
NETBLT: A High Throughput Transport Protocol 

David D. Clark 
Mark L. Lamberl 

Lixia Zhang 

Laboratory for Computer Science 
Massachusetts Institute of Technology 

Cambridge, MA 02139 

1. Introduction 
Bulk data transmission is now finding more and more application 

in various fields. The major performance concern of a bulk data 
transfer protocol is high throughput. Theoretically, a packet switched 
network allows any single user an unlimited share of the netWOrk 
resources. In the absence of other traffic, therefore, a user should 
be able to transmit data at the raw bandwidth of a network channel. 
In reality, achievable end-to-end throughputs over high bandwidth 
channels are often an order of magnitude lower than the provided 
bandwidth. Experience shows that the throughput is often limited by 
the transport protocol and its flow control mechanism. It is especially 
difficult to achieve high throughput, reliable data transmissions 
across long delay, unreliable network paths. 

In this paper we introduce a new transport protocol, NETBLT [2], 
which was designed for high throughput, bulk data transmission 
applications. We first analyze the impact of network unreliability and 
delay on the end-to-end transport protocol; we then summarize 
previous experience; next we show the design and implementation of 
NETBLT, followed by our initial experience. Generally speaking, 
errors and variable delays are two barriers to high performance for 
all transport protocols. The- NETBLT design and experience 
explores general principles for overcoming these barriers. 

2. Impact of Network Unreliability and Delay 

2.1. Network Unreliability 
If a network were perfectly reliable, an end-to-end transport 

protocol would have little to do: it would only need to mark the start 
of a transmission, and then dump all data through the channel. 

This research was supported by the Defense Advanced Research 
Projects Agency of the Department of Defense and was monitored 
by the Office of Naval Research under Contract Nos. NOOOl4-75 
C-0661 and N00014-83-K-0125. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of 
the publication and hs date appear, and notice is given that copying 
is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish, requires a fee and/or specfic 
permission. 

Unfortunately, no real network offers such perfect reliability. The 
network unreliability manifests itself as packet losses, duplicates, 
and out-of-order deliveries. 

A reliable transport protocol must then detect and recover from all 
transmission errors. It does so by numbering the data units, and 
keeping transmission state information at the two communicating 
ends. The state information keeps track of the status of data under 
transmission. It also permits recovery from errors whenever they are 
detected. It is this transmission state that regulates the data flow. 

The state at the two ends is constantly synchronized by the arrival 
of new data and control information (e.g. acknowledgments). The 
receiving end can easily check and correct duplicate or out-of-order 
packets. If data or control packets are lost, the most common 
recovery technique is for the transmitting end to wait for the 
retransmission timeout and then retry, until a successful 
retransmission resynchronizes the end state. As will be shown in the 
next section, however, the detection of lost packets by timers takes a 
relatively long time, and may easily cause false alarms which in turn 
trigger superfluous retransmissions. 

2.2. Transmlsslon Delay 
If there were no communication delays between the transmitter 

and the receiver, the transmission state at the two ends could be 
perfectly synchronized, i.e. each end could have a consistent view of 
the status of every data packet all the time. The transmitter could 
then retransmit any packet in error immediately after it is detected by 
the receiver. In this case the throughput would be limited only by the 
channel bandwidth between the two ends. 

In reality, the network round trip delay (RTD) is usually non- 
negligible and varies randomly. The presence of the RTD causes 
the control state at the two ends to be out of synchronization: each 
will have a different view of the status of the data under transmission 
from time to time, and will not know the other’s state changes until 
some time period later. For instance, after the transmitter sends a 
packet P, it will not know whether P was successfully received until 
at least an RTD period; in the meantime, it must keep sending 
subsequent packets to achieve a high throughput. A transport 
protocol must tolerate a certain state out of syncbronizafion (SOS) 

between the two ends; the SOS bounds the quantity of data the 
transmitter is allowed to send before it must stop to resynchronize 
the state with the rac&Ver. 

0 1988 ACM O-89791-245-4/88/0001/0353 $1.50 
353 

SIGCOMM 1987



Ott transpor\ protocols set a limit on the SOS region in order to 
bound the state information that must be maintained and the System 
resources that must be allocated for incoming data. Whenevfjr the 
transmitter reaches the SOS boundary, the transmission stops and 
waits for the state resynchronization between the two ends. For 
instance, a TCP transmitter stops at the window boundary and Waits 
for a new acknowledgment before it can continue. This wait for 
synchronization can often cause loss of performanCs. 

A small SOS region means a simpler protocol design and 
implementation. The Trivial File Transfer Protocol (TFTP) [Zi], for 
example, takes a lock-step approach and synchronizes the state at 
every packet transmission’. Since the end state synchronization 
always takes at least an RTD, TFTP can send Only one data packet 
each RTD, and thus performs very poorly over long delay links. 

In Order to keep transmitting while waiting for the end state to be 
synchronized, the SOS region must be Set larger for longer RTD 
paths, so that there are always data ready to go. How big an SOS 
region will be sufficient? Theoretically, there does not exist an Upper 
bound that is absolutely sufficient, because if N errors occur, the 
ends might need a time period of (N l RTD) to recover, where N 
ranges from I to infinity. In practice, we must assume a bound on 
the number of errors beyond which performance will suffer. 

In summary, it is the requirement for reliable data transmission 
that make the transport protocol maintain a transmission state at the 
two ends. Communication delays cause each end’s state 10 be out 
of synchronization with the other’s Finally, this SOS region must be 
sufficiently large to achieve a high throughput over long RTD paths. 

3. Previous Experience 
Previous experience with the performance of transport prOtoCols 

showed two major problems: restrictions in throughput which arise 
from the use of windows as a flow control mechanism, and the 
difficulty in handling timers. The problem with windows is that they 
are both a data flow control and an error recovery mechanism. The 
problem with timers is estimating an appropriate timer valUe. These 

issues are considered in turn. 

By definition, the goal of flow control in a transport protocol is to 
match the data transmission rate with the receiver’s data 
consumption fare. Windows control the flow of data by bounding the 
number of data units which the transmitter may send to the receiver. 
In terms Of the State information stored at each end, the window size 
is the SOS region boundary. As we showed earlier, a large window 
must be opened to achieve high throughput over long delay 
channels; however, this does not imply a full window OF data should 
go alf at Once, but Only that buffering for the data is ready. The 
transmission ought to be evenly distributed over an RTD time period 
to match Ihe receiver’s consumption speed. Unfortunately, windows 
only convey the former information - how much data can be buffered, 
rather than the latter - how fast the transmission should go. Using 
windows both aS the flow control and the SOS bound often leads to a 
conflict -- the Size is either too small to achieve high throughputs 
Over long delay networks, or too large to have any control effect on 
the instant data rate. 

‘Strictly speaking, JFJP is an application pmtoccl. Because it uses UDP, an 
unreliable protocol at the transport layer, TFTP faces the same network delay and 
unreliability problems to ensure the transmission reliability itself. 

To achieve reliable delivery of the window authorization, the 
authorization is coupled to the SOS synchronization message, the 
acknowledgment. Although the transmission state could include the 
status of every Packet within the window region, a window scheme 
(in most definitions) takes a simplified approach to state 
synchronization in which the synchronization message is a single 
number, the number of the largest data item below which all units 
have arrived at the receiver. This restriction permits a simple, but 
Perhaps inefficient form of synchronization. An acknowledgment 
with a sequence number N only tells the transmitter that all packets 
UP to N have been SuCCeSSfully received, even in a case when the 
transmitter has Sent N+W packets (where W is the window size) and 
the receiver has received all but the N+lth packet. This form of 
acknowledgment is often called a cumulative acknowledgment, as 
opposed to a selective acknowledgment (as used in NETBLT). 

When a CUmulative acknowledgment for N is returned, a window 
authorization iS returned as an offset relative to N. That is, an 
authorization to send W packets means that the next W after N may 
be sent. But this means that, since a single lost packet prevents the 
CumUfative acknowledgment from being advanced, a lost packet 
Prevents the window from being opened until the error is recovered. 
An acknowledgment can be returned only after a correct reception of 
data. The window mechanism, by its nature, ties the flow control and 
error Control together, and therefore becomes vulnerable in the face 
of data losses. The throughput is controlled by how quickly the 
recovery can be performed. 

Unfortunately, existing mechanisms for error recovery do not 
operate quickly. When packets are lost, mOSt reliable transport 
protocols use timers to trigger the transmission State 
resynchronization. If the RTD were constant, the retransmission 
timer could detect a loss promptly after an exact RTD time period. In 
practice, however, the RTD varies. This variation means that the 
timer must be set to longer than one RTD, otherwise it may Cause 
excessive false alarms. Setting the timer is based on an unknown 
statistical distribution of the RTD and the exact Causes of packet 
losses are usually unknown to the host (e.g. whether the network 
has a high-loss channel or whether the net is congested). Finding a 
good balance between a timer value that is too short and one that is 
too long can therefore be very difficult. 

This problem is an intrinsic limitation of using timers, rather than a 
result of any specific timer algorithm being used 161. The 
performance loss due to timers is particularly high when the round 
trip time is long (such as across a satellite link, where every loss 
costs a long wait), or when the channel is noisy and the error rate is 
high (the transmission will stop and waft to0 Often) 

These timer problems interact poorly with windows, since both 
false alarms and long waits cause window performance degradation. 
The effect of long timer delays is obvious; a lost packet prevents any 
acknowledgment, and thus stops data flow until the timer expires and 
the packet is retransmitted. A short timer has a different effect. The 
window controls the number of new packets which can be Sent; it 
specifies nothing about how retransmissions are to be sent. 
Needless retransmission occurring at an unregulated rate Can easily 
congest the network and the receiver. In this respect, windows do 
not really control the flow, but only control a parameter (the number 
of packets outstanding) which indirectly relates to flow. 

354 



We draw the following conclusions from the previous experience: 
l Window and timers perform poorly in synchronizing the 

end state. To achieve fast resynchronization of the end 
state, we need better mechanisms than the cumulative 
acknowledgment, and we must reduce reliance on 
timers. 

l Flow control must be independent from error control. 
Mixing the two in one mechanism can only make the 
flow control vulnerable to transmission errors and 
delays. 

l The goal of flow control is to match the speed at the two 
ends; the SOS region is a side effect of reliable data 
transmission. It is a mistake that window mechanism 
uses the SOS region as the flow control parameter. As 
a flow control mechanism, windows are too vulnerable 
to errors; as an SOS mechanism, if does not carry 
enough information for good performance; being both, if 
faces conflicts when a large SOS region is needed over 
a long delay network path while a small window size is 
desired to restrict the data flow rate. 

4. NETBLT Design 

4.1. Design Goals 
We want a high throughput protocol that is robust in face of a 

networks long delay and high loss of the network. Seeing the 
problems with window flow control and timers, we decided that our. 
goal was achievable only by employing a new flow control 
mechanism. A goal of NETBLT was to check the validity of the rate- 
based flow control mechanism, and to gain implementation and 
testing experience with rate control. 

4.1 .l. Flow Control by Rate 
If NETBLT is to provide high throughput for its application, it must 

be able to transmit constantly, no matter what the status of 
previously-transmitted data. Provided that there is sufficient 
buffering in the protocol module, rate control provides this 
functionality. 

Unlike window-based flow control, rate control works 
independently of the network round-trip delay (an exception to this is 
of course that changes to the rate take one round-trip delay to fake 
effect). Thus no matter what the network state, the NETBLT sender 
of data simply transmits at the current rate. Of course if the network 
is congested, the rate must decrease, and the synchronization of this 
rate change between sending and receiving NETBLTs takes one 
RTD. 

Rate control is also designed to work independently of error 
recovery. It places data to be retransmitted in the same queue with 
new data; all data leave the queue at the current transmission rate. 
Thus unlike window flow control mechanisms, there is no notion of 
error recovery working outside of the standard flow-control 
mechanism, and the load placed on the network does not change 
when data are retransmitted. 

Rate control reduces reliance on timers and timer setting 
algorithms. Since retransmission is not RTD-based (as it is in TCP), 

an incorrect RTD estimate does not result in unneeded 
retransmissions. Retransmission timer estimation is instead based 
on the current transmission rate, which is fixed within any one RTD 
and known by both sender and receiver. 

Currently most data loss in the network is due to congestion. 
Rate-based flow control can reduce this congestion in a number of 
ways. First, since packet retransmissions occur “in-band”, they 
cause no extra load in the network. Second, since retransmission 
timers are based on the packet rate (or better yet on the packet 
inter-arrival time) rather than the network RTD, timers can be 
estimated more accurately, resulting in fewer unnecessary 
retransmissions. Finally, the rate can be adjusted to reflect the 
networks current ability to transport data. 

4.1.2. Error Recovery/End State Synchronlzatlon 
NETBLT’s design goals include the ability to continuously transmft 

data in the face of long-delay networks. This means NETBLT 
connections must be able to maintain a large SOS region, and 
require efficient mechanisms to quickly synchronize the end state. 
NETBLT has several ways to speed up the synchronization. 

NETBLT uses selective acknowledgment to convey as much 
information as possible to the sending NETBLT. By providing the 
status of each packet in the transmission, unneeded retransmissions 
are avoided. Obviously, the overhead incurred with a packet-for- 
packet ACKing scheme is too high; NETBLT therefore splits its out- 
of-synchronization region into “buffers”, which become the 
synchronization point and recovery block. The sending and 
receiving NETBLTs synchronize state either upon successful 
transmission of a buffer or upon determination by the receiver that 
information is missing from a particular buffer. In the first case, a 
single message ACKs all packets contained in a particular buffer. In 
the second case, a single message tells the sender of data exactly 
which packets to retransmft. 

Thus, by aggregating information into large units, NETBLT solves 
the ACK dilemma in window flow control mechanisms: do you incur 
high overhead by sending a separate ACK for each packet, or do 
you incur unneeded retransmissions by failing to provide complete 
information to the sender of data? 

NETBLT also makes error recovery more efficient by placing the 
data retransmission timer at the receiving end. At any given 
moment, the receiver knows which packets have arrived and which 
have not. When a timeout occurs, the receiver can eliminate 
unnecessary refransmissions because lt knows exactly which 
packets need retransmission. In addition, the timer value is easy for 
the receiver to estimate, since it is based on the transmission rate 
and the number of packets expected in a particular buffer. Error 
recovery and state synchronization both occur on the same 
(receiving) end; if therefore never matters when the receiver sends 
ACKs to the sender. Of course long waits between a timeout and a 
subsequent state resynchronization mean lowered performance, but 
there are never spurious retransmissions because a retransmit timer 
expires before an ACK is received. 

Even with the above ACKing schemes, the minimum time of an 
error recovery by requesting retransmission remains an RTD period. 
In order to insure that error recovery and state synchronization be 
kept as close as possible to a single RTD, control messages 
containing ACK information must be transmitted with high reliabilitv. 

355 



An affordable reliability in control transmissions is particularly 
necessary in NETBLT, because single control messages can ACK 
many data packets (depending on the number of packets per buffer). 
NETBLT uses such redundancy, at the same time reducing to almost 
nil the overhead incurred by processing duplicate control messages. 

Even with efficient error recovery, continuous transmission is not 
possible over long-delay networks without a large SOS region. For 
this reason, NETBLT implementations must make the SOS region as 
large as resources permit. This is not possible with a window flow- 
control mechanism: in order to enjoy a large SOS region using 
window-based flow control, a protocol must in effect eliminate flow 
control by using extremely large window sizes. NETBLT uses rate 
control to meter the transmission rate; SOS region management 
operates independently of flow control. 

4.1.3. Coplng wlth Delay 
Transmission delay is one of the most difficult problems that a 

transport protocol faces, because it causes the SOS problem. 
Resynchronization and error recovery are performed via timers, but 
in other transport protocols, the timer itself suffers from the delay 
variations since it is delay-based. This causes a positive feedback 
cycle of the delay-dependency, lowering performance. 

NETBLT’s solution to this problem has several parts. First, it uses 
a large SOS region, to make if unlikely that the transmission is forced 
to stop due to reaching the region boundaty. Second, NETBLT 
speeds up the state synchronization using the mechanisms 
discussed above. This allows the SOS region to move forward 
quickly along the transmission stream, so that the transmission will 
not be forced to stop due to reaching the region boundary. Third, 
NETBLT reduces reliance on timers, limiting their use to a last resorl 
in ensuring reliability. Because of the large SOS region, timer values 
can be set loosely and the protocol can transmit continuously while 
awaiting a retransmission timeout. Of course, if the SOS region 
cannot be large (due perhaps to system limitations), then more care 
must be taken in estimating retransmission timer values. 

4.2. NETBLT Protocol Deslgn 
Having discussed some of the design philosophies behind 

NETBLT, we move on to a slightly more detailed discussion of the 
protocol. NETBLT works by opening a connection between two 
“clients” (the sender and the receiver), transferring data in a series of 
large numbered blocks (buffers), and then closing the connection. 
Because the amount of data to be transferred can be very large, the 
client is not required to provide at once all the data to the protocol 
module. Instead, the data is provided by the client in buffers. The 
NETBLT layer transfers each buffer as a sequence of packets; each 
buffer is composed of a large number of packets, so the per-buffer 
interaction between NETBLT and its client is far more efficient than a 
per-packet interaction would be. 

In its simplest form, a NETBLT transfer works as follows: the 
sending client provides a buffer of data for the NETBLT layer to 
transfer. NETBLT breaks the buffer up into packets and sends the 
packets across the network in Internet datagrams. The receiving 
NETBLT layer loads these packets into a matching buffer provided 
by the receiving client. When the last packet in the buffer has 
arrived, the receiving NETBLT checks to see that all packets in that 
buffer have been correctly received. If some packets are missing, 
the receiving NETBLT requests that they be resent. When the buffer 

has been completely transmitted, the receiving client is notified by its 
NETBLT layer. The receiving client disposes of the buffer and 
provides a new buffer to receive more data. The receiving NETBLT 
notifies the sender that the new buffer is ready, and the sender 
prepares and sends the next buffer in the same manner. This 
continues until all the data has been sent; at that time the sender 
notifies the receiver that the transmission has been completed. The 
connection is then closed. 

The above transfer model has an SOS region of one buffer; the 
model operates in lock-step fashion. Because of network detay, 
NETBLT typically maintains a large SOS region of a number of 
buffers (the exact number depends on the network error rate and 
RTD). This allows the sender to transmit new data while 
acknowledgments and error recovery for old data take place, and 
improves performance markedly. 

Obviously, the above style of transmission also does not address 
issues of error recovery or flow control. The following sections detail 
NETBLTs implementation of the rate control and error recovery 
schemes described earlier. 

4.2.1. Flow Control 
NETBLT uses two strategies for flow control--one internal and one 

at the client level. The sending and receiving NETBLTs transmit 
data in buffers; client flow control is therefore at a buffer level. 
Before a buffer can be transmitted, NETBLT confirms that both 
clients have set up matching buffers, that one is ready to send data, 
and that the other is ready to receive data. Either client can 
therefore control the flow of data by not providing a new buffer. 
Clients cannot stop a buffer transfer once it is in progress. 

Since buffers can be quite large, there has to be another method 
for flow control that is used during a buffer transfer. The NETBLT 
layer provides this form of flow control. As discussed above, the flow 
control method used is rate control. The transmission rate is 
negotiated by the sending and receiving NETBLTs during connection 
setup and after each buffer transmission. The sender uses timers, 
instead of messages from the receiver, to maintain the negotiated 
rate. 

In its simplest form, rate control specifies a minimum time period 
per packet transmission. This can cause performance problems for 
several reasons. First, the transmission time for a single packet is 
very small, frequently smaller than the granularity of the timing 
mechanism. Also, the overhead required to maintain timing 
mechanisms on a per packet basis is relatively high and lowers 
performance. 

The solution is to control the transmission rate of groups of 
packets, rather than single packets. The sender transmits a burst of 
packets over a negotiated time interval, then sends another burst. In 
this way, the overhead decreases by a factor of the burst size, and 
the per-burst transmission time is long enough that timing 
mechanisms will work properly. NETBLT’s rate control therefore has 
two parts, a burst size and a burst rate, with (burst size)/(burst rate) 
equal to the average transmission time per packet. The burst 
interval is the number of milliseconds between the start of one burst 
transmission and the start of the next. The burst size is the number 
of data packets in a burst. 

356 



These two values reflect more accurately than a window the 
resources available to the receiver of data. They can reflect, for 
instance, a slow machine with little buffer space (long burst interval, 
small burst size), or a faster machine with a high process-scheduling 
overhead (short burst interval, large burst size). Note that the rate 
control parameters only deal with buffering at a very low level (the 
burst size can be based on the number of packet buffers available to 
the protocol module). Higher level buffering is decoupled from flow 
control, unlike TCP’s window flow control strategy. 

4.2.2. State Synchronlzatlon and Error Recovery 
The receiving and sending NETBLTs synchronize their connection 

states via three different control messages: GO, RESEND, and OK. 
When the receiving NETBLT has a buffer N ready to receive data, ft 
transmits a GO[N] message to the sender; this message tells the 
sender to begin transmission of buffer N. As soon as the first data 
packet in N arrives at the receiver, the receiver sets the “data timer2 
belonging to N. The timer estimates how long it will take for the 
remainder of the buffer to arrive. The timer is fairly easy to estimate, 
because of NETBLT’s “priority pipe” method of transmission: all 
buffers are transmitted in order by buffer number (buffers are given 
monotonically increasing numbers, from first buffer through last 
buffer). Once the sending NETBLT begins transmission of a buffer, 
it guarantees to transmit the entire buffer at the current rate before 
transmitting any later buffers. The remaining packets are therefore 
expected to arrive at the determined rate unless they are lost or 
delayed by the network. The timer value can be based either on the 
negotiated rate or the inter-packet arrival time. 

The receiver now wafts for one of two events. Either all packets 
for the buffer arrive, or the data timer expires. In the first case, the 
receiver clears the buffer’s data timer and sends an OKIN] message, 
telling the sender that it can release buffer N. It may follow this with a 
GO[N+M] message, starting the transfer of another buffer. In the 
second case, the receiver looks at which packets in buffer N have 
arrived, and sends a RESEND[N] message containing a list of the 
missing packets. The sender retransmits these packets along with 
possible new data from subsequent buffers, all at the negotiated 
rate. Because all outgoing data are ordered by buffer number, 
retransmitted data are sent before new data. Assuming all the 
retransmitted packets arrive safely, the receiver sends an OK[N] 
message and deactivates N’s data timer. 

In order for the sending and receiving NETBLTs to synchronize 
their states as quickly as possible, control messages must be 
delivered reliably and in a timely fashion, NETBLT insures control 
message reliability in two ways. First, it uses a highly redundant 
message transmission algorithm. In NETBLT, multiple control 
messages can be packed into a single packet; the receiving NETBLT 
maintains a single long-lived control packet containing multiple 
messages, which is transmitted every time a group of new messages 

%e actual data timer mechanism is more complicated than this, but the added 
detail tends to obscure rather lhan clarify. 

is generated by the receiver. ACKed control messages are pushed 
off the front of the packet, and new messages are added at the back 
of the packet, so a given message is transmitted as a member of the 
control packet until it is ACKed by the sender of data. Control 
message ACKs are by sequence number. Each control message 
has a unique sequence number which increases by one for each 
message sent. The sender of data receives these messages and 
notes the highest sequence number below which all messages have 
been received. It returns this “high ACK sequence number”’ in all 
packets flowing back to the receiver of data. When the receiver gets 
a high ACK sequence number, it pushes off the front of the control 
packet all messages with a sequence number less than or equal to 
the high ACK number. 

The above message transmission algorithm gives high 
redundancy, which increases as the network delay increases. The 
sending NETBLT has been designed to throw away duplicate control 
messages with atrost no overhead. Also, individual control 
messages are very short in length, so the bandwidth consumed by 
these messages is quite low. The cost of this redundancy is 
therefore fairly low and the benefits valuable. 

Even with the redundant transmission algorithm described above, 
a control message will occasionally get lost. The receiving NETBLT 
therefore maintains a control message retransmit timer. The timer 
value is based on the network RTD. and is reset every time the 
control packet is transmitted. The timer is cleared whenever all 
messages in the control packet have been ACKed by the sender of 
data. Obviously, being based on the network RTD, this timer 
algorithm falls prey to the same problems that the TCP retransmit 
timer does. In NETBLT’s case, however, the reliance on the control 
timer is so reduced (by the redundant transmission algorithm), that 
the retransmit timer almost never expires, and its value can be quite 
loose. 

5. NETBLT Experience 
In order to test NETBLT’s effectiveness at providing high 

throughput over noisy or long-delay networks, extensive testing was 
conducted over a number of different nehnrorks. The current 
NETBLT test implementations run under UNIX (via the user- 
accessible raw IP socket, not the kernel) on a SUN-3 workstation, 
and under MS-DOS on an IBM PC/AT. A third implementation for 
the Symbolic% Lisp Machine was also briefly tested3. 

Over high-bandwidth, short-delay LANs, NETBLT performed 
extremely well, achieving application memory-to-memory transfer 
rates of up to 1.75 megabits per second between two IBM PC/ATs 
on a 10 megabit-per-second Proteon Token Ring. Throughputs of 
up to 1.46 megabits per second were achieved over a heavily used 
10 megabtt-per-second Ethernet. When running memory-to-memory 
transfers over a Microvax-II-based C gateway connecting a Proteon 
Token Ring and an Ethernet, NETBLT achieved throughputs of up to 
1.43 megabits per second. Since the above network environments 
are relatively hospitable, this came as no great surprise. 

sA document describing in detail NETBLT implementation 1esls over a variety of 
nelworks is forthcoming. 

357 



A more accurate measure of NETBLT’s abilities was in 
transmissions across the 3 megabit-per-second Wideband Satellite 
network. This network provides high bandwidth with long (1.8 
second) round-trip delay. In addition, the Wideband network 
possesses some interesting packet re-ordering and delay 
characteristics that resulted in substantial changes to the original 
NETBLT protocol design. 

5.1. Coping with Delay 
NETBLT’s ability to handle large SOS regions proved invaluable in 

coping with the Wideband network’s 1.8 second round-trip delay. 
Most tests used an SOS region (“window”) of over 300,000 bytes 
with no performance loss due to state management overhead. 
Obviously not all systems will have that much available buffer space; 
the interesting point is that it proves large SOS regions do indeed 
provide high throughputs, and in NETBLT’s case, the management 
of such a large region did not inhibit performance any. The large 
SOS region allowed NETBLT to transmit constantly, overlapping 
error recovery and ACK waits with the transmission of new data. 

NETBLT was also eventually able to handle the Wideband 
network’s tendency towards large delay variances. Under heavy 
load, the Wideband network can vary the delay of groups of packets 
by 800-700 milliseconds, due to its packet reservation scheme. The 
NETBLT receiver’s data timers initially did not tolerate this delay well, 
and initially there were many spurious retransmission requests as 
data timers timed out due to delayed packets. 

A solution to this problem was to base the data timer value on the 
inter-packet arrival time, rather than the negotiated rate. The 
receiver could then immediately increase its data timer values to 
reflect packet delay caused by congestion. The result was fewer 
false data timeouts and spurious retransmissions. Another solution 
is to set the data timer very loosely and correspondingly enlarge the 
SOS region. Obviously, machines which take the latter step will 
require large amounts of memory dedicated to NETBLT. 

5.2. Packet Re-ordering 
During initial testing, the Wideband network re-ordered groups of 

packets in a range of up to 100 (i.e. packet 100 would arrive before 
packet 1). Eventually, QETBLT was able to deal with this problem 
with a minimum of performance degradation. It forced us to rely 
more heavily on data timers, but this seems to have had little effect 
on performance over the Wideband network. Initially, NETBLT 
attempted to make retransmit “guesses” ahead of the data timer in 
order to improve efficiency. One such guess involved immediately 
generating a retransmit request if data packets were missing at the 
time the last packet in a buffer was received. Because of packet 
re-ordering, this “last packet” would frequently arrive before the first 
packet, causing a spurious retransmit for the entire buffer. This 
guess was eliminated, forcing retransmissions only upon expiration 
of the data timer. 

NETBLT would also generate retransmit requests if packets for a 
buffer N+M arrived while packets for a buffer N were still missing 
(because the sending NETBLT transmits buffers in sequence, lowest 
number first, this was a reasonable guess on networks with little 
packet re-ordering). Again, packet re-ordering would cause spurious 
retransmission requests, so this guess was eliminated in favor of a 

slightly more complicated guess that involved resetting buffer N’s 
data timer rather than generating a retransmit request. 

5.3. Rate Control 
Because of the Wideband network’s long RTD, a window-based 

flow control mechanism would need to use a window so large that 
the flow control effect was essentially nonexistent. By decoupling 
the SOS region and the flow control, NETBLT was able to eliminate 

this problem. Rate control proved to work extremely wel14. Instead 
of the transmission “hanging” while its window waited to open, 
NETBLT transmitted constantly at the negotiated rate with no 
slowdowns. In fact, rate control was ideally suited to the wideband 
network, which transmits packets infernally in the fon of timed 
bursts. By matching NETBLT’s bursts to the networks, an high 
percentage of the networks bandwidth was utilized. 

5.4. Results 
NETBLT performed extremely well over the Wideband network. 

Out of a maximum available bandwidth of approximately 1 megabit 
per second5, NETBLT managed a consistent steady-state 
throughput of 920,000 to 945,000 bits per second at the network’s 
maximum transmission rate. At slower transmission rates, NETBLT 
worked at close to 100% efficiency. 

Although rate control provides a neat solution to many problems, 
two important hurdles must be crossed before rate control can be 
used in production protocols. First, the protocol must be able to set 
an initial transmission rate based on the available network bandwidth 
and the speed at which the receiver can process data. The protocol 
must be also able to dynamically change the transmission rate in the 
face of changing network and receiver load. No matter how 
congested a network is, NETBLT will currently happily transmit 
packets at the negotiated rate until it reaches its SOS region 
boundary. The protocol has the ability to re-negotiate transmission 
rates at buffer boundaries; unfortunately if NETBLT uses internal 
state information to change the rate, it must make guesses based on 
incomplete information, and could start oscillations in the 
transmission rate. The guesses would permit dynamic changes to 
the transmission rate, but would still require a “blind” guess for an 
initial transmission rate. It is therefore important that support for rate 
selection exist at the network level. of course this would require 
modifications to network gateways; even with the necessary 
modifications, the assumption must be made that the network load 
changes slowly enough that information gotten from the gateways is 
meaningful by the time it arrives, 

There has been some work attempting to analyze the problem of 
adjusting the rate of a number of simultaneous flows[l]. But the 
problem is difficult, and both practical and analytical experience will 
be needed to identify a suitable approach. 

A second problem is packet loss due to the lack of flow control in 
the link layer. NETBLT provides high enough performance that it 
uncovers previously hidden low-level network problems. For 

%e next section discusses some enhancements that must be made for rate 
control to work correctly all the lime. 

50bviously far less than the network’s stated raw bandwidth. Unfortunately network 
overhead consumed fully 2/3 of the available bandwidth at the time we wore testing. 

358 



example, the current NETBLT implementation operates on a 
machine with a fairly unsophisticated Ethernet network interface. It 
is possible, using NETBLT, to exceed the network interface’s 
receiving speed when receiving bursts of packets. On a single-wire 
link, this problem can be eliminated by judicious choice of burst size 
and interval. If there are gateways along the transmission path, 
however, the transport layer no longer has control over the speed at 
which bursts of packets arrive. Also, congestion may occur 
anywhere along a transmission path -- within gateways or along a 
single Ethernet cable. If the NETBLT layer has enough low-level 
knowledge of its link levels capabilities, it can cope with the lack of 
flow control in the link layer. This is not, however, a good solution 
since it violates protocol layering. This problem can only be solved 
by developing link-layer flow control mechanisms. 

Clearly, rate control can only offer optimal throughput if it is 
supported by all lower protocol layers. The network must be able to 
offer load information which NETBLT can use to determine an 
optimal initial transmission rate. It must also constantly update this 
information so that the transmission rate can be adjusted if the 
network load changes. 

6. Summary 
ln this section we first summarize the above discussions to a few 

guidelines for reliable transport protocol design; we then look at a 
couple of existing protocols, followed by a brief conclusion of the 
paper. 

We consider that the following can be used as guidelines in future 
reliable transport protocol designs: 

1. Employ separate mechanisms for data flow control and 
error recovery. 

2. Use a rate flow control to match the data transmission 
and COnSUmPtiOn rates at the two communicating ends. 

3. Set as large an SOS region as resources permit. 

4. Explore feasible mechanisms, such as explicit 
information exchange between the transmitter and 
receiver about each other’s behavior, using SACK 
instead of simple ACKs, and redundancy in data or 
Control transmissions, to help speed up the end state 
resynchronization. 

5. Coordinate with the underlying network traffic control. 
Design efforts should be directed to synchronize the end State as 
quickly as possible. On the other hand, there is also a concern with 
the overhead involved in the synchronization, and we need a good 
judgment on balance. 

Now we look at the approaches taken by a few existing protocols. 
As mentioned earlier, TFTP sets an SOS region of one packet, and 
hence loses throughput over long delay channels. At the other 
extreme, Blast [4] sets the SOS region to the total amount of data 
being transmitted. Based on the assumption of a low loss, low delay 
communication channel, the transmitter sends all data at once, under 
some rate flow control (the intention is to match incoming data with 
the disk operations), then recovers transmission errors according to 
SACKS from the receiver. Since there is no overlap between data 
transmission and error recovery phases, the latter can cause a long 
tail in the transmission process, if the channel is noisy or the delay is 

long, dragging the throughput value over the total transmission 
period to a very low average’. 

To manage the transmission state, there is a question of what 
basic data unit should be used in the transmission state 
management. The smaller the unit, the larger the state space 
needed to cover the same amount of data. For example, TCP uses 
the byte as the basic unit, while TP4 uses the packet, therefore 
improving TCP’s performance by adding a SACK mechanism may 
be slightly more complex and costly than doing so to TP4. 

Much work has been done on the perfonance issues of transport 
protocols. The flow control, transmission error recovery, and buffer 
space management issues seem to interact in a rather complicated 
way[5]. We showed in the above that once we understand the 
impact of network delays and errors on the transport protocol 
performance, and decouple flow control from error recovery 
mechanism, the problem is simplified and solutions are revealed. 

NETBLT experience has helped us reach a better understanding 
on transport protocol performance issues. Remaining research 
topics are related to the flow control interactions with the network: 

1. How good a performance can the end hosts achieve by 
tuning the control rate, under varying network 
conditions? 

2. How does one design a network architecture to support 
rate-based traffic control? 

[21 

131 

I41 

[51 

PI 

References 

D.Bertsekas and Ft. Gallager. 
Flow Control Schemes Based on Input Rate Adjustment 
Data Nehvorks. 
Prentice-Hall, Inc., 1987, Chapter 6.4. 

David Clark, Mark Lamben, and Lixia Zhang. 
NETBLT: A Bulk Data Transfer Protocol. 
Network Information Center RFC-998, SRI International. 
March, 1987 

Karen Sollins. 
The TFTP Protocol. 
Network Information Center RFC-783, SRI International. 
June, 1981 

Dan Theriault. 
BLAST, an Experimental File Transfer Protocol. 
MIT-LCS Compuer System Research Group RFC-217. 
March, 1982 

R. Watson and S. Mamrak. 
Gaining Efficiency in Transport Services by Appropriate 

Design and Implementation Choices. 
ACM Transactions on Computer Systems 5(2):97-120, May, 

1987. 

Lixia Zhang. 
Why TCP Timers Don’t Work Well. 
In Proceedings of Symposium on Communication 

Architectures and Protocols. ACM SIGCOMM, 1986. 

‘A c~mmc~n misconception is that NETBLT and Blast look similar to each other. 
Actually the two are very oWerent except that both protocols use separate flow control 
and error recovery mechanisms. 

359 


