SPECIAL FEATURE

And Now a Case for More
Complex Instruction Sets

Michael J. Flynn, Chad L. Mitchell, and Johannes M. Mulder

ith the spate of recent papers
and product announce-
ments,"? it might seem that

the reduced instruction set computer, or
RISC, approach to instruction set design
has been universally accepted as superior.
These RISC designs® have been character-
ized as having few simple instruction types
with fixed instruction size and formats.
The antithesis of RISC designs have been
designated CISC, for complex instruction
set computer, and characterized as having
large instruction vocabularies with multi-
ple sizes, formats, and addressing
modes.*

RISC performance estimates, when
compared to alternative conventional
CISC (such as VAX, S/360, etc.)
approaches, seem impressive. While there
have been critical appraisals of the RISC
approach,’ the comparative performance
evaluations provide formidable, although
qualified, evidence in its favor.

Our purpose here is to evaluate and
compare RISC-type designs with non-
RISC instruction-set extensions using a
level playing field: with similar compiler
strategies, without compatibility consider-
ations, and with similar implementation
constraints. We also deal with instruction
set evaluation. The data presented is based
on five benchmark programs discussed
later.

September 1987

Stanford University

T
Using a computer
architecture
simulation platform,
we can perform
instruction set
tradeoffs with a
common optimizing
compiler and
workload.

Instruction sets have many attributes as
well as constraints. The key to careful
instruction set evaluation is to consider key
attributes and the tradeoffs possible
among them in light of implementation
constraints.

Modeling performance
in instruction set design

It is difficult to create a truly fair basis
for comparing instruction set designs®

0018-9162/87/0900-0071$01.00 ©1987 IEEE

because of the myriad of considerations
and compromises in achieving the final
design. Broadly, these factors fall into two
classes: those concerned with functional
requirements and those directly related to
performance.

The former class includes issues such as
compatibility, design time, and technology
selection. We will discuss it briefly in a
later section.

Performance-oriented considerations.
Quantitative evaluation certainly makes
for interesting comparisons, especially
when driven by a common and represen-
tative workload. Typical runtime measure-
ments include both static and dynamic
characteristics of processor execution:

(1) Static measures. They simply repre-
sent the static size of program representa-
tion. In the absence of other considera-
tions, smaller size is better, as more con-
cise code should have better locality in a
memory hierarchy and requires less mem-
ory bandwidth.

(2) Dynamic measures. They include the
number and type of instructions executed,
number of data references required for
reads and writes, and memory traffic as
measured in number of bytes transferred.

(3) Compilation time. An item fre-
quently overlooked in comparisons is the
time it takes to create a program represen-

71

Architectural
specifications

Pascal

U-code
to U-code
optimizer

Architecture
simulator

Fortran ‘ c |

» Code I
generator

" Code I
generator

Cache

simulator

Me8020

VAX

Performance
parameters

Figure 1. Computer architect’s workbench.

tation. It has been variously estimated that
half of mainframe problem-state activity
involves compiling programs.

(4) Operating system execution time.
Depending on the system and the applica-
tion, a significant fraction of machine exe-
cution time is spent in the operating
system. A good instruction set must sup-
port system functions.

A basis for comparison. In the creation
of a new instruction set design, the evalu-
ation of expected runtime parameters is an
important facet in understanding the
required tradeoffs. While it is imperative
to compare a projected design against
existing designs, it is just as important to
understand the limitations of such com-
parisons. To achieve a small runtime
advantage, for example over a VAX
model, is necessary but not ccaclusive evi-
dence of design validity. Similarly, com-
paring a design and technology which will
be available to customers in future years
with designs done several years ago and
currently in production may give a mis-
leading impression of the role of the
instruction set in determining per-
formance.

A further problem is that comparisons
are made not simply across processors, but
usually across processor-compiler pairs.
Processor-instruction-set variations can
become lost in the noise of differences in
compilers. We need to create a level play-

72

ing field for the evaluation of instruction
set alternatives using a common compile-
time strategy.

In the remainder of this article we
assume

¢ a common workload (benchmarks),
e a simple register-oriented base
instruction set,
® a fixed implementation technology,
e similar compiler optimizations for all
instruction set variations, and
e the same arithmetic logic unit (ALU),
data paths, and instruction vocabu-
lary for operations for all instruction
set variants (thus, the same ALU
cost). Instruction count differences
will arise only due to format and reg-
ister differences.
We will use a simple base design to
evaluate the usefulness of several possible
additions.

A computer architect’s
workbench

The computer architect’s workbench’
is a set of tools developed at Stanford
which allows the evaluation of architec-
tural and memory system parameters for
a variety of different instruction sets using
a common compiler front end. As shown
in Figure 1, applications written in Pascal,
Fortran, or C compile into an intermedi-

ate code called U-code. If desired, we can
optimize the U-code representation of the
application by means of the global U-code
to U-code global optimizer.

The actual simulation consists of a static
and a dynamic part. During the static part,
the simulator extracts static information
per basic block (a code segment with a sin-
gle entry and exit point). The information
includes the code size of the basic block for
the target architecture and data-reference
information. The architectural specifica-
tion drives this stage and determines the
code size. To examine the relative per-
formance of different instruction sets on
an application, an architect simply
parameterizes an architecture or instruc-
tion set family.

During the dynamic part, the bench-
mark executes and passes dynamic infor-
mation to the simulator. Information
includes the currently executing basic
block and dynamic data references. The
simulator associates the dynamic basic-
block trace with the static basic-block
information; generates simple architec-
tural characteristics such as program size,
number of executed instructions, number
of memory references, and so forth; and
generates an address trace to drive a sub-
sequent cache simulator.

The architect’s workbench allows rapid
evaluation of multiple architectural and
memory system designs. Among the
instruction sets currently available are

COMPUTER

Processor

Tradeoff #1

Tradeoff #2

Tradeoff #3

Within limits, more complex instruction decode

(More formats, operations, etc.)

- reduces memory traffic for instruction (without cache)

or > reduces instruction-cache size for constant memory traffic.

Within limits, increasing register-set size (and/or complexity)
->reduces memory traffic for data (without cache)
or > reduces data-cache size for constant memory traffic.

More complex instruction decode and/or increased register-set
size may increase cycle time and decode area.

Figure 2. Basic tradeoffs.

e stack machines, including fixed-size
stack machines, byte-encoded stack
machines, and B6700-type stack
machines;

e register-set machines, including load-
store architectures and Sys-
tem/360-type architectures; and

e direct-correspondence architectures.®

Using the architect’s workbench to
evaluate architectures. With the work-
bench we normalize the effects of compiler
optimization. The optimizer can be turned
on or off, but all architectures receive the
same degree of optimization. With a pro-
gram trace we can view the effect of regis-
ter allocation and create perfect allocation
by reallocating after initial program exe-
cution.

The workbench was developed to allow
top-down evaluation of a variety of
architectures for a particular workload.
The designer uses the workbench to select
an instruction set customized to the partic-
ular application. The system is easy to use
since in the initial evaluation only the basic
instruction set parameters need to be speci-
fied. Unless explicitly added, the system
will default to (assume that)

(1) All architectures have the same func-
tional (ALU-type) operations and these
operations correspond to the actions
defined by the high-level source language

September 1987

of the benchmarks (Pascal, for our
benchmarks).

(2) All architectures have the same data
paths (32 bits for this study).

(3) All instructions execute in unit time.
We do not evaluate the effects of pipelin-
ing, but we do calculate the processor
cycles spent in the data buffer and
memory.

The system is designed to allow basic
high-level tradeoffs, such as in instruction
format selection, instruction encoding,
register-set size and organization, and
cache size and organization. After making
an initial evaluation to select several
promising candidate architectures, the
designer would supply the additional
information specifying ALU vocabulary
and timing, pipeline timing templates,
pipeline interlocks, etc., for a complete
behavioral simulation.

Currently our system does not include
facilities for pipeline timing evaluation,
although it is being extended to include all
of the above mentioned features.

For this article we based our tradeoff
measurements on memory traffic; they do
not directly include pipeline-cycle counts.
Where differences arise, we will estimate
the effect on cycle count.

An instruction set consists of a tradeoff
between memory bandwidth and proces-
sor storage, as well as processor-decode
requirements (see Figure 2). There are

several basic tradeoffs based on instruc-
tion encoding and available processor stor-
age. The amount of complexity associated
with instruction decode (the conciseness of
the encoding) determines both the number
of instructions fetched and the number of
bits required from memory to interpret a
program. The number of registers availa-
ble for the allocator, together with the allo-
cation strategy, determine the data traffic.
Both instruction and data references to
memory can be diminished by the presence
of cache, either separate caches for the
instruction and data stream or an inte-
grated cache for both.

If we use care in evaluating relatively
close architectural alternatives, we can get
a good idea as to which architectural
strategies are better than others, even
though we may not be able to determine an
exact optimum. In dealing with two simi-
lar designs, we can invoke a principle of
marginal utility: Enhance a base design by
an alternative that provides the maximum
performance per unit cost. In order to use
this in our analysis, we make the assump-
tion that all processor variants under study
have the same operational instruction
set—they execute the same data transfor-
mational instructions (add, shift, etc.),
even though they may differ in architec-
tural instructions required by their instruc-
tion set (number of loads and stores in a
register architecture, or number of pushes
and pops in a stack architecture). By

73

Table 1. Benchmark sizes for stack architecture.

Benchmark Static Size % Actually Dynamic Size Instructions
(bytes) Referenced (bytes) (Dynamic)
CCAL 12,980 63% 4,391,864 1,058,262
Compare 8,948 60% 35,113,324 8,538,373
PCOMP 71,276 69% 22,084,724 5,323,939
PASM 15,424 80% 17,814,260 4,352,798
Macro 73,980 53% 2,538,512 617,765
Table 2. Four instruction sets studied.
Type Formats Encoding Addressability
Fix32 Two basic types: All instructions Word (32°)
(1) Load R,, with Mem occupy 32b
[addr] or (2) R;< R, 0p
R3 (all operands in
registers)
OBI360 As with Fix32 plus RX Memory refr instr Half word (16%)
type,* R,<R, op Mem use 32b; register refr
[Addr] instr use 16> and 32b
Stack Stack formats Instructions with op- Byte
code only 8; mem-
ory refr instr use 32b
B6700 Stack formats with special Instr with opcode Byte
encoding of constants and only 8°; memory
pointer-referenced refr instr use 16b
memory

*Register set machine operations take two independent source operands (R1 and R2) and
place the result in either an independent register (R3) or one of the source operands (say, R1).
Most RISC machines as well as our Fix32 use the former convention, while the IBM Sys-
tem/360 uses the latter. For our code generator there is little advantage for the independent
R3 specification, i.e., the OBI360 data is approximately the same (within 1%) for either con-

vention.

assuming the same operational (ALU)
vocabulary, the same data path size, and
the same arithmetic performance, we cre-
ate a standard cost for that part of the
processor. We are left with the compari-
son of only those parts of the architecture
directly affected by the instruction set
tradeoffs. These include the decoder, the
register set size, instruction cache size, and
data cache size. We assume that small
tradeoffs in register set size and decoder
size will not materially influence the cycle
time itself. We will comment on this
assumption later before drawing general
conclusions.

74

The result of enhancing a base design
with various alternatives provides insight
into a local optimum; it does not find a
global optimum. While we are able to
comment on RISC and register-set-based
instruction variations, we will not com-
ment here on significantly different
instruction sets (such as complex stack
machines).

The benchmarks. We selected the
benchmarks used in this study as represen-
tative of workstation applications. They
consist of five Pascal programs originally
used by Alpert.® Some static and dynamic

measures for the benchmarks are given in
Table 1. All data is for a stack machine
with fixed 32-bit instructions (similar to P-
code). The static measure is the program
size in bytes as compiled without linkage
overhead; it includes only executable code
and constants as allowed in the stack
machine architecture.” The percentage of
code actually used, for the given input
files, is between 53 percent and 80 percent.
Since all stack instructions are 32 bits, the
difference between dynamic size (divided
by four) and instructions is the occurrence
of pointers, especially those associated
with procedure calls.

The CCAL benchmark emulates a desk
calculator. It reads a script of calculations
from a text file and produces results in
another text file. As with the other bench-
marks, any input files required are speci-
fied as part of the benchmark, thus
defining a standard execution. The Com-
pare benchmark compares two text files,
producing a description of their differ-
ences (similar to the Unix Diff command).
The PCOMP benchmark compiles a Pas-
cal program by recursive descent and
produces P-code output. The PASM
benchmark assembles the P-code output
from the P-code compiler. The Macro
benchmark is a macro processor for the
SCALD computer-aided design system.

The chosen benchmarks are representa-
tive Pascal programs of medium size. They
represent program generation, file
processing, and calculation. CCAL also
represents an interactive (as opposed to
batch) program, although it is driven from
ascript file to keep its execution standard.

Each of these benchmarks was executed
once for each target architecture after
analysis of its basic blocks. Subsequently
the address trace of that execution was fed
into the cache simulator. The results
presented are for the mean of the (equally
weighted) benchmarks.

RISC-CISC code
analysis

In the following analysis we define the
RISC-type architecture® as follows:

(1) Load-store architecture. It does not
allow memory operands for ALU oper-
ations.

(2) Register-file oriented.

(3) Pipelined execution with short cycle
time, delayed branch, and a few
register-oriented instructions.

(4) Fixed 32-bit instruction size.

COMPUTER

The base RISC we simulate is called
Fix32. It is a load-store architecture with
a 32-bit fixed instruction size with a
register-set size of 16. (We examine other
register set sizes in later sections.) Because
delayed branching can be applied to our
base architecture and its extensions, the
effect of delayed branching is not simu-
lated. This does not influence the results,
however, because delayed branching
affects the extensions of our base architec-
ture exactly the same way as it affects the
base architecture itself.

While we present some data on a num-
ber of architectural possibilities (see Table
2), one is particularly interesting: OBI360
(Only-Binary IBM 360). This variation is
generally similar to IBM System 360 with
the storage-to-storage instruction format
excluded. OBI360 makes two modifica-
tions to the RISC strategy:

1. It adds the ‘““RX”’ format (32 bits),
allowing one instruction operand to reside
in memory:

R, : = R; op Mem[R; + offset]

2. It adds half-size instructions (16-bit)
register-to-register instructions:

Rl = Rl op R2

Starting off with the minimum Fix32
architecture, we perturb this design in var-
ious ways, such as

(1) by increasing the complexity of the

instruction encoding (using OBI360

instruction formats), or

(2) by increasing the number of registers

available to the data stream.

We make the assumption that other
things remain constant—the base instruc-
tion set operational vocabulary, cycle time
(discussed later), etc. We first consider the
effect of instruction set selection on mem-
ory traffic in the presence of various-sized
caches, then we consider the issue of reg-
ister set size, organization, and allocation
policy on memory traffic, again in the
presence of various-sized caches.

The instruction set

The instruction set itself is largely a com-
promise between the complexity of the
decoder (and thus the ensuing size of the
microcode, cycle-time, etc.) and the
required memory traffic to support execu-
tion (and thus the number of memory
references). The RISC approach has opted
for minimum decode complexity and
accepted a relatively high bandwidth
requirement for the instruction execution.

September 1987

L

2.0

Fix32

Stack

Instruction traffic relative to OBI360

0.0

0 512 1024

2048 4096 8192 16,384

Instruction cache size in bytes

Figure 3. All architecture families (two-way associative 16-byte lines).

We can see the effects of instruction set
selection on instruction traffic in Figure 3,
which shows several instruction set fami-
lies (see Table 2) relative to the memory
traffic generated by OBI360 (with 16
general-purpose registers). The memory
traffic is plotted for various cache sizes
from no cache (zero bytes) to an infinite
cache (ideal). A common cache policy of
two-way associativity with a line size of 8
bytes has been selected across all caches
and instruction sets. The relatively small
line size tends to reduce the absolute
amount of memory traffic required to sup-
port program execution and to diminish
the difference among the instruction set
families. Keeping the line size constant
normalizes the cost for instruction caches
for all of the families.

Figure 3 is interesting in a number of
ways. Without a cache, the difference
among architectures concerning the num-
ber of instruction bytes required to execute
a program is about two to one (from the
least dense architecture, the Fix32 with 16
registers, to the most dense architecture,
the B6700).

Because an instruction cache benefits all
architectures, it is difficult to see the rela-
tive benefit unless we normalize the traf-
fic, as we have done in Figure 3. In the
absence of a cache, the Fix32 architecture
has 50 percent more instruction traffic
than OBI360; this figure rises to 100 per-

cent for certain intermediate cache sizes
(8K and 16K bytes). For these intermedi-
ate sizes, the OBI360 architecture has cap-
tured its working set, while the Fix32 has
not yet done so. Ultimately, as all caches
capture their working sets, the original
relationship is restored, representing sim-
ply the number of references required to
initially bring a program into the cache.
Notice that for certain intermediate size
caches, we can see relative differences of
greater than five to one between the most
dense and least dense architectures (B6700
to Fix32 in the 4K- to 8K-byte range).
Figure 4 shows the effect of marginal
increases in the instruction decoder on
overall dynamic program size and the
resultant effect on cache performance. In
Fix32-RX the RX format is added to
Fix32. The RX format simply combines a
load with a register-register operation.
Since the RX format is the conjunction of
two existing instruction types, its imple-
mentation cost can be minimal, depending
on pipeline organization. About 10 per-
cent fewer instructions will be executed
with 10 percent fewer instruction-decode
cycles. One might expect the pipelined pro-
gram execution to improve by the same
amount. It does not, because the RX
instruction requires an extra cycle of
interpretation, which may or may not be
overlapped. Thus, in addition to a 10 per-
cent reduction in instruction traffic, the

75

ideal

Instruction traffic relative to OBI360

N
o
TS,

[

Y
o

OBI360

S
o

o
o

L]
512

T T T T T
1024 2048 4096 8192 16384

Instruction cache size in bytes

ideal

Figure 4. Memory referencing characteristics of register set architectures.

76

number of execution cycles also reduces,
but less than 10 percent (see the sidebar,
““The effects of memory-to-register (RX)
instructions’’).

Adding the RX format and a half-sized
(16-bit) RR format to Fix32 results in
OBI360 with one-third improvement in
instruction bandwidth requirements for
the no-cache case. The addition of half-
size instructions to the format, however,
does require additional decoder complex-
ity to realize the alignment of instructions
for proper decoding (see the sidebar, ‘“The
cost of half-size instructions’’). Whether
the two modifications to Fix32 to obtain
OBI360 extend the cycle time we will dis-
cuss later.

OBI360 provides a striking improve-
ment over Fix32 in the effectiveness of an
instruction cache. Table 3 shows that
OBI360 realizes the same miss rate as Fix32
with an instruction cache of exactly half
the size of Fix32. Thus, by moving to
OBI360 and adding decoder hardware, the
resultant design would require fewer
instruction cycles and would realize the
same memory traffic with half of the Fix32
cache.

The data stream

What is the value of large register sets?
What is the value of register windows?
How effective is a data cache in the pres-
ence of a register set? These are some of the
questions that the architect must address
in creating a balanced instruction set
design.

Registers have many roles. They hold:
temporary values in expression evaluation,
variables from statement to statement
within a procedure, constants and
pointers. Figure 5 shows types of refer-
ences to data memory for variable and
temporary accesses for source (Pascal and
C) programs. If one had an architecture
without registers (an all-memory architec-
ture), 47 percent of the data references
would be for temporary storage of inter-
mediate results within the evaluation of
expressions. The addition of two or three
registers, whether through use of a stack
or aregister-instruction format, basically
eliminates these references. When we
ignore expression evaluation, the resultant
traffic is for extended source variables—
variables whose values are to be carried
statement to statement within a procedure
because of high probability of use.

The register allocator is responsible for

COMPUTER

predicting the optimum assignment of
variables to registers. Let us define this
data traffic as the unity data traffic (thus
excluding expression evaluation). Unity
data traffic is not exactly the same as the
variable traffic seen in a source program,
however. The difference includes accesses
for dynamic links, static links (the runtime
organization), the fact that source varia-
bles may have arbitrary lengths but the
physical system has a fixed-length bus
(assumed to be 4 bytes), and finally that
the compiler must create variables to con-
trol, for example, With and For
statements.

Given different instruction sets with the
same register set size and same compiler
optimizer, the resultant data traffic will be
the same for all instruction sets. How does
data traffic compare to instruction traffic?
Without data or instruction cache, the
instruction traffic dominates the data traf-
fic, but this quickly decreases when even
a small instruction cache is added.

Figure 6 shows the instruction traffic for
Fix32 and OBI360 instruction sets relative
to unity data traffic. Both Fix32 and
OBI360 include 16 general-purpose
registers. For OBI360, the figure shows 10
percent more traffic for instructions than
for data, while for Fix32, this difference
is 60 percent. The addition of an instruc-
tion cache reduces the instruction traffic
well below the unity data traffic for all
architectures; thus, we need to rebalance
the data traffic when considering a small
instruction cache for the processor. The
following four sections present different
ways to rebalance the total memory traf-
fic between instructions and data.

Single register set. Figure 7 shows the
allocation of registers within a typical reg-
ister set. Unity data traffic requires about
eight registers in the set; they are allocated
for constants, the evaluation stack, and
state variables. The marginal value of
adding eight registers to the initial eight
depends upon register allocation. Figure 8
presents two allocation strategies: a very
simple strategy wherein registers are allo-
cated only among variables within a basic
block, and a more elaborate strategy which
allocates variables within a procedure.
Global register allocation is by means of
priority-based coloring. Notice that with
or without optimization, the marginal
value of more than eight additional
registers is moot, and that a reduction
from unity data traffic down to 0.65 can
be achieved with straightforward global
register allocation.

September 1987

References to variables defined
in the source program

References to the
evaluation stack

Unity data traffic

References to implied data
objects, such as compiler-created
variables and runtime support

Figure 5. Distribution of data reference types.

& 207

©

o] %

5 L

g 1.5 \

5

2 Unity data traffic

._“2_’ 1.0 A — A A Ve
E:

Q Fix32

T 05

§ OBI360

o

% 0.0 ; : ; ;

72 0 512 1024 2048 4096

Instruction-cache size in bytes

Figure 6. Instruction and data traffic as a function of architecture and instruction
cache size.

Table 3. Relative traffic or miss rates. All traffic is relative to OBI360 without a
cache and with 32b-wide paths to memory.

For cache* size: 0 512 1¥ 2K 4K
Fix32 152 .44 .30 .19 11
Fix32-RX 1.33 37 .24 AL .09
OBI360 1.0 .28 AT Ll .05

*Two-way set-associative, 8-byte lines

77

mE

1

183 | Local variables
- TR

L

10

g | Global variables
673 L Evaluation stack
5 | State variables
4 [Frame pointer
3 Stack pointer
2

1 :' Constants

0

1.0 ,
KD\AD Local allocation
0.8 .
% ‘\‘\‘\F Global allocation
B 06 ¢
Q
§
E 0.4
©
a
0.2
0.0 T T T T T \J 1

0 1 2 4

8 16 32 64

Number of registers in addition to eight support registers

Figure 7. A possible register set usage
outline.

Figure 8. Single-register-set performance relative to unity data traffic.

Windows in

Parameters in

register —9

S
;///,/ ,
\

Overflow

Parameters in

"l

windows in

memory

Parameters in

Activation-record

Windows in registers

stack in memory

Structure-
stack pointer

address

Static link

Structure stack
in memory

Figure 9. Multiple overlapping register windows.

To improve traffic beyond this requires
allocation of registers across procedures.
This can be done either in software, by
interprocedural register allocation, or in
hardware, through register windows.

Interprocedural register allocation. An
interprocedural register allocator reduces
the penalty of saving and restoring
registers around procedure calls by allocat-
ing some registers as private to a particu-

78

lar procedure. Because procedures which
mutually exclude each other from being in
the call chain at the same time can share
private registers, the number of registers
required is reasonably small. Inter-
procedural register allocation has the addi-
tional advantage that runtime
management variables, such as dynamic
links, static links, and procedure-return
addresses, can be allocated to registers
using a method similar to that used for

procedure variables.

A simple and efficient interprocedural
allocation scheme'® assigns private
registers depth first in the call tree. Leaf
procedures come first, callers of leaf
procedures second, and so forth. This
scheme treats recursion paths as single
nodes and does not allocate private
registers to procedures in such a path. Fig-
ure 10 shows the performance of an allo-
cator based on this scheme, but extended

COMPUTER

with an extra pass to detect variables
potentially accessed through pointers'!;
these variables cannot be allocated to pri-
vate registers. The figure shows a traffic
ratio of 0.5 with 8 registers and 0.4 with 32
registers available to the allocator.

Interprocedural allocation also has its
drawbacks:

e procedures called recursively cannot
have private registers,

e separately compiled modules must
have knowledge of the register usage
of all intra-module calls, or require
register allocation during link time,
and

e incremental compilation without an
explicit linking stage such as Lisp
environments can profit only par-
tially from this scheme.

Interprocedural register allocation may

turn single register sets into the most effi-
cient local memory. Because of the draw-
backs, however, unless explicitly stated
otherwise we use only global (procedural)
allocation in comparing different data
buffers in the following sections.

Multiple overlapping register windows.
Register windows allow a new set of
registers to be made available for each pro-
cedure, with an overlap of registers
between the caller and the called procedure
to allow for passing of parameters. When
a procedure call exhausts the number of
windows, a window is freed by saving its
data in memory. Whenever the data is
needed again, it is restored from memory.
The conditions which require a window
save and restore are called overflow and
underflow, respectively.

The hardware windows are organized as
a circular buffer always covering the top
part of the runtime stack. The outgoing
parameters of the top window are the same
as the incoming parameters of the bottom
window. The hardware windows can be
envisioned as rolling back (returns) and
forth (calls) over the window stack in
memory. Every activation record in the
runtime stack has a fixed size, the window
size. A second runtime stack, called the
structure stack, keeps additional proce-
dure variables which do not fit in the win-
dow stack. Every record in the window
stack maintains a pointer to that part of
the second stack which holds these
variables.

Figure 9 shows the facets of a multiple-
overlapping-window organization: the
hardware windows covering the top of the
window stack; the overlapping windows,
holding parameters, local and runtime

September 1987

s mrs(6,10)
- n
mrs(3,5\
08 LN
Ke] \
T 0.6
é Inter-
8 4 _procedural
- allocation
5
el ()
0.0 g T T o T)
0 8 16 32 64 128 256

Number of registers in addition to eight support registers

Figure 10. Performance of multiple overlapping register windows as a function of
the total number of registers (relative to unity data traffic).

management variables; and the structure
stack. An additional facility, which
improves the performance of overlapping
windows, allows pointer access to win-
dows other than the one on top of the
stack. This allows variables accessed
through var parameters, the static-link, or
pointers to be allocated in a window. For
this article, we assume that overlapping
windows include this facility.

We designate a window organization
with N shared registers and M local
registers by mrs(2N, M). The effectiveness
of register windows depends mainly on
two parameters: the size of the window
and the number of windows. Figure 10
shows that a large window size, mrs(6, 10),
has a detrimental effect on performance
for organizations with few windows. Few
windows imply frequent under- and over-
flow conditions, and therefore a high pen-
alty for large sets. However, a small
window, mrs(3, 5), has a negative effect on
performance for an organization that has
many windows. A small window captures
fewer local variables and parameters, and
tHerefore is less efficient compared with a
large window when the over- and under-
flow traffic stops dominating total traffic.

To achieve the best of both large and
small windows, global register allocation
can be combined with small windows. This
combination on the average outperforms
both mrs(3, 5) and mrs(6, 10) for our
benchmarks. In this article, however, we
are concerned with the utility of large reg-

ister sets and especially those organizations
actually implemented in general-purpose
microprocessors. The buffer comparison
in the following section, therefore, does
not take small-window buffers into
account. The performance of small-
window buffers with and without register
allocation and additional caching is
presented elsewhere. !

Single register set and cache combina-
tion. An argument in favor of larger reg-
ister sets is that they will reduce the number
of accesses to memory. Of course, a cache
will do the same thing, and an interesting
tradeoff occurs between increasing regis-
ter set size and introducing or enlarging a
data cache. Viewed from the memory sys-
tem, enlarging either the register-set size or
the cache size reduces the required mem-
ory traffic.

Using the traffic ratio as a function of
provided storage for buffer comparison is
not fair for two reasons: first, the storage
provided does not accurately reflect the
usage of chip area; and second, the traffic
ratio does not completely determine
processor performance.

To present buffer performance as a
function of occupied area instead of the
number of bits of storage, we define a sim-
ple storage-to-area mapping. The key
points in this mapping are the inclusion of
tag and status bits for caches, the distinc-
tion between the size of a cache RAM cell
and a multiport register RAM cell, and the

79

mrs(6,10) \

25 -ﬂ 1.0 1

2.0 § 208
o \ Four-way set-associative cache, [
9 Four 32-bitwords per line o

= 0.6 1

ﬁ 15 B srs+cache
>
E= srs g
B 10 504
g
& 05 0.2

0.0 8 § T T Y T T T T 1 0.0

0 8 1682 64 128 255 5121024 4096 8 16

Buffer storage in words

T T
32 64
Area in register equivalents

T % 5
128 256

Figure 11. Buffer performance as a function of the amount of

chip area.

inclusion of area for drivers, sense ampli-
fiers, and tag comparators. The intent of
this model is to penalize small register sets
and caches for their inherent area over-
head and to penalize register sets for their
relatively large RAM cells, which they
need to supply the high bandwidth
required for pipelined processors. The
main assumption underlying this model is
that the RAM-cell size of a particular
buffer is independent of the size of the
buffer. Figure 11 shows the area of the
cache*relative to the area of a register set
as a function of the provided storage. The
initial area disparity between the two
buffers is mainly due to the tag compara-
tors, and the state machine needed to con-
trol the cache. When the cache becomes
larger than 32 lines, or 128 words, it actu-
ally takes less area than the register set,
because the cache RAM cell is significantly
smaller than the register RAM cell. Mul-
der gives a complete description and a
validity assessment of the area model else-
where.!! The model parameters are all
based on actual CMOS register set and
cache designs.'>"

The traffic ratio depicts the effective-
ness of the data buffer viewed from the
memory, but the situation is not quite the
same when viewed from the processor.
Access to a cache is usually a one- or two-

*The cache is four-way set associative with four one-
word transfer units per line. The first data point, how-
ever, is a direct mapped one-line cache, and the second
data point is a two-way set associative two-line cache.

80

cycle operation, whereas access to a regis-
ter set can be included within a cycle. Very
large register sets may add a cycle or extend
the cycle (see next section), but caches
invariably add additional cycles to total
program execution. A more accurate mea-
sure than the traffic ratio would be the
ratio of the processor cycles spent in the
buffer and main-memory combination
and the cycles spent in the memory system
without the presence of a buffer. Mulder
describes this measure, the cycle ratio, in
detail .'!

In a highly pipelined organization which
keeps its buffer and memory system busy
all the time, the cycle ratio describes the
exact performance of the processor. Note
that pipeline breaks, not caused by the
memory and buffer system, may cause the
real performance to deviate from the cycle
ratio. Nonetheless, it is a good measure for
evaluating different buffer organizations
and their timing parameters.

Figure 12 summarizes the traffic ratio,
and Figures 13 and 14 the cycle ratio of two
buffering strategies. All three figures show
their ratios as a function of occupied area
in register equivalents; one register equiva-

Jlent is the area occupied by 32 register bit

cells. Figures 13 and 14 show the cycle ratio
for a main memory access time of two and
three cycles, respectively.* The figures
show the ratios for a multiple-register-
window organization, mrs(6,10), and a

*A cache hit takes one cycle, while a cache miss takes
one cycle plus a memory access.

Figure 12. Data traffic ratio as a function of chip area.

single-register-set and cache combination,
srs + cache. The register allocator only
uses four registers for allocation, but the
architecture is assumed to have an addi-
tional eight as described before.

Both Figures 12 and 14 show a slight
advantage for srs + cache over mrs(6,10)
between 40 and 80 register equivalents.
Before and after this interval, srs + cache
performs significantly better than
mrs(6,10). Reducing the memory access
time from three to two cycles, however,
undoes the srs +cache advantage. Now
mrs(6,10) is slightly better than srs + cache
for the 40- to 80-register interval, and per-
forms approximately the same for larger
buffers. Nonetheless, an increase in aver-
age memory access time is always an
advantage of the srs + cache organization.
The case for multiple register sets with
relatively large sets is slight, at best, and
occurs only in the region of 32 to 128
registers for one- or two-cycle main mem-
ory access time. An important advantage
for the srs + cache organization is its rela-
tive independence from the reference dis-
tribution. A smaller percentage of
references to the window stack immedi-
ately degrades mrs(6,10) performance,
while this is not necessarily the case for
srs + cache.

Several buffer characteristics are not
taken into account in this comparison
because they lie outside the scope of the
article or because insufficient data was
available. These include the effect of sys-
tem functions (interrupts, [/O, and con-
text switches) and data-consistency

COMPUTER

1.0 4 mrs(6,10) Main-memory access 1.0 - mrs(6,10) Main-memory access
= two cycles = three cycles
0.9 0.9
O o)
8 o, g A
@ 0.8 . € 0.8
[&) [5)
307 srs+cache §ﬂ 507
o s srs+cache
IS ©
QiG6 a 06
0.5 0.5
0.4 T T T T 1 0.4 T T T T 2
8 16 32 64 128 256 8 16 32 64 128 256
Area in register equivalents Area in register equivalents
Figure 13. Cycle ratio as a function of chip area (two-cycle Figure 14. Cycle ratio as a function of chip area (three-cycle
memory). memory).
requirements in the case of mul- Table 4. Instruction and data traffic measured relative to the total traffic of our
tiprocessing. initial architecture, the Fix32 with eight registers.
Register
3 : 4 Architecture Set Size I-traffic D-traffic Total
Trad.lng instruction Fix32 8 0.68 0.32 1.00
traffic for data traffic Fix32 16 0.55 0.21 0.76
Fix32 32 0.55 0.21 0.76
Memory traffic is the sum of the instruc- Fix32-MRS 128 0,52 0.12 0.64
tion traffic plus the data traffic. Assume OBI360 8 0.44 0.32 0.76
that a processor with a Fix32 instruction | OBI360 16 0.35 0.21 0.56
set has eight general-purpose registers. Is OBI360 32 0.35 0.21 0.56
it better to add registers, or to increase OBI360-MRS 128 0.32 0.12 0.44

instruction complexity? Table 4 gives
insight into these tradeoffs. Note that the
table presents total traffic relative to the
total instruction and data traffic of Fix32
with eight registers. If we increase the
Fix32 register set size from eight registers
to 16, we reduce the relative traffic from
1.00 to 0.76. However, if we increase the
instruction complexity and retain a regis-
ter set size of eight by moving from Fix32
to OBI360, the relative traffic also reduces
from 1.00t0 0.76. Clearly it is desirable to
do both, which would reduce the relative
traffic to 0.56.

If we assume a Fix32 base design with a
register set size of 16, there is almost no
saving in increasing the size to 32 (unless
coupled with interprocedural register allo-
cation). The instruction traffic and the
data traffic remain essentially constant. By
adding eight register windows, mrs(6,10),
for a total of 128 registers, we reduce data
traffic to 0.12 and instruction traffic to
0.52—a net savings of 0.12 references
from Fix32 with 16 general-purpose

September 1987

registers. On the other hand, if we simply
retain the 16 general-purpose registers and
modify the instruction set from Fix32 to
OBI360, we realize a savings of 0.20 refer-
ences. Thus, the addition of 112 registers
and window control results in only 60 per-
cent of the traffic reduction we can achieve
with better instruction encoding (the
change from Fix32 to OBI360).

Cycles and cycle time

So far we have dealt with design alter-
natives assuming that the processor execu-
tion (independent of memory traffic) was

unaffected. In this section we review the
alternatives examined and assess the pos-
sible impact on either the number of cycles
required to execute a program, or the cycle
time itself.

The cycle count. Concerning the cycle
count, consider the principal design alter-
natives presented.

(1) We first considered Fix32 compared
with Fix32 plus a memory-to-register
instruction format (Fix32-RX). This
change will either leave cycle count
unaffected or it will allow a modest (less
than 10 percent) decrease in the number of
cycles (see the sidebar, ‘“The effects of
memory-to-register (RX) instructions’’)

81

when hardware is added to the pipeline.

(2) We next considered the change from
Fix32-RX to OBI360. This change adds
the 16° (or “‘half size’’) instruction; it
should have no effect on cycle count (also
see the sidebar, ‘‘The cost of half-size
instructions’’).

(3) Finally we considered adding either
additional registers or a data cache to a
16-register design. Additional registers
may increase cycle time (discussed below),
while a cache may require either more or
fewer cycles than a large register set,
depending on the memory access time.

Without interprocedural allocation,
there is obviously no marginal utility, in
terms of traffic ratio or cycle count, in
enlarging a single register set beyond 16
registers. With interprocedural register
allocation, we see an improvement in
memory traffic by increasing the total reg-
ister set to 32, after which again there is lit-
tle or no marginal utility. The cycle count
will decrease as memory traffic decreases.

Part of the effect on cycle count of mov-
ing from a base 16-register design to mul-
tiple register set versus the move to register
set and cache combination was discussed
in ‘““The data stream’’ and shown in
Figures 13 and 14. The design with a cache
clearly expends fewer cycles accessing
objects not in the register set. On the other
hand, when we call a new procedure, the
multiple register set has an advantage
because it requires fewer cycles to save and
restore register values. However, many
parameters are involved (frequency of
calls, number of parameters, cache miss
penalty, etc.), and a specific situation may
find one approach significantly superior.

The cycle time. Concerning cycle time,
we have considered two design extensions
that could adversely affect the internal
processor cycle time:

(1) The extension of Fix32 to OBI360
increases the instruction decoder com-
plexity.

(2) Increasing the number of registers
may increase register access time.

Cycle time is typically determined by
one of four paths:

(1) Instruction decode

(2) Register access

(3) Cache access

(4) ALU operation and condition-code

set

The designer usually is confronted with
physical limitations which determine the
longest path from one of the above con-
siderations. Once that is determined, the

82

other paths can be increased to roughly the
same duration so as to minimize costs. A
review of several recent RISC designs
(RISC II'* and SOAR") indicates that
register access time has been a primary
determinant of cycle time, not instruction
decode. In MIPS, ' a pipelined RISC with
16 general-purpose registers, the main
cycle time determinant was pipeline and
exception control circuitry. It seems in
some cases that the use of smaller register
sets could improve the cycle time, while the
use of OBI360 should have a negligible
effect on cycle time.

Other considerations in
instruction set design

So far in this article, we have examined
such aspects of performance as the basic
criteria in instruction set selection and
design. Many important functional con-
siderations are not performance related, or
are related to performance only in a secon-
dary way. In this section we briefly remind
the reader of several of these consider-
ations.

Compatibility. The primary level of
transportability of programs is the instruc-
tion set, not the higher-level language. The
reason that the VAX series from Digital
Equipment Corporation and the 68000
series from Motorola Corporation resem-
ble their antecedents is not simply an issue
of designer’s preference, but of customer
preference. The VAX instruction set is a
good case in point. It is derived from (built
upon) the PDP-11, a 16-bit architecture
noted for its flexible use of addressing
modes. Rather than abandon the address-
ing modes, the VAX designers enhanced
them, preserving subset compatibility with
the PDP-11 yet achieving generous func-
tionality in the 32-bit arena. The resultant
design provides for relatively concise
encoding of programs. Unfortunately, the
flexible object identification introduces
extra cycles into instruction interpretation
and makes instruction pipelining more dif-
ficult. Still, the VAX series has become an
industry standard because of compatibil-
ity, connectivity (I/O capabilities), and
availability of software, not simply per-
formance.

Technology. In the context of
microprocessors, chip area constraints
force a design to fit in a fixed area. Per-
formance may be severely limited where an
instruction set has been selected without
consideration of these area constraints.
Pins as well as area may constrain designs,
restricting access to memory. This pro-
vides a premium for those architectures
which make the best use of memory
bandwidth.

Most instruction sets are children of
their technological times. Assumptions
concerning memory size, access time, and
the relative cost of registers, as well as the
ability of a compiler to use those registers,
determine the tradeoffs that go into a
resultant instruction set specification.

Life cycle costs. Compatibility, technol-
ogy, performance, software and hardware
development effort, maintenance costs,
and hardware reliability are ingredients in
determining the total system cost (and
profitability) for the product over its life-
time. Life cycle cost is clearly an ultimate
measure, and our performance discussion
is simply one factor of it.

hile instruction set design
involves many considerations,
performance data is an impor-

tant component. Indeed, performance
may well be a primary consideration in cer-
tain custom application-specific designs.

In evaluating design tradeoffs, the
architecture-simulation platform
described above provides valuable relative
performance data and greatly assists in
optimizing design choices from the top
down. The workbench provides an early
assessment of the relative merits of differ-
ent design options and facilitates the selec-
tion of the option with the greatest
marginal utility.

In this article we limited the data
presented to five benchmarks selected
from a Pascal-type environment similar to
that reported on by other researchers in the
area. Different environments might pro-
duce significantly different results.

The principal design alternatives we
have examined are Fix32 and OBI360:

(1) Fix32 is RISC-like in formats and
encoding, but does not reduce the ALU
instruction vocabulary. The functional
instruction set is the same for all architec-
tures studied, so as to keep the ALU cost
relatively constant. RISC implementation
with fewer instruction types may require
additional instruction memory traffic and
exaggerate the difference between

COMPUTER

architectures (see Figure 3).

(2) OBI360 is Fix32 with the addition of
both the RX and half-size instruction for-
mats. OBI360 is not System 360 or System
370. Typical S/370 code includes the oper-
ating system interface, calling conven-
tions, and runtime prolog/epilog, which
significantly distorts the locality and cache
results presented here. However, to evalu-
ate System 370 code is to evaluate an evo-
lution of software, not simply instruction
set technology. The relatively good results
of OBI360, however, are a compliment to
the basic tradeoffs made by System 360
instruction set designers over twenty years
ago.

Concerning the various alternatives:

(1) Fix32 (a simple load-store architec-
ture) with 16 or fewer registers and with-
out cache represents a reasonable design
point for a minimum cost processor. Note
that the minimum processor cost was
achieved with a 50 percent to 100 percent
increase in instruction traffic (Figure 3),
compared with more complex designs.

(2) If Fix32 is extended to reduce mem-
ory traffic, instruction encoding and for-
mats should receive priority attention over
the expansion of an instruction cache. By
adding modest decode hardware to Fix32,
we create OBI360, which achieves the
same memory performance as Fix32, but
uses an instruction cache of only half the
Fix32 cache size (Table 3).

(3) From data traffic considerations
alone, it seems that OBI360 with a regis-
ter set of about size 16 plus a small data
cache is preferable to multiple register sets
for most area combinations (Figures 12
and 13).

More generally, instruction set designers
cannot afford to ignore issues of code den-
sity in favor of instruction simplicity or
decoding ease. Instruction bandwidth can
be a significant component of memory
traffic and, ultimately, processor perform-
ance. Using larger register sets to reduce
data traffic from memory makes sense
only when efficient instruction encoding is
used to make a corresponding reduction in
instruction traffic. Balanced optimization
is the key to overall instruction set effi-
ciency.[]

Acknowledgments

Several basic ideas used in the computer
architecture simulator were based on the work
of our colleague Don Alpert. We also used his
benchmark programs. The U-code system
included in our platform was the work of John

September 1987

Hennessy and Gio Wiederhold and their stu-
dents here at Stanford.

This research was supported by NASA under
contracts NAG2 248 and NAGW 419, and by
an IBM graduate fellowship.

References

1. Also see product announcements for Fair-
child Clipper, Hewlett-Packard Spectrum,
Advanced Micro Devices AM29000, and
MIPS Corp.

2. Mark Hill et al., ‘“Design Decisions in
SPUR,’’ Computer, Nov. 1986, pp. 8-22.

3. John Hennessy, ‘‘VLSI Processor Architec-
ture,”’ IEEE Trans. Computers, Dec. 1984,
pp. 1221-1246.

4. David A. Patterson and Carlo H. Sequin,
“RISCI: A Reduced Instruction Set VLSI
Computer,’’ Proc. 8th Ann. Symp. Com-
puter Architecture, May 1981, pp. 443-458.

5. R.P. Colwell et al., ‘“Computers, Complex-
ity, and Controversy,”’ Computer, Sept.
1985, pp. 8-19.

6. Michael J. Flynn, ‘“Towards Better Instruc-
tion Sets,’’ Proc. 16th Ann. Microprogram-
ming Workshop, Oct. 1983, IEEE
Computer Society Press, pp. 3-8.

7. Chad L. Mitchell, Processor Architecture
and Cache Performance, Tech. Report
CSL-TR-86-296, Computer Systems
Laboratory, June 1986.

8. Scott Wakefield, Studies in Execution
Architectures, PhD thesis, Stanford Univer-
sity, Jan. 1983.

9. Donald Alpert, Memory Hierarchies for
Directly Executed Language Microproces-
sors, PhD thesis, Stanford University, June
1984.

10. Peter A. Steenkiste, LISP on a Reduced-
Instruction-Set Processor: Characterization
and Optimization, PhD thesis, Stanford
University, Mar. 1987.

11. Johannes M. Mulder, Tradeoffs in Data-
Buffer and Processor-Architecture Design,
PhD thesis, Stanford University, 1987. In
preparation.

12. M. Horowitzand P. Chow, ‘“The MIPS-X
Microprocessor,”” Proc. Wescon 1985,
Stanford University, 1985.

13. Anant Agarwal et al., ““On-chip Instruction
Caches for High Performance Processors,’’
Proc. Advanced Research in VLSI, Stan-
ford University, Mar. 1987.

14. M.G.H. Katevenis, Reduced Instruction Set
Computer Architectures for VLSI, PhD
thesis, UC Berkeley, Oct. 1983.

15. David Ungar et al., ‘‘Architecture of
SOAR: Smalltalk on a RISC,”’ 11th Ann.
Symp. Computer Architecture, Ann Arbor,
Mich., June 1984, pp. 188-197.

16. Steven A. Przybylski et al., Organization
and VLSI Implementation of MIPS, Tech.
Report 84-259, Computer Systems Labora-
tory, Apr. 1984.

Michael J. Flynn is a professor of electrical engi-
neering at Stanford University, where he served
as director of the Computer Systems Laboratory
from 1977 to 1983. He is also a senior consul-
tant at Palyn Associates, a computer design firm
in San Jose, California. He was a cofounder and
vice president of Palyn in 1973 while on leave
from Johns Hopkins University.

Flynn worked at IBM for ten years in the
areas of computer organization and design. He
was design manager of prototype versions of the
IBM 7090 and 7094/11, and later for the Sys-
tem 360 Model 91 CPU.

Flynn received his PhD from Purdue Univer-
sity in 1961.

"

Chad L. Mitchell is currently Chief Technical
Officer at Great Wave Software, which he
helped found in 1984. He has written several
programs for personal computers, including the
award-winning Concertware music system.
Mitchell received a BA in mathematics in 1979
and a BS in computer science in 1980 from the
University of Utah, both Magna Cum Laude.
He received an MS in computer engineering in
1982 and a PhD in computer science in 1986
from Stanford University. While there, he
coauthored the Gambit prototyping language.

Johannes M. Mulder is currently completing the
requirements for the PhD degree at Stanford
University. His primary research interests are in
computer architecture, VLSI, and computer
and memory system design and evaluation.

Mulder received the MS degree in electrical
engineering in 1982 from Delft University of
Technology in the Netherlands.

Readers may write to Flynn at Electrical Engi-
neering Dept., ERL 452, Stanford University,
Stanford, CA 94305-4055.

83

