbly [3].

although little has been written about the lessons that have
been accumulated from the NDN namespace design exercises.4

One of our ongoing efforts is systematically documenting our
experience to guide future NDN development efforts.

Another important difference between HTTP as an appli-
cation protocol and NDN as a network layer protocol is
what each is responsible for accomplishing. HTTP runs over
a transport connection, e.g., TCP or QUIC, which reliably
delivers packets between a requestor and a data source. Thus,
a web application needs only to send the request and wait for
either a reply or a connection error. On the other hand, NDN
delivers packet over a network, which may be a locally scoped
IoT network, an ad hoc network made of mobile devices,
or a global scale Internet, thus an NDN Interest packet may
travel multiple hops to fetch the requested data, and the data
packet needs to make its way back to the requester while
the Interest carries no requester information. We explain how
NDN achieved this through its stateful forwarding plane in
Section IV.

In addition to being network layer packets, NDN Data
packets also differ from HTTP data objects in two other
important aspects. First, while an HTTP response message
is implicitly bound to the requesting URL by the underlying
TCP connection, every NDN Data packet explicitly carries
the data name in addition to the requested content, together
with a signature that cryptographically binds the name to the
content at the time of data creation; the content may also be
encrypted whenever needed. Second, while the same URL may
retrieve different content,5 NDN Data packets are immutable:
each name uniquely identifies an NDN Data packet6; when
a producer changes the content of a data packet, it needs to
generate a new packet with a new name to distinguish the
different versions of the content.

III. HOURGLASS-SHAPED NDN PROTOCOL STACK

Network researchers are intimately familiar with the existing
TCP/IP protocol architecture. We leverage this familiarity to
help readers grasp the NDN concepts by describing the NDN
protocol stack in comparison to the TCP/IP protocol stack as
shown in Figure 1. We highlight the similarities and, more
importantly, several fundamental differences between the two
stacks.

The most prominent similarity is that the NDN protocol
stack retains the same hourglass shape as TCP/IP. Just like IP,
the NDN network protocol performs datagram delivery and
runs over any transport media that can carry datagrams. Media
might include existing layer 2 protocols most often used to
interconnect nearby devices as well as TCP/UDP/IP tunnels
(which we use today to connect NDN-enabled devices that
are remote to one another).

Despite a similar structure, Figure 1 also shows that NDN
changes the narrow waist of the hourglass from IP packets

4There exist a few scattered discussions on the NDN namespace design, see
Section III in [4], Section 2 in [5], and Section IV in [6] for a few examples.

5For example, the content of http://cnn.com changes over time.
6An NDN Data packet may have multiple names.

Content
Store

Pending Interest
Table (PIT)

Interest ✗ ✓ ✗
forward

✓
Data

✓
add incoming
interface ✗

drop
or NACK

Content
Store

Pending Interest
Table (PIT)

✗

Data ✓ forward

discard Data

cache

Downstream Upstream

✗ lookup miss ✓ lookup hit

Strategy

FIB

Fig. 3. Forwarding Process at an NDN Node: upstream indicates the direction
of data producer and downstream is to data consumer.

carrying source and destination addresses to named, secured
NDN data chunks. This conceptually simple change leads to
several profound differences between the NDN and IP:

• The NDN network layer has no addresses; instead, it uses
application-defined namespaces.

• Consequently, NDN names data instead of data contain-
ers.

• In NDN, consumers fetch data instead of senders pushing
packets to destinations.

The direct use of application namespace for network com-
munication can greatly simplify NDN-based systems: there is
no more need for IP address allocation or DNS services to
translate names used by applications to addresses used by IP
for delivery. Next, we describe NDN packet delivery, which
illustrates another significant change from IP: NDN’s use of
a stateful forwarding plane.

IV. NDN AS A FORWARDING ENGINE

By default, an Interest packet carries the name of the
requested data only and does not contain any information
about the requester.7 Each NDN forwarder uses the name in
an Interest to determine to which interface or interfaces this
Interest should be forwarded.

A. Stateful Forwarding Plane

As shown in Figure 3, each NDN node’s forwarding module
contains three basic components: a Content Store (CS), a
Pending Interest Table (PIT), and a Forwarding Strategy that
includes the Forwarding Information Base (FIB), which is
populated by routing protocols or other means such as self-
learning [8]. Upon receiving an Interest IN , the forwarder first
checks the CS, then the PIT: if a matching Data is found from
the CS, the data is returned; otherwise, if a matching PIT entry
is found, IN’s incoming interface is added to the PIT. If there
is no match in the CS or the PIT, the forwarder records IN’s

7An Interest may contain the requester’s information if needed by appli-
cations; an example is the case of signed Interests [7], where the signature
contains the signer’s identity.

incoming and outgoing interfaces in the PIT, together with a
timestamp, then the Forwarding Strategy decides the output
interface(s) based on the FIB and observed performance, as
we explain below.

Once an Interest reaches a node which has a data packet
D with the matching name, D is forwarded over the reverse
path of the Interest, hop-by-hop, to reach all the requesters,
regardless how many there may be; D can also be cached
in the CS of each hop to serve future requests for the same
data. As one can see, this Interest-Data exchange creates a
closed feedback loop at each hop, allowing each forwarder
to measure data retrieval performance, to report forwarding
problems through hop-by-hop NACK, and to perform effective
congestion control.

We refer interested readers to [9], [10] for more details
about the NDN forwarding functions, but make three brief
observations. First, NDN has a stateful forwarding plane for
datagram delivery: the state is per-packet, per hop. Second,
this stateful forwarding plane, whose size scales proportionally
with the bandwidth times round trip delay, can potentially put
a high demand on NDN routers’ memory. However, the PIT
enables a number of capabilities, including multicast delivery,
loop-free multipath forwarding, in-network congestion control,
efficient loss recovery, instant detection and robust recovery
from path failures, which the Internet has long sought after [9].
We argue that a new network architecture design must take
full advantage of technology advances, such as new types of
fast and large-capacity memory, to best satisfy applications’
needs. Lastly, an NDN forwarder can buffer both Interests
(in PIT) and Data (in CS), a distinct feature that makes
NDN natively capable of communicating through intermittent
connectivity in an adverse environment, as we discuss further
in Section VII-A.

B. Routing in NDN Networks

An NDN network runs routing protocol(s) to propagate the
reachability of data names, similar to an IP network running
routing protocols to propagate the reachability of IP addresses.
However, there exist several important differences between
routing in IP and NDN networks.

First, an NDN routing protocol is an NDN application, and
routing updates are named and secured NDN data packets.
Thus, NDN routing security is natively built-in, while enhanc-
ing IP routing with security has been a multi-year effort and
still far from done.

Second, NDN supports multipath forwarding by allowing
each FIB entry to have multiple next hops without worrying
about Interest looping.8 In contrast, due to concerns about
packet looping, an IP FIB entry has only one next hop.

Third, an NDN network of a small size may not run
any routing protocol, but instead, it can use self-learning to
discover data reachability [8].

Finally, as we explain in [11], NDN’s stateful forwarding
plane fundamentally changes the requirements and importance

8Each NDN Interest carries a nonce, enabling PIT to detect any looping
Interest and discard it.

of a routing protocol, as the FIB is only one of, but no longer
the sole input factor in forwarding decisions.

One commonly heard concern about name-based NDN rout-
ing is scalability, as IP has a finite address space but NDN’s
namespace is unbounded. Interested readers may look up [12]
and [13], which report preliminary results in addressing NDN
routing scalability.

C. The Power of Using Names for Network Communication

The Internet has enabled an abundance of diverse applica-
tions that have changed our lives by performing a conceptually
straightforward task: delivering IP packets from any host to
any other host. Routing and forwarding provide the basic
power of the network layer to do this—they determine how to
get from one host to another on a global scale.

By naming data and doing routing/forwarding on names,
NDN magnifies that power. As of now, for an app on a mobile
phone to get desired data, say a photo taken at a block party
a few days ago, it must first figure out the destination IP
address to send its data request to, which is a nontrivial task—
applications work with semantically meaningful names and
know nothing about addresses or network topology. Today,
we let the phone look up DNS to find the address of a cloud
server and let the cloud handle the app’s need, even when
a neighbor’s storage server (e.g., a Synology box9) may be
hosting all the photos taken from that block party; and if the
user wants to add annotations on the photo, the desktop with
a GPU in the city library a few blocks away may well be able
to offer the needed photo processing functions.

With NDN, the neighbor’s Synology box could locally
announce the names of its collected contents (the photos) and
the library desktop can announce its computing services. By
fetching data with appropriate names, NDN no longer tells
the difference between wires, storage, or even processing,
since the requested data can come from any of them—the
original camera, a nearby storage, or a processing unit to
satisfy the user’s request for picture annotations [14]–[16].
The same capability extends to a larger scale with proper
handling of routing scalability. By using application names
to communicate at network layer, NDN blends networking,
storage, and processing into one integrated system.

V. COMMUNICATION SECURITY

Despite all the advances in cryptography, secure protocols
and system-level defenses, security remains the biggest chal-
lenge in today’s Internet. NDN addresses this challenge in
fundamentally different ways than today’s practices. NDN
enables one to secure data directly by having data produc-
ers cryptographically sign each data packet to bind together
the data name and content. One can also encrypt the data
whenever data confidentiality is needed [17]. These secu-
rity properties—authenticity and confidentiality—stay with the
data itself, independent from the data containers and com-
munication channels. Named, secured data packets provide a

9Synology is one of the many inexpensive NAS (network-attached-storage)
products on the market today.

basic building block directly at the narrow waist of the NDN
protocol stack to secure NDN communications. In addition,
in-network storage/caching, multipath forwarding, and flow
balance are key functionalities offered by the NDN archi-
tecture that provide great resilience against Denial of Service
attacks (e.g. bandwidth-depletion, reflection, and black-holing
attacks) that the current TCP/IP architecture has struggled to
cope with [18].

A major issue in using cryptographic protection is the
management and availability of keys and certificates, which
are needed for end users to verify the received data and
decrypt encrypted content. In NDN, keys, certificates, trust and
access policies are all named, secured data packets. In addition,
NDN allows one to make use of structured, semantically
meaningful names to define relations between data names
and cryptographic key names, to develop effective solutions
for trust management and security policies [19]. Furthermore,
NDN can also provide usable key management solutions
through defining naming conventions [17].

Cryptographic protections are rooted in the establishment
of trust anchors. Instead of blindly trusting a large num-
ber of commercial certificate authorities, NDN advocates an
approach to trust anchor establishment that resembles the
Simple Public Key Infrastructure/Simple Distributed Security
Infrastructure (SPKI/SDSI) model [20]. The NDN design lets
the authority of each networked system (an organization, a
smart home, etc.) establish its own trust anchor(s) and have
its own local means to securely install the trust anchors into
all devices under its control. We refer interested reader to [21]
for more details.

VI. THE NEED FOR DATASET SYNCHRONIZATION

Conceptually, an ongoing TCP connection can be viewed as
synchronizing the dataset at the two ends: either end produces
data that is then reliably delivered to the other end. However,
TCP only works for point-to-point data synchronization and
supports only synchronous communication (i.e., both ends
must be online at the same time).

The concept of NDN Sync, or Sync in short, was born from
observed common needs in developing NDN applications—
dataset synchronization that is multiparty and asynchronous.
This can be seen as a generalization of TCP. Unlike TCP,
Sync does not add an additional header in front of application
generated packets, and is implemented in system libraries to
support application data delivery needs.

As an illustrative use case for Sync, consider an NDN-
based chat application in a battlefield scenario, as shown
in Figure 4, which enables the soldiers and commanders to
communicate securely through simple messages. Sync can
significantly reduce the development effort of such an app: the
app can simply hand over user messages to Sync, which then
takes the responsibility to deliver the message to all the users
in the same chatroom as soon as possible over heterogeneous,
lossy, and intermittently connected communication channels.
Other tasks that a chatroom app must perform, such as defining
security policies and managing the chatroom membership, can

also be simplified by making use of NDN libraries and data-
centric properties.

Over the years multiple Sync protocol designs have been
developed. A companion MILCOM 2018 paper titled “A Brief
Introduction to NDN Dataset Synchronization” [22] provides
a summary on what has been achieved in the development of
Sync. Interested readers can also find further details from [4],
[23]–[26].

Aircraft
Gateway

Aircraft AAircraft B
Satellite

Command
Center

/military/control

Squad
Gateway

Squad ASquad BSquad C
/military/ground/squad(A/B/C)

/military/air/aircraft(A/B)

Fig. 4. A battlefield scenario, where the various wireless communication
channels offer lossy and intermitted connectivities.

VII. DISCUSSION

A. NDN for the Battlefield

Tactical applications tend to be peer-to-peer in nature,
providing global, zoned or localized situational awareness.
They need to operate in a bandwidth-limited, highly mobile,
and constantly disconnected environment. The combination
of three basic ingredients in NDN design, i.e., naming data,
securing data directly, and stateful forwarding, leads to a
secure and resilient network delivery service with a number
of highly desirable properties to support tactical applications.

• Naming data automatically enables host multihoming:
Interests and Data may come and go through any of the
multiple wireless interfaces a mobile device may have.

• Facilitating ad hoc networking through rendezvous by ap-
plication names: One can simply request data by names,
which are built into applications, from other encountered
devices, with no additional configuration needed.

• Enabling delay/disruption tolerant networking: As men-
tioned in Section IV, each NDN node has built-in storage
for pending Interests (PIT) and Data (CS), so it can carry
them around until it meets the next node to forward them
further.

• Supporting sharing among devices: caching and multicast
allow devices to share their data, leading to more efficient
utilization of the bandwidth in the network and to the
outside, which is typically low in a tactical network.

• Allowing quick recovery from losses: Suppose a Data
packet gets lost on its way to the consumer. As long
as a node on the path has cached the data before it is
dropped, the consumer can retransmit its Interest to find
the previously cached data, without needing the Interest
to travel all the way to the original data producer.

An NDN node can freely communicate with any node it
encounters because authenticity and access control are built
into the data and independent from the data containers or
communication channels. One can find further explanation in
[9], [21], [27], [28]. Next we explain where the basic ideas in
the NDN architecture came from.

B. “Study the past if you would define the future” – Confucius

No bible teaches us how to design a network architecture;
instead, we learn from experimentation that feeds iterative
design. The NDN design, in particular, is the consolidation
of research insights accumulated over the last few decades.
The NDN design adheres to the well-understood Internet
design principles. Similar to an IP network, an NDN network
performs datagram delivery to keep the network layer simple.
Its stateful forwarding plane keeps the state at a per-datagram
per-hop granularity, offering significantly enhanced robustness
and resiliency to packet losses and component failures as
compared to IP [9], [29]. Moreover, NDN extends the end-
to-end principle to include end-to-end data security: each
producer seals the binding between the name and content of
every data packet it generates with a signature, so that all
consumers can verify data authenticity regardless of where
the data comes from. This works well in the presence of an
increasing number of CDN boxes for content scalability, and
increasing device mobility and capacity where mobiles serve
as effective data carriers to enable communications even when
there is never a direct communication channel between data
producers and consumers.

One can trace back each of the main ideas in the NDN
architecture to earlier research results. As introduced earlier,
the Interest for data communication patterns mimics web
applications. The idea of a receiver-driven data delivery model
is adopted from IP multicast [30], [31]. The idea of having
packets carry application defined data units or Application
Level Framing (ALF) was discussed in [32] back in 1990;
the idea of enabling resilient communication through the
combined use of multicast and ALF was discussed in [33],
a few years after [32]. In-network state for IP was used in the
receiver-driven reservation protocol RSVP [34]. Forwarding
based on application names in an overlay network with stor-
age appeared in Adaptive Web Caching in 1998 [35], while
location-independent data naming and data-centric communi-
cation were proposed in 2001 [36]. Finally, DNS Security
Extensions, whose design started in mid 90’s, secure all
response data directly.

Much of IP’s success is due to the minimalism of its network
layer and the weak demands it places on Layer 2. NDN
inherits these properties. At the same time, NDN recognizes
the changes in technologies, in networking environments, and
in application requirements. Consequently NDN both shares
similarities with the TCP/IP architecture and differs from it in
fundamental ways.

C. Application-Driven Architecture Development

If a new architecture is useful in solving real problems and
is easy to deploy, we are confident that it would be readily
accepted, just like what happened to IP deployment 30+ years
ago. To ensure that NDN solves real problems, the NDN
design has adopted an application-driven approach for the
architecture design and development, which targets (i) useful
apps and (ii) running code that verifies/validates the design.

We believe that NDN can best prove its usefulness in
greenfields where IP has not made progress due to intrinsic
limitations. Trying out emerging applications that do not
and cannot have good IP-based solutions—such as vehicle
networking, serverless distributed applications, participatory
and user-centric mobile health, and AR/VR in wireless ad-hoc
environments—can validate beneficial built-in properties of the
NDN architecture. It also drives the engineering of architecture
components to simplify development and deployment of such
applications. In particular, the application prototypes we built
over the years [5], [37], [38] demanded auto-configuration of
initial forwarding state and security. While we are still refining
these solutions, a number of useful tools and specifications
have already emerged over the years [39], including autoconfig
tools [40]–[42] to establish connectivity to NDN hubs in non-
native NDN environments, automatic prefix propagation [43],
prefix re-advertise [44], Wi-Fi Direct data discovery [45] and
self-discovery [8] protocols to simplify FIB management in
local environments without the use of heavy-weight routing
protocols, trust bootstrapping protocols [21], NDNCERT [46]
to automate certificate management, trust schema [19] to
automate data validation, NAC [17] to automate management
of encryption keys, and many others.

VIII. CONCLUSION

Today’s Internet runs over the TCP/IP protocol stack whose
specifications [47] were published 37 years ago to the date
of this conference. Over this time period, computing and
communication technologies have advanced rapidly. These
advances have enabled new applications, which in turn place
new demands on the underlying networking support, including
TCP/IP. Consequently, the network architecture must evolve
to take advantage of technology advances and to meet the
demands of new applications, which range from distributing
vast amount of video to a global audience that is increasingly
connected through mobile rather than wireline networks, to
securing billions of IoT devices, and to supplying 3D maps to
soldiers in adverse battlefield environments.

The NDN architecture is built upon lessons learned from the
operational Internet, which have accumulated over the last few
decades. These include the success of HTTP’s request and re-
sponse architecture, which NDN applies at packet granularity,
as well as higher-level insights into successful network design
principles, such as the importance of the “thin waist” of the
network layer within an hourglass architecture and the end-to-
end principle. Our NDN research strives to apply these lessons
and principles in a coherent architecture that is motivated by
diverse applications and includes new forwarding strategies,

congestion control mechanisms, routing protocols, data syn-
chronization mechanisms, and security solutions, all running
as an experimental platform over an operational testbed [48].

The application-driven approach described in the previous
section verifies and validates various design decisions, discov-
ers missing pieces, and exposes design tradeoffs. Through it,
we have learned (for example) the importance of, as well as
the challenges in, the namespace design. We have learned the
power from utilizing naming conventions, and the necessity
of automating security supporting mechanisms. The more
recent effort in applying NDN to support mobile ad hoc
communications has led to further insight into NDN Sync
design spaces [22].

Although the NDN architecture design is still in its research
stage and a number of issues remain open, efforts of applying
NDN to solve real world problems have begun. Similar to the
IP rollout process, where a number of important issues were
identified and resolved through large scale use,10 we expect
that the NDN architecture and implementation will continue
to mature through what is learned from new application and
deployment efforts.

We believe that the NDN design brings not only new
research topics in the overall network architecture and pro-
tocol development, but also new opportunities to take NDN
prototypes to trial deployment. We invite everyone to join this
effort, and hope the references provided in this paper can serve
as a starting point for interested readers to further explore this
new exciting direction.

REFERENCES

[1] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs, and
R. Braynard, “Networking Named Content,” in Proc. of CoNEXT, 2009.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM Computer Communication Review, July 2014.

[3] A. Afanasyev, J. Shi, L. Wang, B. Zhang, and L. Zhang, “Packet
fragmentation in NDN: Why NDN uses hop-by-hop fragmentation
(NDN Memo),” NDN, Technical Report NDN-0032, May 2015.

[4] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset
state synchronization in Named Data Networking,” in Proc. of IEEE
ICNP, 2013.

[5] H. Zhang, Z. Wang, C. Scherb, C. Marxer, J. Burke, L. Zhang, and
C. Tschudin, “Sharing mhealth data via named data networking,” in
Proc. of ACM ICN, 2016.

[6] W. Shang, Z. Wang, A. Afanasyev, J. Burke, and L. Zhang, “Breaking
out of the cloud: Local trust management and rendezvous in Named
Data Networking of Things,” in Proc. of ACM/IEEE IoTDI, 2017.

[7] NDN Project Team, “Signed Interest,” https://named-data.net/doc/
ndn-cxx/current/specs/signed-interest.html, 2018.

[8] J. Shi, E. Newberry, and B. Zhang, “On Broadcast-based Self-Learning
in Named Data Networking,” in Proc. of IFIP Networking, 2017.

[9] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang,
“A case for stateful forwarding plane,” Computer Communications: ICN
Special Issue, vol. 36, no. 7, pp. 779–791, April 2013.

[10] K. Schneider, C. Yi, B. Zhang, and L. Zhang, “A practical congestion
control scheme for Named Data Networking,” in Proc. of ACM ICN,
2016.

[11] C. Yi, J. Abraham, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang,
“On the role of routing in Named Data Networking,” in Proc. of ACM
ICN, 2014.

10Examples include the development of DNS services, TCP congestion
control, and BGP the inter-domain routing protocol.

[12] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, “SNAMP:
Secure namespace mapping to scale NDN forwarding,” in Proc. of IEEE
Global Internet Symposium, 2015.

[13] V. Lehman, A. Gawande, B. Zhang, L. Zhang, R. Aldecoa, D. Krioukov,
and L. Wang, “An experimental investigation of hyperbolic routing with
a smart forwarding plane in NDN,” in Proc. of IEEE/ACM IWQoS, 2016.

[14] C. Marxer, C. Scherb, and C. Tschudin, “Access-controlled in-network
processing of named data,” in Proceedings of ACM ICN, 2016.

[15] M. Król and I. Psaras, “NFaaS: Named Function As a Service,” in
Proceedings of ACM ICN, 2017.

[16] J. Burke, “Browsing an Augmented Reality with Named Data Network-
ing,” in 2017 26th International Conference on Computer Communica-
tion and Networks (ICCCN), July 2017.

[17] Y. Yu, A. Afanasyev, and L. Zhang, “Name-based access control,” NDN,
Technical Report NDN-0034, Jan. 2016.

[18] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “DoS and DDoS in Named
Data Networking,” in Proc. of ICCCN, 2013.

[19] Y. Yu, A. Afanasyev, D. Clark, kc claffy, V. Jacobson, and L. Zhang,
“Schematizing trust in Named Data Networking,” in Proc. of ACM ICN,
2015.

[20] R. L. Rivest and B. Lampson, “SDSI—a simple distributed security
infrastructure.” Crypto, 1996.

[21] Z. Zhang, Y. Yu, H. Zhang, E. Newberry, S. Mastorakis, Y. Li,
A. Afanasyev, and L. Zhang, “An overview of security support in Named
Data Networking,” NDN, Technical Report NDN-0057, Apr. 2018.

[22] T. Li, W. Shang, A. Afanasyev, L. Wang, and L. Zhang, “A Brief
Introduction to NDN Dataset Synchronization,” in Proc. of MILCOM,
2018.

[23] M. Zhang, V. Lehman, and L. Wang, “Scalable Name-based Data Syn-
chronization for Named Data Networking,” in Proc. of IEEE INFOCOM,
2017.

[24] W. Fu, H. Ben Abraham, and P. Crowley, “Synchronizing namespaces
with invertible bloom filters,” in Proc. of ACM/IEEE ANCS, 2015.

[25] W. Shang, A. Afanasyev, and L. Zhang, “VectorSync: Distributed dataset
synchronization over Named Data Networking,” NDN, Technical Report
NDN-0056, Mar. 2018.

[26] W. Shang, Y. Yu, L. Wang, A. Afanasyev, and L. Zhang, “A survey of
distributed dataset synchronization in Named Data Networking,” NDN,
Technical Report NDN-0053, May 2017.

[27] C. Gibson, P. Bermell-Garcia, K. Chan, B. Ko, A. Afanasyev, and
L. Zhang, “Opportunities and challenges for Named Data Networking
to increase the agility of military coalitions,” in Proc. of DAIS, 2017.

[28] H. Zhang, Y. Li, Z. Zhang, A. Afanasyev, and L. Zhang, “NDN Host
Model,” ACM Computer Communication Review, July 2018.

[29] S. Vusirikala, S. Mastorakis, A. Afanasyev, and L. Zhang, “Hop-by-
hop best effort link layer reliability in Named Data Networking,” NDN,
Technical Report NDN-0041, Aug. 2016.

[30] S. E. Deering, “Multicast Routing in Internetworks and Extended
LANs,” ser. SIGCOMM ’88, 1988.

[31] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven Layered
Multicast,” ser. SIGCOMM ’96, 1996.

[32] D. Clark and D. Tennenhouse, “Architectural considerations for a new
generation of protocols,” in Proc. of SIGCOMM, 1990.

[33] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “A
reliable multicast framework for light-weight sessions and application
level framing,” IEEE/ACM Transactions on Networking, 1997.

[34] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP:
A New Resource ReSerVation Protocol,” IEEE network, 1993.

[35] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and V. Ja-
cobson, “Adaptive Web Caching: towards a new global caching archi-
tecture,” Computer Networks and ISDN systems, 1998.

[36] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and
D. Ganesan, “Building efficient wireless sensor networks with low-level
naming,” in Proceedings of SOSP, 2001.

[37] A. Afanasyev, Z. Zhu, Y. Yu, L. Wang, and L. Zhang, “The story of
ChronoShare, or how NDN brought distributed secure file sharing back,”
in Proc. of IEEE MASS Workshop on Content-Centric Networks, 2015.

[38] P. Gusev, Z. Wang, J. Burke, L. Zhang, E. Muramoto, R. Ohnishi,
and T. Yoneda, “Real-time streaming data delivery over Named Data
Networking,” IEICE Transactions, May 2016.

[39] NDN Project Team, “Named Data Networking project specifications,”
https://named-data.net/project/specifications/, 2018.

[40] ——, “NDN hub discovery procedure,” http://named-data.net/doc/NFD/
current/manpages/ndn-autoconfig.html, 2018.

[41] G. Liu and A. Afanasyev, “NDN-FCH (find closest hub),” https://github.
com/named-data/ndn-fch, 2018.

[42] NDN Project Team, “Local hub prefix discovery,” https://named-data.
net/doc/NFD/current/local-prefix-discovery.html, 2018.

[43] Y. Li, A. Afanasyev, J. Shi, H. Zhang, Z. Zhang, T. Li, E. Lu, B. Zhang,
L. Wang, and L. Zhang, “NDN automatic prefix propagation,” NDN,
Technical Report NDN-0045, March 2018.

[44] NDN Project Team, “Readvertise end-host routes into NLSR,” https:
//redmine.named-data.net/issues/3818, 2017.

[45] A. Gong, “NDN over WiFi Direct protocol specification,”
https://redmine.named-data.net/projects/nfd-android/wiki/NDN_Over_
WiFi_Direct_Protocol_Specification, December 2016.

[46] Z. Zhang, Y. Yu, A. Afanasyev, and L. Zhang, “NDN certificate
management protocol (NDNCERT),” NDN, Technical Report NDN-
0050, Apr. 2017.

[47] “Internet Protocol,” J. Postel, Ed., September 1981.
[48] NDN Project Team, “NDN Testbed,” https://named-data.net/

ndn-testbed/, 2018.

Some small editing changes made this version of the paper differ slightly from the MILCOM 2018 proceedings.

