
BBR-Inspired Congestion Control for Data Fetching
over NDN

Yi Hu
Peraton Labs

yhu@perspectalabs.com

Constantin Serban
Peraton Labs

cserban@perspectalabs.com

Lan Wang
University of Memphis

lanwang@memphis.edu

Alex Afanasyev
Florida International

University
aa@cs.fiu.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

Abstract—In this paper we explore congestion control solutions
in a network running the Named Data Networking (NDN)
protocol. Since requested data can be retrieved from either
original producers or in-network caches, the end-to-end con-
nection oriented TCP congestion control solutions, such as BBR
(Bottleneck Bandwidth and Round-trip propagation time) do not
work well for NDN transport, especially in wireless networks.
We propose a BBR-guided congestion control, BBR-CD, for bulk
data fetching by a group of users. BBR-CD applies RTT filtering
and interest scheduling to improve BBR’s efficiency in NDN. Our
evaluation shows that BBR-CD achieves much higher application
goodput compared with ndncatchunks which implements the TCP
AIMD and CUBIC congestion control algorithms. Moreover,
compared with one-flow-per-file SIRC, an NDN congestion control
algorithm that paces interests based on inter-data-gap, BBR-CD
provides better fairness and bandwidth utilization. Finally, BBR-
CD outperforms a direct adoption of the original BBR to NDN,
suggesting that our changes to BBR are effective.

Index Terms—Named Data Networking, NDN, Congestion
Control, Wireless Networks, Lossy Networks

I. INTRODUCTION

In Named Data Networking (NDN) [1], [2], named, secured
data is the centerpiece of communication, and consumers
request desired data by name. All data items in NDN are cryp-
tographically signed and encrypted if needed, hence providing
inherent data security. Moreover, NDN provides efficient and
robust data distribution using stateful data plane, request ag-
gregation, and in-network caching. These features make NDN
a much better fit than IP for disadvantaged wireless networks
that are often infrastructure-less, ad hoc, and deployed on-
demand anytime and anywhere. Our earlier work addressed
how to signal data generations for consumers [3] in such
networks, now we focus on the performance of the data
delivery by applying congestion control to regulate interest
transmissions and retransmissions in response to available
resources and network dynamics. We focus on controlling
the interest pipeline at data consumers, which can be used
in conjunction with hop-by-hop interest traffic shaping.

Existing TCP congestion control mechanisms cannot be
directly applied to NDN, as NDN’s in-network caching in-
validates the assumption of a TCP connection between two
specific nodes for data delivery. More specifically, in-network
caching can lead to large variations in the RTTs perceived at
a consumer, making those congestion control algorithms that
overly rely on precise RTT estimation unreliable. Furthermore,

TCP’s control-loop reacts to packet losses in the same way,
regardless of the causes (e.g., collisions, errors, congestion, or
node mobility), hence non-congestive losses result in network
under-utilization.

We propose BBR-CD, a BBR [4] guided congestion control
for data delivery in NDN. Similar to BBR, it uses the estimate
of the bottleneck Bandwidth-Delay Product (BDP) to calculate
the congestion window and NDN interest pacing rate, and
periodically probes the available bandwidth by boosting and
draining the inflight traffic to converge to a fair share of
network resources among competing data flows. Simple BBR,
however, does not work well when the measured RTTs have
large variations depending on whether the data is retrieved
from network caches or data sources. When multiple con-
sumers fetch the same content simultaneously, the combined
effects of interest losses and interest aggregation at routers
make it impossible to get accurate RTT samples.

To address the above issues, we apply three modifications to
improve BBR’s efficiency in NDN: (1) we use average RTT,
instead of the min RTT, to calculate BDP to reduce the impact
of high variance in RTT estimation at the consumers; (2) we
further apply RTT filtering to remove noise in RTT samples
to eliminate effects such as data retrieval from local caches
or added delays from interest timeouts due to wireless losses;
and (3) we modified the conditions for transition to and from
BBR’s ProbeRTT state, in order to collect multiple RTT values
to compute meaningful average RTT measures.

Our evaluation shows that BBR-CD achieves much higher
goodput than ndncatchunks which implements the TCP AIMD
and CUBIC congestion control algorithms. Moreover, com-
pared with SIRC [5], a proposed NDN congestion control
algorithm that paces interest sending rate based on inter-
data-gap, BBR-CD provides better fairness and bandwidth
utilization due to its BDP estimation and bandwidth probing.
Finally, our results demonstrate that BBR-CD outperforms a
direct adoption of the original BBR to NDN, suggesting that
our changes to BBR are effective.

The rest of this paper is organized as follows. Section II
presents the application model and its requirements. Section III
discusses the design of the BBR-CD congestion control, and
Section IV presents the evaluation scenario and the perfor-
mance of BBR-CD. We discuss related work in Section V
and conclude the paper in Section VI.

1



II. APPLICATION MODEL

We assume producers generate files at unpredictable inter-
vals, and a group of consumers need to obtain each produced
file as soon as possible. The producer and consumers are
assumed to use a synchronization protocol, e.g., PLI-Sync [3],
to notify all the consumers of the data generation, and the
consumers starts fetching the file upon receiving the notifica-
tion. Each file is segmented into multiple NDN data packets
using the default NDN packet size of 8600B, and consumers
retrieve each data packet by issuing an NDN interest packet.
Intermediate NDN routers cache data packets passing by.

Figure 1 (top) shows a sample topology where two con-
sumers can reach a data producer through a router in a
wireless network. An NDN data packet can be fetched from
either the original producer or the router cache, if an earlier
interest has retrieved the data. Figure 1 (bottom) shows a
topology where data consumers are connected to the producer
via multiple routers. We assume that NDN routers perform
opportunistic caching based on their resource availability with
no coordination for cache management, and that the topology
may change dynamically due to mobility or disconnections.
Consequently, the consumers have no prior knowledge of
which data packet is cached at which router.

There are multiple applications and use cases that fit the
above model. One example is file generation and dissemination
by an emergency response team, where maps, photos, and
audio files need to be delivered over wireless networks, in
real time, once generated. Other examples may consist of real
time video generation and transmissions to dynamic groups of
users over a variable network topology.

Fig. 1. NDN Data Delivery Transport

III. CONGESTION CONTROL DESCRIPTION

A. Original Bandwidth-Delay Product Congestion Control

As a congestion control algorithm, BBR measures the
bandwidth-delay product (BDP) of the network path over
which a transport flow travels [4] by two parameters: the
bottleneck bandwidth available to the transport flow (BtlBw),
estimated from the maximum delivery rate; and the round-
trip propagation delay of the path (RTprop), estimated from

the the minimum round-trip delay. BBR aims to operate at
a point where it can achieve both high throughput and low
latency. To achieve high throughput, BBR tries to make the
packet arrival rate match the bottleneck bandwidth available
to the flow. To achieve low latency, BBR tries to keep the total
data in flight along the path equal to the estimated BDP of the
path (BtlBw×RTprop), avoiding the build up of queues. BBR
maintains these conditions by controlling three parameters:
pacing rate: the inter packet spacing at the time each packet is
scheduled for transmission by a BBR sender; send quantum:
the amount of data scheduled and transmitted together; and
congestion window (cwnd): the amount of data that can be
in-flight at any moment for a given connection.

BBR operates a state machine with four states. A new
connection enters the Startup state. In this state, BBR ex-
ponentially increases the sending rate until the flow reaches
the bottleneck bandwidth, and then it enters the Drain state
to reduce the number of queued-up packets. After the Drain
state achieves 1 BDP, BBR enters the steady state, ProbeBW
state, where it periodically raises the number of in-flight
packets to probe whether a higher bandwidth is available. At a
much coarser time granularity (e.g., 10sec), BBR goes to the
ProbeRTT state, where it reduces the number of packets on-
the-fly to a small value (e.g., 4 packets) to reduce the queues
in the network to measure the minimum RTT.

B. BBR-CD Overview

BBR-CD adopts the four states in the state machine defined
in the BBR algorithm but adapts the state machine to provide
an NDN consumer-driven congestion control scheme. A BBR-
CD flow represents the interaction between one consumer
and either the data producer or network caches serving the
data. Therefore, the BBR-CD flow model represents the set of
overlapping paths of different lengths taken by the interests
issued by a consumer, and the corresponding data items
propagating back to the consumer.

Similar to BBR, BBR-CD uses cwnd and pacing rate to
control the amount of traffic in-flight and regulate the inter-
packet spacing time. More specifically, cwnd = cwnd gain∗
estimatedBDP + quanta, where cwnd gain is a scaling
factor to the estimated BDP, and its value is selected by
the BBR state machine. BBR-CD follows BBR to use a
quanta term, which is set to 3 ∗ NDN packet size. The
scheduler in BBR-CD calculates the next interest sending time
after a data arrival or an interest timeout event, as now() +
NDN packet size/pacing rate, where pacing rate =
pacing gain ∗ estimatedBtlBW . Similar to cwnd gain,
pacing gain is a scaling factor to the estimated bottleneck
bandwidth and its value is set by the BBR state machine. BBR-
CD sets the NDN data packet size to be 8600B to amortize
the per-packet security overhead.

An important difference between BBR and BBR-CD is that,
rather than using the minimum round trip time for RTprop,
BBR-CD uses the estimated average of the round trip time
over a time window for RTprop. For a single flow i at time T ,
BBR-CD calculates RTprop using the average of all samples

2



for data packets of the flow within a time window Wi as
̂RTpropi = avg(RTT i

t ), ∀t ∈ [T − Wi, T ] (all samples
within the time window have the same weight). The length
of the window Wi may depend on the expected frequency
of path changes and other dynamics. BBR uses a fixed value
of 10 seconds, while BBR-CD sets the time window to be β
times the latest estimated average RTT. Empirically, we set β
to 8 for evaluations in IEEE 802.11n networks. The running
average RTT alone cannot sufficiently reflect the dynamics of
BDP in data retrieval, so BBR-CD periodically probes whether
the available BtlBW has changed and measures the magnitude
of the change in average RTT to guide interest transmission.
We will elaborate on the probing procedure below in III-C.

BBR-CD measures the RTT as the time interval between
sending an interest and receiving the corresponding data,
excluding the cases when data is fetched from the local cache,1

which do not reflect network conditions, and the cases when
data is returned after interest retransmissions. It is important
to note that the RTT of a single interest-data exchange may
not accurately reflect the true RTT between a consumer and a
producer (even without caching), because in a multi-consumer
scenario, identifying exactly which interest retrieves a data
back can be challenging. For example, a consumer’s interest
may be lost upstream at an intermediate router, but an interest
from another consumer for the same data segment arrives
before the lost interest times out, and fetches the data, which
is sent by the intermediate router to both consumers. Thus,
the first consumer’s perceived RTT includes the true RTT
value plus a time gap between the loss of the first interest
and the arrival of the second interest. In consideration of this
ambiguity in RTT measurements, BBR-CD sets the interest
retransmission timer to be the sum of RTprop and a cushion
equal to multiple RTT standard deviations. Specifically, BBR-
CD has a Loss Detector Module which resends an interest that
was sent at time T for flow i if the corresponding data has not
been received by T+ ̂RTpropi+α∗δi, where δi is the standard
deviation of all RTT s over time window Wi for data flow i,
and α is a scaling factor to cover possible variation in RTTs,
e.g., due to different data retrieval path lengths. Empirically
we set α = 10. After an interest times out, BBR-CD resends
the interest, and will not include the RTT of the corresponding
data in the BDP estimation.

BBR-CD tracks the delivery rate to estimate the bottleneck
bandwidth. When a data item arrives at a consumer at time
T , BBR-CD measures the data’s RTT and the delivery rate of
data. The delivery rate for the interval between interest sent
and data received events is the ratio between the amount of
data delivered and the time elapsed, i.e., deliveryRateiT =
∆deliveredi

/∆T . This rate computation excludes the cases of
interest being retransmitted, therefore the resulting rate must
be less than or equal to the available bottleneck rate for
the data flow. Similar to the average RTT value, BBR-CD
calculates the BtlBw as the unweighted average of all delivery

1This can happen when NDN applications are restarted without restarting
the local NFD, for example.

rates sampled over a time window of flow i to estimate the
effective bandwidth, B̂tlBwi = avg(deliveryRateit), ∀t ∈
[T −Wi, T ].

C. BBR-CD Control Algorithms

Fig. 2. BBR-CD Congestion Control Algorithm

BBR-CD congestion control consists of four components:
BDP Estimator, Loss Detector, Inflight Controller, and Interest
Scheduler as shown in Figure 2. The BDP Estimator records
the timestamp and status of the delivered data when an interest
is sent, and calculates ̂RTpropi and B̂tlBwi samples when
data packets are received. It updates the time window records
and feeds the estimated ̂RTpropi and B̂tlBwi to the Inflight
Controller and the Loss Detector.

Fig. 3. BBR-CD State Transition

Figure 3 shows an overview of the state transitions among
the Startup, Drain, ProbeBW, and ProbeRTT state in the
Inflight Controller.We made a few modifications to the original
BBR state machine.

a) Startup: A data flow enters the Startup state where
it increases its cwnd to reach a constant gain factor, which
is the ratio of inflight data size over the estimated BDP.
We set highGain = 2.885, cwnd gain = highGain, and
pacing gain = highGain. We initialize cwnd to 1 for
generality. The Startup state performs an exponential search of
the available bandwidth, doubling the sending rate each round
to find BtlBw in O(log2(BDP )) round trips. The controller
estimates whether the pipe is fully utilized by looking for a
plateau in the BtlBw tracked by the BDP estimator. If the

3



controller observes that three consecutive rounds of doubling
interest sending rate result in little data rate increase (<25%)
of BtlBw, it concludes that the full capacity of the available
BtlBw is reached. It then moves from the Startup state to the
Drain state to drain likely inflated queues.

b) Drain: In the Drain state, the controller switches
to use a gain factor well below 1.0, i.e., drainGain =
1/highGain and pacing gain = drainGain, to drain any
queue created during the Startup state, while cwnd gain =
highGain to keep the cwnd. When the inflight data size
matches the estimated BDP from the Startup state, the flow
moves from the Drain state to the ProbeBW state.

c) ProbeBW: The ProbeBW state is a flow’s steady
state, probing for bandwidth changes using gain cycling to
set the value of pacing gain, in which the gain factor
of a flow cycles through a sequence of values. We adopt
BBR’s 8-phase gain cycle with the following gain factor
values: [5/4, 3/4, 1, 1, 1, 1, 1, 1]. Each phase normally lasts for
roughly one RTT so that a flow periodically raises or lowers
inflight data size to probe for BtlBw samples. cwnd gain is
set to 1 and stays constant in this state.

d) ProbeRTT: BBR-CD’s implementation of ProbeRTT
differs from that in BBR. Instead of entering the ProbeRTT
state when the minimum RTT has not decreased for a period of
time, the flow enters the ProbeRTT state when not enough RTT
samples are collected over the given time window Wi, which
means the flow i either encountered interest timeouts or the
data retrieval path is disrupted (e.g., due to producer/consumer
mobility). In either case, flow i decreases the interest sending
rate to k per second, a low enough value that should not
cause congestion; we empirically set k to 4. BBR-CD leaves
ProbeRTT when there are sufficient RTT samples collected
over time window Wi to enter either Startup or ProbeBW,
depending on it estimate of whether the pipe was filled
already. We use a threshold value (empirically set to 4 in our
experiment) to decide whether sufficient samples are collected
or not.

The Loss Detector periodically checks whether pending
interests are timed out (lost). The Interest Scheduler paces the
interest transmission based on the cwnd and pacing rate output
from the Inflight controller. When a data segment is received
or a pending interest is timed out, the interest scheduler sets
the next send time to be packet size divided by pacing rate,
where pacing rate is computed as B̂tlBwi ∗ pacing gain.

IV. PERFORMANCE EVALUATION

A. Experiment Settings

We implemented the BBR-CD in software using multiple
versions of NFD and ndn-cxx library (0.6.2, 0.6.6, and 0.7.1),
and ported the stack on different platforms (Ubuntu 16.04,
Ubuntu 18.04, Android 7.2, and Android 8.0). The platforms
are deployed in up to 100 devices, connected by a variety
of wireless networks. The evaluation described in this paper
was performed in a hybrid environment, consisting of virtual
machines hosting the NDN software stack and applications,
and an ns-3 simulation-in-the-loop network model simulating

network environment. We focused on evaluating networks
consisting of one mobile device (Topology 1, Figure 4 left)
or groups of ten mobile devices (Topology 2, Figure 4 right),
an AP, and a producer. Each mobile device as a consumer is
connected via WiFi 802.11n to an Access Point (AP), and the
AP is further connected via another WiFi 802.11n network to
the content producer. Note that the APs are routers running
NFD. Each AP is configured to operate at a HtMCS6 rate of
50Mbps used by one consumer in Topology 1, and shared by
ten consumers in Topology 2. The link between the AP and
the producer is also 50Mbps. Due to the poor performance
of existing Wifi broadcast/multicast implementations in most
devices, we set up each consumer and the producer to use an
UDP unicast face towards their router(s). As a result, while
each consumer hosts an NFD with a local data cache, this
cache is not shared by other consumers, since their interests
are only sent to the AP and upstream.

Fig. 4. Evaluation topologies

We compare BBR-CD with three congestion control
schemes: 1) ndncatchunks [6], 2) SIRC [5], and 3) the original
BBR directly ported to NDN, without our modifications.

ndncatchunks provides three types of interest pipelines in
data fetching: 1) fixed window size, 2) adjusting congestion
window size using the TCP AIMD algorithm, and 3) adjusting
congestion window size according to TCP CUBIC algorithm.
We compared BBR-CD with ndncatchunks using both AIMD
and CUBIC, and found that AIMD outperforms CUBIC in our
topologies and application, so we present the AIMD results.

SIRC follows AIMD initially until 10 inter-data gap samples
are collected, it then regulates interest sending based on inter-
data gap samples. Since no public implementation of SIRC is
available, we implemented SIRC based on Section III in [5].
SIRC assumes that each returned data packet carries the ID
of the node from which the data is fetched and establishes
per path flow. However, we implemented per file flow as the
standard NFD implementation does not attach node ID to the
data packet from a cache. An SIRC flow is controlled by the
algorithm described in [5].

We also implemented the original BBR [7] in NDN, using
the minimum RTT sample over 10-sec time window as RTprop
and the maximum delivery rate over 10 ∗ RTprop time as
maxBtlBW, as per the specs. The original BBR also follows
state transition rules specified in [7]. The starting window size
is set to 1 for all schemes.

4



We use goodput, defined as the application data size divided
by the delivery time, as the main metric to measure the
effectiveness of the congestion control scheme. We let each
consumer fetch a 20MB file from the producer.2 The delivery
time is the time duration from when the first interest is sent
until the time when the last data segment is received by a
consumer. We tested the cases of both one consumer fetching
and ten consumers simultaneously fetching, and the goodput
result is the average over 10 rounds with the whisker showing
the min and max values of the goodput among the 10 rounds.

B. Performance in Single/Multiple Consumers

Figure 5 shows that, for both topologies, BBR-CD’s good-
put is higher than the other three schemes3. Interest pacing
is an important factor contributing to this performance gap.
Figure 6 compares the pacing interval between successive
interests of the four schemes in the single-consumer topology.
BBR-CD has the smoothest interest transmission, where the
pacing interval falls mostly between 1 and 10 msec. SIRC’s
interest pacing based on inter-data-gap shows slightly worse
performance than BBR-CD in the single-consumer case, with
the pacing interval falling mostly between 0.1 msec and 10’s
of msec. BBR-original’s interest pacing uses the collected
min RTT and max delivery rate, which spread the pacing
interval wider than those of BBR-CD and SIRC, with periods
of no data received. Ndncatchunk AIMD does not pace interest
transmission, thus the intervals between its interests range
from 1 msec to more than 10 sec.

Fig. 5. Goodput in Topology 1 and 2 without Added Losses

C. Performance in Lossy Settings

We introduced packet loss in topology 1 and 2 using the
receiver-loss model as follows: 3% at each consumer, 3% at the
gateway router, and 4% at the producer, resulting in a roundtrip
loss of approximately 10%. Figure 7 shows that BBR-CD
outperforms the other three schemes in goodput. In addition
to the pacing factor mentioned earlier, superfluous interest re-
transmissions contributed to the performance gap in this case.
Analysis of the logs show that, about 50% of total interests
transmitted by ndncatchunks AIMD were retransmissions, but
only about 10% of total interests transmitted by BBR-CD and
BBR-original were retransmissions. AIMD cannot correctly
identify whether the variation of RTTs is due to congestion or
packet losses, ndncatchunks shows repetitions of data bursts

2The AP’s content store size is set to the default value of 65,536 packets,
which can hold the entire 20MB file.

3The goodput in the 10 consumer case is summed over all consumers.

Fig. 6. CDF of Interest Pacing Interval in Topology 1 without Added Losses

and starvation periods. In contrast, the other three schemes are
able to sustain the data retrieval without starvation.

Fig. 7. Goodput in Topology 1 and 2 with Added Losses

D. Performance with Intermittent Connection

We tested the disconnection and reconnection of the pro-
ducer during a data transfer in Topology 2, and we measured
the delivery time increase ratio caused by the producer discon-
nection. For example, across the ten consumers, BBR-CD’s
mean delivery time for 20MB data increased from 37.8 sec to
50.6 sec (discounting the disconnected period) when the pro-
ducer was disconnected 32 sec during the delivery process, the
mean delivery increase ratio was (50.6− 37.8)/32 = 0.4. An
increase ratio below 1 means that the consumers were fetching
data from the AP cache when the producer was disconnected,
and the smaller this ratio the better. Table I compares the

TABLE I
DELIVERY INCREASE RATIO WITH PRODUCER DISCONNECTION

- Min Mean Max
BBR-CD 0.625 0.4 0.33
catchunks 0.91 0.86 0.812

delivery time increase ratio between ndncatchunks AIMD and
BBR-CD. We can see that all three delivery time metrics for
the NDN congestion control schemes are below 1. However,
BBR-CD has much lower increase ratios than ndncatchunks
because (a) it does interest pacing to slow down the sending

5



rate when the available bandwidth is reduced (as a result of
the producer being disconnected), and (b) it prioritizes the
transmission of the initial interests over retransmissions for
better in-network cache utilization.

V. RELATED WORK

A number of NDN congestion control schemes have been
developed [8] which can be classified into three categories:
consumer-based control, hop-by-hop control, and hybrid meth-
ods.

One natural way to perform congestion control is by con-
trolling the interest sending rate at the consumer side (e.g.,
[5], [9], [10]), which matches NDN’s receiver-driven “Pull”
based communication model. BBR-CD is also consumer-based
control, but it differs from previous work in this category
in that it handles multiple dynamic paths introduced by in-
network caching, without assuming that the consumer has prior
knowledge of which packet will be served by which source
or which path. In [9] and [10], a consumer maintains an RTO
for each data source or each transfer path, and uses AIMD to
adjust the cwnd associated with an RTO. Such schemes assume
the consumer can retrieve data source or path information
from NDN’s forwarding layer. This assumption is impractical
for the dynamic paths introduced by in-network caching. In
addition, the AIMD based window adjustment mechanism
does not control the consumer’s pacing rate. In SIRC [5], a
consumer paces the interests based on inter-data gaps. When
data arrives more frequently, the interests are pumped out more
quickly. In contrast, BBR-CD adjusts pacing rates of interests
by estimating the BDP, which is a general form of the inter-
data gap in SIRC. The main difference is, in steady state,
BBR-CD periodically probes the BW and RTT, rather than
being totally reactive to the data arrival rate as in SIRC. Such
probing contributes to the fairness among competing content
flows.

Another NDN congestion control approach is hop-by-hop
control, e.g., [11]. The basic principle of hop-by-hop control is
each NDN node detects congestion by monitoring its Pending
Interest Table size or interest/data arrival rate, and adjusts
its interest forwarding rate to control the returning data rate
accordingly. Hop-by-hop control schemes can benefit from
the cooperation from consumers such as initializing interest
sending rate properly.

Hybrid schemes, e.g., [12], [13] and [14], enhance
consumer-based control with explicit information from the
network. More specifically, consumers perform congestion
control with feedback from intermediate nodes to converge
to fairness for all competing flows. BBR-CD can be used
in conjunction with a hop-by-hop control, i.e., a consumer
estimates the BDP to reflect the intermediate nodes’ traffic
reshaping, further improving the performance.

VI. CONCLUSION

The results shown in this paper demonstrate that BBR-
CD can provide higher goodput compared with TCP-based
consumer side NDN congestion control schemes and inter

data gap-based consumer side congestion control. This paper
demonstrates that a BBR-based scheme can perform well in
wireless scenarios with significant losses, disconnections, and
consumer-induced dynamics. Among the topics not covered
in this paper are the impact of complex network topologies,
cache settings, and interest paths, as well as more complex
interactions between multiple consumers and the network.
Also not explored are schemes that may combine BBR guided
consumer driven congestion control with traffic shaping at
NDN routers. These topics are left for future research.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. Thronton, M. F. Plass, N. H. Briggs,
and R. Braynard, “Network Named Content,” CoNEXT, 2009.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM Computer Communication Reviews, Jun. 2014. [Online]. Available:
http://dx.doi.org/10.1145/2656877.2656887

[3] Y. Hu, C. Serban, L. Wang, A. Afanasyev, and L. Zhang, “Pli-sync:
Prefetch loss-insensitive sync for ndngroup streaming,” in Proceedings
of IEEE International Conference on Communications, 2021.

[4] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control: Measuring bottleneck band-
width and round-trip propagation time,” vol. 14, no. 5, 2016.

[5] M. Amadeo, A. Molinaro, C. Campolo, M. Sifalakis, and C. Tschudin,
“Transport layer design for named data wireless networking,” in 2014
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2014.

[6] K. Schneider, C. Yi, B. Zhang, and L. Zhang, “A practical congestion
control scheme for named data networking,” in Proceedings of the 3rd
ACM Conference on Information-Centric Networking, 2016.

[7] N. Cardwell, Y. Cheng, S. H. Yeganeh, and V. Ja-
cobson, “BBR Congestion Control,” Internet Engineering
Task Force, Tech. Rep. draft-cardwell-iccrg-bbr-congestion-control-
00, 2017. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-cardwell-iccrg-bbr-congestion-control-00

[8] Y. Ren, J. Li, S. Shi, L. Li, G. Wang, and B. Zhang, “Congestion control
in named data networking – a survey,” Computer Communications,
vol. 86, 2016.

[9] G. Carofiglio, M. Gallo, L. Muscariello, and M. Papali, “Multipath con-
gestion control in content-centric networks,” in 2013 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), 2013.

[10] L. Saino, C. Cocora, and G. Pavlou, “Cctcp: A scalable receiver-driven
congestion control protocol for content centric networking,” in 2013
IEEE International Conference on Communications (ICC).

[11] Y. Wang, N. Rozhnova, A. Narayanan, D. Oran, and I. Rhee, “An
improved hop-by-hop interest shaper for congestion control in named
data networking,” SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
2013.

[12] F. Zhang, Y. Zhang, A. Reznik, H. Liu, C. Qian, and C. Xu, “A transport
protocol for content-centric networking with explicit congestion control,”
in 2014 23rd International Conference on Computer Communication
and Networks (ICCCN), 2014.

[13] G. Carofiglio, M. Gallo, and L. Muscariello, “Joint hop-by-hop and
receiver-driven interest control protocol for content-centric networks,”
vol. 42, no. 4, 2012.

[14] K. Schneider, C. Yi, B. Zhang, and L. Zhang, “A practical congestion
control scheme for named data networking,” in Proceedings of the 3rd
ACM Conference on Information-Centric Networking, 2016, pp. 21–30.

6


