
1

Security Evaluation of a Control System
Using Named Data Networking

Victor Perez, Mevlut Turker Garip, Silas Lam, and Lixia Zhang, Fellow, IEEE

Abstract—Security is an integral part of networked computer
systems. The recent Named Data Networking (NDN) project aims
to develop a new Internet architecture that communicates data
using names rather than locations, the latter of which is what
the current IP-based Internet does with IP addresses. One of
the first real-world applications using NDN is a lighting control
system. We conduct a red team assessment of the current state of
the security of this lighting system and its NDN implementation.
The system is representative of a more general class of automated
controller systems. Our analysis found that due to NDN’s use of
named data, the system inherently prevents most attacks that
IP-based systems are vulnerable to. Although many parts of
the system are secure, we discovered some problems with the
verification of timestamps and processing of large packets that
led to a severe memory leak. The system also lacks a secure key
distribution mechanism. While NDN security is on the right track,
there are important security design issues NDN must account for.

Index Terms—Computer networks, Computer security, Build-
ing automation

I. INTRODUCTION

MODERN buildings rely on state of the art Building
Automation and Control Systems (BACS). They pro-

vide centralized control over core building services that affect
the overall building environment. Some of these essential
services include heating, ventilation, air conditioning (HVAC),
and lighting. Before BACS, human operators would survey
building conditions manually. This would serve as input to
decide how to calibrate air and lighting systems in the building.
However, this is a tedious and imperfect way to regulate
building conditions.

BACS can collect data from building sensors to help reg-
ulate a building’s environment as shown in Figure 1; thus,
improving energy efficiency. As a result, a key element of
these systems is communication. The controller in BACS can
be either a human and/or machine process. They must be able
to communicate with sensors to get building data. Once they
assess the current conditions, they need to communicate with
remote controllers or actuators capable of physically altering
building conditions, such as an air conditioning unit.

To facilitate this communication, many BACS today make
use of the BACnet or LonWorks protocols, which allow for
communication of sensors, controllers, and actuators. [1] ex-
plains that increasingly the Internet Protocol (IP) is used as the

V. Perez, M. Garip, S. Lam, and L. Zhang are with the Department
of Computer Science, University of California Los Angeles, Los An-
geles, CA, 90095 USA e-mail: vperez@cs.ucla.edu; mtgarip@cs.ucla.edu;
silaslam@cs.ucla.edu; lixia@cs.ucla.edu.

backbone of modern BACS within individual systems and also
to integrate systems such as lighting and HVAC. As discussed
in [2] BACS originated in a time when security was not a
primary concern. This was fine when BACS were operating
as closed systems, but now that IP is used to integrate them
and expose them to external control interfaces on the Internet,
the threat model should be reassessed. One solution to secure
BACS that use IP is to segregate BACS using VLANs. This
unfortunately is not an ideal solution, since it segregates the
systems that are trying to self-calibrate and exchange sensor
data.

The authors of [1] discuss an alternative to running BACS
over IP. They present their design and implementation of
an authenticated lighting control system that uses Named
Data Networking (NDN) for communication. NDN uses a
data-centric model, unlike IP’s host-centric model. One of
the benefits of using NDN comes when addressing specific
BACS components. Instead of using an arbitrarily assigned
IP address, meaningful names can be used by the control
application to address a device. Another potential benefit
is that NDN may be better suited to address the problem
of security in BACS, since the authors used authenticated
commands to control the lighting system.

We conduct a red team1 evaluation on a prototype of the
lighting system described in [1] to assess the security of
the system. The goal of this effort is a first step towards
understanding the security strengths and the remaining vul-
nerabilities of the NDN architecture, as well as its early pro-
totype implementations. In this paper we present our security
experiments and evaluation findings. The rest of the paper is
organized as follows. Section II is a brief explanation of NDN
packets, and section III presents the hardware and software
setup of the NDN lighting control system. In Section IV we
discuss test environment limitations. Sections V though VIII
describe our security experiments and present the correspond-
ing results. We finish with a discussion on future work in
Section IX and conclusion in Section X.

II. NDN COMMUNICATION

Communication in Named Data Networking (NDN) consists
of the exchange of Interest packets and Data packets as
described in [3]. To receive data a consumer must express
interest by sending out an Interest packet that carries a name
identifying the piece of data they want. NDN routers will then

1Team of testers that assess the security of an organization or system, which
is often unaware of the existence of the team or the exact assignment.

978-1-4799-1270-4/13$31.00 c� 2013 IEEE

2

Fig. 1. Sample Building Automation and Control System.

forward Interest packets to the appropriate data producers.
When a data producer receives an Interest packet a Data
packet is generated for the request and it is sent to the
consumer. The structure of a typical NDN Interest packet
consists of the content name, a selector and nonce value.
An NDN Data packet consists of a content name and data
payload. In addition, because Data packets are signed they
also contain a signature and signature data. Signing of Data
packets allows the data consumers to verify they are receiving
the data requested.

In the lighting control system we evaluate, Interest packets
are also signed. This is so that the controller board can authen-
ticate that they came from an authorized operator machine.

III. LIGHTING CONTROL SYSTEM TESTBED

Here we describe the hardware and software setup of the
lighting control system. The system prototype we were given
is slightly different from what is described in [1].

A. Hardware

The system hardware consists of three primary components:
the lighting fixture, the operator machine, and the controller
board. The lighting fixture is an array of red, blue and green
LED light bulbs, which can be digitally powered on or off via a
serial interface. This serial interface connects to the controller
machine, which is an Overo Gumstix board with an ARMv7a
processor and 512MB RAM, running the Angstrom 2011.03
Linux distribution. The controller board also connects to the
operator machine, which can initiate changes to the lighting
fixture via NDN interest packets. The operator machine is a
standard PC with an Intel Core i5 processor and 8 GB of
RAM. It runs the Ubuntu 12.04 32-bit Linux distribution.

The operator machine connects to the controller via a USB
interface, which allows console access to the controller. In

Fig. 2. Lighting Control Testbed

addition, the controller and operator machines are connected
using a RAW ethernet interface. This network interface is used
to exchange NDN packets that carry light control commands.
The operator machine also has an additional network interface
that connects to the Internet to allow us to connect remotely.
Figure 2 shows the testbed.

B. Software

To communicate and exchange lighting commands using
NDN, CCNx2 was compiled and installed on both the operator
and controller machines. Typically, NDN packets generated
by CCNx are tunneled over IP between machines. However,
in the lighting control testbed a link layer protocol called
NDNLP3 is used to transmit NDN packets. NDNLP can run as
a user-space daemon and can be used to deliver NDN packets
over Ethernet links and TCP/UDP tunnels. In this case it is
configured for Ethernet links. According to the authors of
NDNLP, it is beneficial to run directly over Ethernet without
IP as this eliminates the extra layer of processing [4]. NDNLP
provides support for sending link level acknowledgements, and
we experimented with this feature in our tests.

The actual lighting control application was written in
Python. The application is split into two modules. One module,
sequencer.py, runs on the operator machine, and it is used
to send NDN interest packets to the controller. The second
module, interface.py, runs on the controller board. It registers
to listen for a specific NDN prefix and waits for arriving
interests that match.

In this system implementation, NDN interests are signed
by the operator with a private key. It is important to note
that signed interests are not part of the original NDN design,
but that this feature was added by the authors of [1]. Upon
the arrival of a matching NDN packet, the controller module
will then authenticate the packet with the operator’s public
key. If the packet is successfully verified, the operator will
then execute the lighting command encoded in the NDN
interest packet. Listing 1 shows the XML syntax of a sample
NDN interest command packet. The first five components in
the name make up the NDN application prefix. The next
component is the light name. The seventh and eighth name
components specify the application lighting function to be

2https://github.com/ProjectCCNx/ccnx
3https://github.com/NDN-Routing/NDNLP

3

executed at the controller board. This is followed by the next
component, which is a function parameter specifying the light
colors which should be turned on or off by the light fixture.
The last two name components encapsulate the operator’s
public key, and the signature bits obtained by signing the
previous name components using the operator’s private key.
After the name element a nonce value is appended at the end
of the interest packet.
<Interest>

<Name>

<Component>ndn</Component>

<Component>ucla.edu</Component>

<Component>lighting</Component>

<Component>redteam</Component>

<Component>example</Component>

<Component>bh4805</Component>

<Component>rgb-8bit-hex</Component>

<Component>setRGB</Component>

<Component>ff0000</Component>

<Component>Public key,timestamp</Component>

<Component>Signature Bits</Component>

</Name>

<Nonce>baec9c26e400a81d699fab36</Nonce>

</Interest>

Listing 1. Sample lighting command format

IV. TESTING ENVIRONMENT LIMITATIONS

Although we were able to conduct several experiments
on the lighting controller test environment, there were some
limitations that prevented us from fully testing our security
attacks. We briefly mention some of these limitations.

Our team was given direct access to the operator machine.
However, as shown in Figure 2, the operator and controller
board communicate with each other on a closed raw Ethernet
network. This limits our testing efforts because all of our
attacks have to initiate at the operator machine. In a more
realistic scenario we envision that the operator and controller
network might be formed by a series of connected routers
and/or switches. This allows for attacks that start at external
devices on the network. In addition, the use of routers between
the operator and controller could present other potential secu-
rity vulnerabilities, which we were not able to explore given
our testbed.

To mitigate some of these limitations, our approach was
to simulate the behavior we would expect if we had a more
complete and realistic test environment. For example, for
an attack in which packets destined for the controller are
intercepted by an attacker on the network, we disable the
NDNLP daemon. This simulates packets being intercepted,
even though the direct Ethernet link between the operator and
controller machines would prevent such an attack in the current
testbed. In the following sections we describe our security
experiments and present the results.

V. REPLAY COMMAND ATTACK

In this attack we intercept NDN interest packets as they
are being sent from the operator machine to the controller
board. We then use the stored packet and attempt to force
the controller board to execute the command encoded in the
packet. This is a typical example of a man-in-the-middle attack

(MITM), in which an attacker eavesdrops on the network
conversation between two victims, which in our case are the
operator machine and controller board. However, given the
current lighting controller system, it is not possible to initiate
independent connections with the victim hosts. Instead, as will
be explained in the next subsection, we simulated this MITM
attack.

It is important to note that the current lighting controller
application code does have countermeasures to defend itself
against replay attacks like this. As shown in Listing 1, the
interest component before the signature, a timestamp value is
inserted by the operator to let the controller know when the
command was issued. This way if a packet is replayed after
a long delay, the controller board can choose to ignore it. A
configuration file is used by the controller lighting module to
specify the time window tolerance, �. Given a packet arrival
time at the controller, ⌧

c

, and a packet send timestamp inserted
by the operator, ⌧

o

, the lighting controller will reject the
command if the following equation does not hold.

|⌧
c

� ⌧
o

| � (1)

A. Experiment

On the operator machine the CCNx and NDNLP daemons
are started. We then set up tcpdump4 to listen on the outgoing
NDN interface. The tool is started with the appropriate filters
to capture only outgoing NDN packets. Because we cannot es-
tablish independent connections to the operator and controller,
we simulate intercepting packets by stopping the CCNx and
NDNLP processes on the controller board.

Next, the lighting control module on the operator is invoked
to send a command to the controller and change the color of
the lighting fixture to red. Tcpdump will capture the packet to a
file, and although the packet will be received by the controller
board, the NDNLP process will not receive it.

With the packet captured, the NDNLP and CCNx daemons
at the controller are started along with the controller applica-
tion module. The � tolerance time had been configured to five
minutes. We then use tcpreplay5 on the operator machine to
read in the captured packet and inject it into the NDN network
interface.

B. Discussion

When the replayed packet arrived at the controller, the appli-
cation module verified the packet signature and then checked
that equation (1) was true. After verifying, the controller
accepted the packet and executed the specified function to
change the lighting fixture color to red.

Although the application code running on the controller
does protect itself against replay attacks, we were still success-
ful executing this attack because the value of � was configured
sufficiently large, and because the operator and controller
clocks were not synchronized, due to clock drift error.

One approach to prevent this replay attack is to minimize the
value of �. Unfortunately, this alone cannot solve the problem

4http://www.tcpdump.org/
5http://tcpreplay.synfin.net/

4

because clock drift will result in the operator and controller
clock being out of sync. This could be enough to fool the
controller application into executing a replayed packet.

A more promising solution could be to make use of the
NTP6 time synchronization protocol which would address the
problem of clock drift between the two machines. Yet, even
this is not a perfect solution. As the author of [5] shows, NTP
is also vulnerable to security attacks. The root cause of this
attack is that the lighting control application is relying ex-
clusively on external sources to authenticate valid commands.
This problem however, can be mitigated by using timestamps
together with sequence numbers. Sequence numbers can be
negotiated by the controller and operator, and they would serve
to uniquely identify both the arriving command packets at
the controller and the acknowledgement data packets sent to
the operator. Together with timestamp information a replay
attack packet can be detected by the controller. The findings
of this attack are applicable to any NDN BACS that only uses
timestamps to mitigate MITM attacks.

VI. LINK LAYER ACKNOWLEDGEMENT ATTACK

In our testbed, NDN runs over NDNLP instead of TCP/UD-
P/IP tunnels. This is advantageous because it eliminates the
task of configuring IP addresses and the extra processing
associated with it. NDNLP addresses two major issues: (1)
messages longer than the Ethernet MTU cannot be sent, and
(2) dealing with packet loss. The first issue is solved with
fragmentation and reassembly, while the second issue is dealt
with by using acknowledgements and retransmissions. It is the
latter that we try to exploit in this attack.

NDNLP uses acknowledgements and retransmissions in
order to handle transmission errors on the physical link. Each
link data packet has its own associated sequence number. It
uses a cumulative acknowledgement scheme, which means that
a single acknowledgement packet can acknowledge multiple
link data packets. This is done by using a bitmap in the
acknowledgement packet. If a packet is not acknowledged
in time, the sender can retransmit. The NDNLP daemon can
be configured to turn off/on acknowledgements, as well as
settings for retry counts and retransmission times.
<NdnlpData>

<NdnlpSequence>sequence number</NdnlpSequence>

<NdnlpFlags>flags</NdnlpFlags>

<NdnlpFragIndex>fragment index</NdnlpFragIndex>

<NdnlpFragCount>fragment count</NdnlpFragCount>

<NdnlpPayload>payload</NdnlpPayload>

</NdnlpData>

Listing 2. Sample NDNLP Link Acknowledgement Packet

Listing 2 shows the XML structure of a link data packet.
Note that only a sequence number identifies a link data packet,
ignoring fragmentation. There is no timestamp associated with
a link data packet. It is left to the upper layers to handle the
timeout of old packets. Retransmitted packets are exactly the
same as the original packet, including payload and sequence
number.

In traditional NDN, interests are sent from consumer host
A to a producer host B. Host B processes the interest and

6http://tools.ietf.org/html/rfc958

Fig. 3. NDNLP Ack Attack

replies back with a data packet. In the NDN lighting BACS, the
producer host B also has a side effect upon receiving a valid
interest, such as turning a light color to red. These side effects
are time sensitive, as a single light can become multiple colors
within a second. Two cases for this would be in a party/disco
scene with strobe lights, and a scene that requires a slowly
fading light. NDN itself does not guarantee in-order packet
delivery, and the NDN lighting BACS also does not process
interests in-order. In our experiment, we wanted to exploit the
NDNLP acknowledgements/retransmissions, keeping in mind
that the lighting side effects are time sensitive.

In the following attacks, our assumption is that the attacker
can block packets, be it an interest packet or the link data
acknowledgement packet. This is possible in a man-in-the-
middle scenario. It is important to note that we turned off
cumulative acknowledgements so that an acknowledgement is
associated with a single link data packet. This was done to
simplify the experiment procedure.

A. Experiment

Figure 3 shows the proposed attack scenario. The operator
wishes to change the lights from red to green, one after
another. The red ack gets blocked, so the operator retransmits
the red interest after the green interest is sent. The end result
is that the light ends with red instead of the expected green.

B. Discussion

We conducted our above scenario, but did not obtain the
anticipated result. The controller received the retransmitted red
interest and sent the acknowledgement, but it did not change
the light color, leaving it green. The NDNLP daemon keeps
track of link data packets it has received. When the daemon
receives a packet it has already seen, it responds with an ack,

5

but does not forward the packet to the upper application layer
since it knows it is a duplicate packet. We have not explored
how many packets it tracks this way. This exploit attempt was
unsuccessful.

In another scenario, we could block the original red interest
instead of its acknowledgement. In this case, the end result
would be a red light. However, this is equivalent to the packet
reorder attack presented in Section VIII.

VII. MEMORY LEAK EXPLOIT DISCOVERY

One of our goals was to test the limits of the lighting control
system by targeting both the application level code and the
network (CCNx) code. This should expose oversight in corner
case testing that might otherwise go unnoticed until an attacker
decides to probe for such a vulnerability. Specifically, in this
attack we increase the size of an NDN interest packet and
observe how the system handles large size packets.
<Interest>

<Name>

<Component>ndn</Component>

<Component>ucla.edu</Component>

<Component>lighting</Component>

<Component>redteam</Component>

<Component>example</Component>

<Component>bh4805</Component>

<Component>rgb-8bit-hex</Component>

<Component>setRGB</Component>

<Component>ff0000</Component>

<Component>Random Component 1</Component>

<Component>Random Component 2</Component>

.

.

.

<Component>Random Component 4000</Component>

<Component>Public key,timestamp</Component>

<Component>Signature Bits</Component>

</Name>

<Nonce>baec9c26e400a81d699fab36</Nonce>

</Interest>

Listing 3. Large NDN interest command packet

A. Experiment

Typical NDN packets exchanged between the operator and
controller board are relatively small at 509 bytes, including
the NDNLP and Ethernet headers. In the first phase of this
experiment we wrote an attack script on the operator machine
that would send 2,000 properly formatted command packets
requesting a light color change. We execute the script on the
operator machine and use the Linux top command to probe
the system statistics on the operator board.

We then test how the system would handle fewer, but much
larger NDN interest packets. For this a module was written
to generate properly formatted NDN packets with a much
larger payload. One obvious way to increase the packet size is
to increase the length of the NDN Interest name. However,
generating arbitrary NDN packets with long names would
not work since the CCNx daemon would discard packets for
which it cannot respond to. We wrote a program that would
generate proper lighting controller command packets as shown
in Listing 1, and then injected an arbitrary number of name
components before the packet component that contains public

key and timestamp information. The data contained in these
additional name components is not important; what matters is
that the newly generated packets are relatively large. Random
nonce values are appended as the extra name components.
Listing 3 shows a sample of this large attack packet. In our
experiment, we chose to append 4,000 name components be-
fore the components containing the public key and timestamp
information. Because of the size of the packets, NDNLP will
fragment the packet into smaller packets before sending it over
Ethernet. The packet is fragmented into 31 smaller packets
of approximately 1,514 bytes, which are reassembled by the
NDNLP daemon at the controller board before being delivered
to the CCNx process.

The packet generator module is invoked from the operator
machine to send this large packet to the controller. Just as
in the first part of this experiment, we start the Linux top
command to probe for any system anomalies in the controller
board.

B. Discussion

As explained in the previous section, the first part of this
experiment bombards the controller board with 2,000 properly
formatted NDN interests packets requesting a change to the
lighting fixture color. The test takes several minutes to execute.
During the experiment we monitored the controller board. No
abnormal behavior was observed during the duration of the
test. Thus, we conclude that the lighting system is robust
against a steady stream of incoming operator commands. This
was expected, as the lighting control is required to be able to
handle many light change requests in small time intervals.

We discovered a critical exploit when conducting the second
phase of the experiment. The flaw is not a problem with the
controller application module, but with the CCNx process
running on the controller. After sending 5 sequential large
packets shown in Listing 3, the CCNx daemon was killed by
the operating system, and the application was terminated.

Repeating the experiment we concluded that the process
at fault was ccnd, the CCNx daemon. After analyzing the
operating system’s kernel logs, we traced the problem to ccnd
being terminated because it consumes all of the system’s
memory resources. Using the top command we repeated the
experiment and carefully profiled how each large packet sent
by the operator significantly increased the memory usage by
ccnd. It is now clear that we have discovered a memory leak
in CCNx. This is a serious flaw because the same attack can
be launched against any ccnd daemon process listening for
incoming interests. The attack shows that this early stage im-
plementation of CCNx has not been as extensively debugged
and tested as the current Internet stack. Thus we suspect
there are multiple other such implementation vulnerabilities
in CCNx.

VIII. PACKET REORDER ATTACK

Unlike TCP, NDN does not guarantee in-order packet de-
livery. This is not necessarily a disadvantage, as IP’s success
is due to its simplicity and weak demands to the lower layers,
namely: stateless, unreliable, unordered, best-effort delivery.

6

NDN was developed with these features and IP’s success in
mind [3].

If an NDN application requires in-order packet delivery,
it is the responsibility of the application to implement this
functionality. Unfortunately, the NDN lighting BACS does not
enforce in-order packet delivery, possibly because it was not
considered necessary in the original design. This leads us to
exploit a vulnerability and potentially change the lights to an
unintended color.

In this attack scenario, we consider the case where we have
a MITM that can delay arbitrary packets with the end result of
packets arriving out of order. We begin by assuming we want
the lights to remain a certain color for a period of time. When
a legitimate operator begins sending a sequence of interest
packets with light commands, we wait until we see a packet
that contains the color we want. We then delay this packet
such that it is at the end of the sequence. As a result, the
lights stay at the color we want. This attack works as long
as the delayed packet is within the time window tolerance as
explained in Section V.

A countermeasure to this attack is to enforce in-order
delivery at the application level. This could be done by using
sequence numbers in the interests and reordering the interests
upon reception. This additional step of processing may be
acceptable in more correct-sensitive applications. However,
the processing delay could negatively affect time-sensitive
applications. Guaranteeing in-order delivery at a lower level
would be more effective, but not all applications have a need
for such a feature.

IX. FUTURE WORK

A. Key Exchange Considerations

The NDN architecture depends on the usage of cryptogra-
phy for security. In its current implementation, the challenge
of secure key distribution has not been completely solved.
Because the current NDN architecture has not addressed this
issue, the lighting system hardcodes the operator’s public key
in the controller to validate arriving interests. The interest
packet itself also contains a public key, but this is only used
to match with the list of accepted keys on the controller.

The above mentioned design works properly if the operator
always uses the same public key, but it does not provide any
secure procedure to update the keys without manual access
to both the operator and the controller. Good cryptography
practices state that key pairs should be updated after a period
of time because an attacker is more easily able to predict
a key the longer it is in use. The NDN lighting BACS
currently ignores this problem. However, we expect key update
functionality to be implemented in the future. We do not
believe that key distribution via certificate authorities is a
good solution because it will not scale well if there are many
NDN users. A future decentralized key distribution mechanism
would be preferred. Whatever the solution, key distribution
must be safeguarded against potential MITM attacks during
the key exchange process. It is especially important that NDN
address this problem because the architecture makes extensive
use of keys to sign packets.

B. Revisit CCNx Memory Flaw
We hope to present our findings to the CCNx development

team. After they fix the memory leak, an even more elaborate
large packet generation attack can be devised to verify that
the problem was properly corrected. It would be useful to use
memory profiling tools like valgrind7 to conduct a detailed
analysis on the memory footprint of the CCNx and NDNLP
processes. Given that both projects are still under heavy
development, it is possible that memory bugs still exist.

X. CONCLUSION

Building Automation and Control Systems (BACS) continue
to be deployed to regulate the environment of buildings. Of
great concern is the security of these systems. The very
first BACS to run on Named Data Network (NDN) is a
lighting controller. We were interested in the potential security
improvements and security design lessons.

In our research as the red team for the lighting control sys-
tem, we devised a replay command attack. Our results suggest
that although the application software was written with replay
attack countermeasures, the fact that it relies on timestamps
keeps it vulnerable. This external source dependence should
be minimized. We also conducted an attack against the link
layer protocol, NDNLP, to explore whether we could fool the
operator in resending unacknowledged packets. It turns out
that NDNLP will detect duplicate packets, and it will ignore
them. This attack was unsuccessful. We also described a packet
reorder attack, in which an attacker can manipulate the order
of the command packets resulting in an unwanted effect at the
lighting controller.

Another important contribution of our tests was the dis-
covery of a memory leak flaw in the CCNx code. By using
large packets we exposed a problem that may have otherwise
gone unnoticed. In addition, we also concluded that NDN does
not have a secure key distribution mechanism. Because the
architecture depends heavily on keys, a solution needs to be
proposed soon.

There is still further work that can be done to gain a better
understanding of the state of security of the lighting controller
and NDN. Running BACS over NDN has clear advantages, but
there are some security issues that should be addressed.

ACKNOWLEDGMENT

The authors would like to thank Alex Horn, Wentao Shang,
and Alex Afanasyev for their contributions.

REFERENCES

[1] J. Burke, A. Horn, and A. Marianantoni, “Authenticated lighting control
using named data networking,” University of California, Los Angeles,
Los Angeles, CA, NDN Technical Report NDN-0011, Oct. 2012.

[2] W. Granzer, F. Praus, and W. Kastner, “Security in building automation
systems,” IEEE Trans. Ind. Electron., vol. 57, pp. 3622–3630, Nov. 2010.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. CoNEXT ’09,
Rome, Italy, Dec. 1–4, 2009.

[4] J. Shi and B. Zhang, “Ndnlp: A link protocol for ndn,” The University
of Arizona, Tucson, AZ, NDN Technical Report NDN-0006, Jul. 2012.

[5] M. Bishop, “A security analysis of the ntp protocol version 2,” Computer
Security Applications Conference, pp. 20–29, Dec. 1990.

7http://valgrind.org/

