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One of the challenging research issues in building high-speed packet-switched networks is how

to control the transmission rate of statistical data flows. This paper describes a new traffic

control algorithm, VirtucdClock, for high-speed network applications. VirtualClock monitors the

average transmission rate of statistical data flows and provides every flow with guaranteed

throughput and low queueing delay. It provides firewall protection among individual flows, as in

a TDM system, while retaining the statistical multiplexing advantages of packet switching.

Simulation results show that the VirtualClock algorithm meets all its design goals.
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1. INTRODUCTION

High-speed packet-switched networks introduce challenges in data traffic

control. One is that, due to the large product of bandwidth and signal
propagation delay over a path, a large amount of data can be stored in the

“pipe” at any given time, which makes network congestion control difficult.

Another is the stringent performance requirements raised by new applica-

tions, such as digitized voice and video; contrasted with conventional reliable

data transfer applications, these new applications often require guaranteed

throughput and bounded transmission delay, possibly with a relaxed require-

ment for error recovery [7].

Window-based flow control mechanisms have been widely used for traffic

control in packet-switched networks [9, 22] and have served well for reliable

data transfer applications in low-speed network environments. The service

requirements introduced by new applications, however, make it difficult, if

not impossible, for window-based control mechanisms to support them
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effectively. For instance, a window-based flow control system uses returned

acknowledgments both to initiate loss recovery and to regulate further data

transmissions, while a digital video application may be willing to tolerate

minimal packet losses but not retransmission delays. Moreover, although

some video encoders generate data at variable rates, these data flows cannot

be controlled by individual acknowledgments, since acknowledgments may

incur a rather large and variable delay that are not compatible with the

frequencies and regularity of packet generation in most video or audio

communication [6].

For these reasons, alternative methods such as rate-based data traffic

control algorithms have become a focus of research in recent years [1, 2, 131.

However, there exists a number of difficulties in designing rate-based traffic

control algorithms. Among them are how to monitor and control the trans-

mission rate of statistical data flows and how to enforce network resource

usage to prevent interference among different users without sacrificing the

statistical multiplexing feature of packet switching.

In this paper we introduce VirtualClock as a new traffic control algorithm

for high-speed network applications. VirtualClock controls the average trans-

mission rate of statistical data flows, enforces each user’s average resource

usage according to the specified throughput, provides firewall protection

among individual flows, and supports multilevel priority services. The algo-

rithm has been tested extensively through simulation.

VirtualClock was designed as part of a new network architecture, the Flow

Network [25]. In this paper we first give a brief description of the Flow

Network architecture to provide the reader the background for the Virtual-

Glock design. In Section 3 we describe the VirtualClock algorithm and

discuss its design and fundamental properties. Then in Section 4 we present

simulation results to demonstrate the effectiveness and performance of the

VirtualClock algorithm. Section 5 compares the VirtualClock algorithm with

a few others that have been proposed for network traffic control, mainly a

fair-queueing [3, 8], a schedule-based approach [14], and the Leaky-Bucket

algorithm [17, 20]. We conclude the paper with a discussion on future

research issues.

2. BACKGROUND: FLOW NETWORK

The goal of the Flow Network is to provide users with guaranteed service

qualities. The design of the Flow Network architecture focuses on three

major issues: where to put the control mechanisms, what kind of control
mechanisms to use, and whether control should be based on resource reserva-

tion or feedback. In contrast to end-point control with a stateless network

model, this design lets the network play an active role in traffic control,
because a stateless network cannot ensure service quality. Instead of a

window control mechanism, this design controls packet flows by controlling

average transmission rate, because network resources are measured in rate

[24]. And instead of relying on feedback control to adjust users’ transmission
speed, this design proposes a reservation-based control system for applica-

tions that require guaranteed performance, and uses feedback control only to
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adjust the disparity between the users’ reservations and the actual packet

transmissions obtained from network measurement results.

In a Flow Network, an abstract entity, the flow, is defined to represent

users’ data transmission requests. Below we give a brief description of the

flow.

2.1 What Is a Flow?

In the Flow Network model, a flow is a stream of packets that traverse the

same route from the source to the destination and that require the same

grade of transmission service. The diversity in various applications’ service

requirements suggests that, together with a data transmission task, the user

must also submit a service specification to the network. Therefore each flow

is associated with a specific set of flow parameters (although the values of the
parameters can be dynamically adjusted during the session). This specifica-

tion enables the network to check whether adequate resources are available

before accepting new transmission requests. It also enables the network to

provide meaningful feedback information in case the actual data flow goes

beyond the expected region, to help the flow source adjust its transmission or

parameter. Furthermore, this specification serves as a contract between the

network and the user: it is used as criteria that the network service must

meet, as well as a constraint that the user’s transmission behavior must

adhere to.

A flow differs from packets in datagram networks in that the flow is

treated as one stream of packets, rather than as an aggregate of independent

entities, so that the network can allocate resources to a flow and can monitor

the flow’s behavior. A flow differs from a virtual connection in virtual-circuit

networks in that it is not concerned with data integrity. Instead, a flow is

characterized by its service requirements; it is associated with the allocation

and deallocation of network resources that are required to deliver the data of

that flow within the specified performance bounds.

Although describing input traffic entails much work on the part of a user,

no service guarantee can be provided if the user does not specify the charac-

teristics of the expected data traffic. Facing random packet traffic and

unforeseen future applications, we see nothing superior to a description from

users as a proper estimate on their own transmission behavior. Next we

discuss what parameters are used to describe the transmission of a statistical

data flow.

2.2 Choosing Flow Parameters

We need a set of parameters that can adequately describe the required

behavior of a statistical data flow and can be conveniently used in flow

measurement and control. Packet traffic is characterized as burst y and

random; how should one describe the “ burstiness” and “randomness” at-
tributes of a packet flow? How should one express the flow’s throughput rate?

Considering each flow as a statistical process, one may describe the

throughput by using the average and the variance of the number of packet
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arrivals over a unit time period. Knowing the average rate helps the network

control the resource utilization. Measuring the average, however, is not easy;

a major difficulty lies in how to choose a proper average time period. One

cannot easily derive a proper average period from the variance of arrivals

unless a random process characterization of the data source is also given,

which does not seem to be a feasible requirement. Generally speaking, not all

applications’ data generation patterns can fit into well-known random pro-

cess models, although we might be able to find a feasible model for a

particular application.

Taking a simple and pragmatic approach, we choose two parameters to

describe a statistical data flow: average rate (AR) and average interval (AI).

That is, over each AI time period, dividing the total amount of data transmit-

ted by AI should result in AR.

How to choose the AI value for a flow is an important question. The

possible range of the AI value is

1 IAR ~ AI ~ total flow duration,

If the AI value were set at its lower bound, the flow’s client would be

transmitting at a constant rate as in a circuit-switching network. If it were

set to the total duration, the client would be entitled to transmit data in any

arbitrary manner, as in an uncontrolled datagram network. Thus, the choice

of the AI value must be made in a way that strikes a balance between a tight

controllability and the maximal possible tolerance for burstiness in packet

flows. 1 Restated, a well-engineered AI value should be small enough to give

the network effective control, but large enough to accommodate variations in

packet arrivals within each average interval, so that the average rate

measured over each AI period will remain relatively constant.

Tolerating flow burstiness also implies the need for adequate buffer space

at each switch node, so that packet losses can be maintained at a negligible

level. The Flow Network design assumes an adequate buffer space available

at each switch to tolerate reasonable flow burstiness. To avoid extraordinary

demand on the buffer space, the network also sets an upper limit on the AI

value each flow may choose, based on the link bandwidth and the control

feedback delay [251.

In the Flow Network, data transmissions follow three logical phases: flow

set-up, data transmission, and flow tear-down. To start a flow, the flow source

first sends a set-up request that contains, among other information, the

average rate (AR) and average interval (AI) that describe the flow’s data
transmission behavior. The route of a flow is chosen at set-up time .Z Re-

sources are allocated along the chosen route during the flow set-up. When the

1 In this paper we use the word burstmess to mean both that packet transmissions are not evenly

spaced and that the timmg and length of each burst are random

z Although there exist intrinsic interactions between network routing and traffic control. they

are beyond the scope of this paper. We approach the traffic control problem under the assump-

tion that a network-routmg service exists that can provide a proper route upon each data

transmission request

ACM TransactIons on Computer Systems, Vol 9, No 2, May 1991



VirtualClock: A New Traffic Control Algorithm for Packet-Switched Networks . 105

transmission finishes, either end of the flow can send a tear-down message,

which deallocates the resources.

2.3 Datagram Traffic

One might argue that there will always exist transaction-oriented applica-

tions that exchange only one or a few packets at a time, such as requests to

network name servers or time servers. Such datagram traffic does not match

the fZow model well—it is infeasible to require flow setup or resource

allocation activities for just a few packets. The Flow Network design provides

an escape from the reservation requirement for datagram traffic: datagram

traffic is assumed to desire a best-effort service, and therefore no resource

reservation is necessary. The design considers the aggregation of all data-

gram traffic as a whole, estimates the total volume, and preserves resources

accordingly. This strategy will work well so long as datagram traffic com-

poses only a small portion of the total load. It does, however, open a

possibility of unexpected load fluctuation. The network, therefore, must be
able to ensure committed performance for established flows even in the

presence of heavy datagram traffic.

2.4 The Role and Functionality of VirtualClock in the Flow Network

After flow set-up, the VirtualClock algorithm is designed both to ensure

resource usage and to monitor flows. More specifically, it provides the

following functionalities:

(1) Support for the diverse performance requirements of various applications

by enforcing the resource usage according to each individual flow’s

throughput reservation, while preserving the flexibility of statistical

multiplexing of packet-switching networks.

(2) Monitor the average throughput rate of data flows and provide measure-

ment, input to other network control functions, as well as provide feed-

back to flow sources whenever the actual data flows violate the agree-

ment negotiated during the flow set-up.

(3) Provide firewall protection among individual data flows, particularly

firewalls between datagram traffic and flows that require performance

guarantees. As has frequently been observed in operational networks,

network users may sometimes misbehave. For example, a user may

transmit data at a high rate without listening to the network control

information. Even though in this paper we assume that no user has

malicious intention, such misbehavior can still be caused by software or

hardware failures, by protocol implementation errors, or even by unfore-

seen protocol design errors [15, 19]. It is the responsibility of the network

control to prevent misbehaving users from interrupting normal service to

others.

The VirtualClock algorithm plays a key role in the control of traffic in the
Flow Network. In the rest of the paper we will focus mainly on the Virtual-

Clock algorithm, its basic concepts, and properties. Although there are a
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number of other interesting and important issues in the Flow Network

design, such as how to request resource reservations during flow setup or how

to dynamically adjust a flow’s throughput, they are beyond the scope of this

paper and will be explored elsewhere.

3. VIRTUALCLOCK ALGORITHM

The basic idea of VirtualClock was inspired by Time Division Multiplexing

(TDM) systems. A TDM system guarantees each user the prescribed trans-

mission rate. It also completely eliminates interference among users, as if

there were firewalls in between that protect individually reserved band-

widths. Users, however, are limited to transmission at a constant bit rate;

the system tolerates no variations in the speed of data generation. In

addition, capacities are wasted when a slot is reserved for a user that has no

data to send at that moment. Furthermore, both the channel bandwidth

allocated to each user and the total number of users that each network link

can accommodate at any time are fixed rather than dynamically adjustable.

Our goal is to achieve both the guaranteed throughput and the firewall

protection of a TDM system, while at the same time preserving the statistical

multiplexing advantages of packet switching. Therefore, the network should

assign “slots” to flows on a demand basis; only when conflicts in demand

occur should the network regulate the resource usage to guarantee each

flow’s reserved throughput. A TDM system regulates the resource usage by

using a real-time clock—as the clock ticks, each user channel sends data in

turn. A statistically multiplexed system may use a uirtual clock in a similar

way.

To make a statistical data flow resemble a TDM channel, we imagine that

arriving packets from the flow are spaced out by a constant interval in

virtual time, so that each packet arrival indicates that one slot time period

has passed. We can assign to each data flow a VirtualClock, which ticks at

every packet arrival from that flow. If we set the tick step to the mean

interpacket gap (assuming a constant packet size for the moment), the value

of the VirtualClock will denote the expected arrival time of the arrived

packet. To imitate the transmission ordering of a TDM system, we can let

each switch node stamp packets of each flow with the flow’s Virtual Clock

time and order packet transmissions according to the stamp values, as if the

VirtualClock stamp were the real-time slot number in a TDM system (see

Figure 1). If a flow transmits according to its specified average rate, its

VirtualClock reading should fluctuate about real time.
In the rest of this section, we first give an exact description of the

VirtualClock algorithm and then explain its major functions and the choices

that motivated the design.

3.1 The Algorithm

The actual algorithm is slightly different from the basic idea described above.

Each switch along the path of a flow uses two control variables, a Virtual-

Clock and an auxiliary VirtualClock (auxVC), to monitor and control the

flow according to the specified AR and AI values. More specifically, each
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Real time clock (second)
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Fig. 1. Real time, VirtualClock, and packet-processing order.

packet switch performs the following two basic functions:

Data forwarding The switch has one packet-waiting queue in front of

each outgoing link; it serves packets in the following way:

(1) Upon receiving the first data packet from flow,, VirtualClockL ~

aux VCl +- real time.

(2) Upon receiving each packet from flow,,

(a) auxVCL ~ max(real time, auxVCJ;

(b) VirtualClock, ~ (VirtualClock, + Vtick ,), and auxVC, e (auxVCL

+ Vtick ,);

If all packets have a constant size, Vtick, = 1/AR,( packet /see). If

packets vary in size, the value of Vtick, should be computed from

individual packet sizes.

(c) Stamp the packet with the auxVCL value.

(3) Insert the packet into its outgoing queue. Packets are queued and

served in the order of increasing stamp values.

Flow monitoring: The switch computes a control variable, AIR, = AR, x

AI, alt fl!owz set-up. Upon receiving every set of AIR, data packets from

flow,, the switch checks the flow in the following way:

– If (VirtualClock, – real time) > T, where T is a control threshold, a

warning message should be sent to the flow source. Depending how the

flow source reacts, further control actions may be necessary. (See Zhang

[251 for more details.)

The value of the control threshold T in the above will be discussed in

Section 3.3.

— If ( VirtualClock, < real time), VirtualClock, + real time.

At this time, the switch also synchronizes VirtualClock and auxVC if doing

so does not cause packets from the same flow from being served out of
order: auxVCL * VirtualClock, if either the outgoing link for flow, is idle

or the packet being transmitted has a stamp value greater than auxVCL.
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Queueing packets in the order of their stamp values makes packets from

different flows maximally interleaved as in a round-robin service system. We

use an example to explain this effect: if a burst of packets from fZow, arrives

at a switch shortly after a burst from flow] and if the two flows have the

same average rate, then the packets of the two flows will be one-to-one

interleaved in the waiting queue; if flow, is twice as fast as flow~, then the

packets will be two-to-one interleaved in the queue.

The buffer pool at the switch is completely shared. When the pool is

exhausted, the VirtualClock algorithm drops the last packet —the one with

the largest stamp value—from the (longest) queue (if the switch has more

than one packet queue).

Although the basic concept of VirtualClock is simple, not all of the individ-

ual steps in the above description are obvious. In particular, the reader may

wonder why it is necessary to introduce the auxiliary variable, auxVC,

instead of simply stamping packets with the VirtualClock value; why the

switch checks each flow after receiving every set of AIR packets instead of

after every AI period; or how a bursty data source should regulate its packet

transmissions so that it will not be throttled by network monitoring. In the

remainder of this section we first discuss some distinct features and function-

alities of VirtualClock; the first two questions will be answered along the

way. We then explain in detail the last issue raised above.

Before proceeding, a brief explanation about the relevant values of Virtual-

Clock and auxVC is in order. VirtualClock and auxVC will contain the same

value most of the time (when packets from a flow arrive at the expected time

or earlier); auxVC may have a larger value temporarily (when a burst of

packets arrives very late in an average interval) until being synchronized

with VirtualClock again. Therefore, in the following discussions we can

reasonably assume that packets are stamped with VirtualClock values in

order to make the algorithm easily understood. The need for auxVC will be

explained in Section 3.2.3.

3.2 Basic Functiorwdities

3.2.1 Providing Firewall Protection Among Flows. Serving packets in the

order of VirtualClock values assures that each flow will receive the resources

that it has reserved. Therefore, in a network controlled by VirtualClocks,

although an aggressive flow can consume idle resources, it cannot disturb

network service to other flows. Through resource reservation, the network

assures that no congestion will occur if every flow transmits according to its

reserved throughput. In cases where one or more flows violates its reserva-
tion, flows that remain within their specified throughput rate will not be

affected, while the most offending flows will receive the worst service (be-

cause their VirtualClocks advance too far beyond real time, their packets will

be placed at the end of the service queues or even be discarded). The

VirtualClock algorithm thus prevents interference among flows.3

3 However, if there exist a number of ill-behaved flows, they might interfere with each other See

analysis by Weinrib [231 for more details
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3.2.2 Providing Priority Service. Priority service can be easily accomm-

odated by the VirtualClock algorithm. A network can provide priority services

to a flow simply by letting each switch replace “real time” by “real time – P“

in the previous VirtualClock algorithm description, where P is a chosen

value representing the priority. In general, P’s value should be chosen large

enough to separate priority flows from nonpriority flows in the service

queue.4 Use of a priority value, however, will not allow priority flows to take

unfair advantage of others. If a prioritized flow runs faster than the claimed

throughput, its VirtualClock will eventually run ahead of the real time;

hence, its packets will lose priority in service.

The VirtualClock algorithm uses this priority service function to multiplex

flows that require guaranteed performance with datagram traffic that ex-

pects a best-effort service. Packets of datagram traffic are assigned a priority

value of –CO, i.e., they are stamped with a value of m. Therefore, datagram

packets are always waiting at the end of the service queue whenever a queue

exists. As a result, they can utilize only resources left over after flows with

guaranteed performance requirements have been served. This allows random

datagrams to be transmitted without making reservations and allows the

network resources to be fully utilized by performance-insensitive traffic.

3.2.3 VirtualClock as a Data Flow Monitor. From another viewpoint,

VirtualClock plays the role of a “flow meter” driven by packet arrivals. Thus

it can be conveniently used for flow measurement. Because a VirtualClock is

advanced according to the flow’s specified average transmission rate, the

difference between the VirtualClock and the real time indicates how closely a

running flow is following its specified transmission rate. We monitor each

flow by periodically comparing its VirtualClock with the real-time clock,

providing feedback to the flow source whenever its actual throughput departs

significantly from the reserved rate.

Given an average interval value in the flow set-up request, one way to

monitor a flow is to check its meter, VirtualClock, after every AI time period.

Such a measure, however, may react to traffic changes too slowly when the

value of AI, which is specified by the user, is large. A derivative detector,

which checks the amplitude of changes, will be able to catch misbehaving

flows more quickly. Therefore we let the switch check each flow, fZow,, after

receiving every AIR,( = AR, x AI,) packets from it. This is equivalent to

checking the flow after every AI seconds when the flow is transmitting at the

specified average rate, but checking much sooner if the flow is sending faster.

By counting the number of packets, traffic impulses can be quickly detected.

4 Using time stamps for priority purposes does have a side-effect: packets of low priority can have
their priority increased with time. We argue that, if the channel maintains a proper utilization,
P can be set to a value longer than the resource contention period. If we define channel state

from idle to next idle as an epoch, P should be much longer than the average epoch length.

Therefore low priority load can be effectively hidden from high-priority flows. Only in the

presence of misbehaving users may a channel be in busy state for long, in which case the

misbehaving users will be detected, as described in Section 3.1, and proper control actions will be

taken.
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Had we used a specific time interval for measurement, we would have faced

the dilemma of picking a period either too small for stable control or too large

to detect overload promptly.

3.2.4 Flow Monitoring: Burstiness Tolerance Versus No Credit Saving. If

a flow’s VirtualClock is running behind real time (because the flow has been

transmitting at lower than the specified rate), the difference between the two

may be considered some sort of “credit” that the flow has built up. Because

packet traffic is bursty, it may seem reasonable to allow such credit savings

for later use. From a resource allocation viewpoint, however, unused re-

sources are gone. If a flow were allowed to save up an arbitrary amount of

credit, it could remain idle during most time of its session and then send all

the data at the last second. Such behavior would violate the specified average

packet rate over each AI period and may cause temporary congestion in the

network. However, it would not be detected by the VirtualClock-monitoring

methods, since the flow would have saved adequate credit beforehand. There

is, therefore, a conflict between tolerating bursty transmissions and control-

ling network congestion. The parameter of auerage interual is chosen pre-

cisely to compromise the two. Data transmissions of a flow can vary within

each average interval, but no credit may be saved from one average interval

to the next. Each switch enforces this policy by resetting the VirtualClock to

the real time at checking point if the former ever lags behind.

What should the network do with credit saved within an average interval?

Simulation has revealed that, if such intra-AI credit savings are permitted,

when a burst of packets arrives from a flow that has been idle for a while

(within the current AI period), the burst can still cause sudden queueing

increases to others, This is because VirtualClock is designed to tolerate flow

variations within an average interval, which is primarily chosen by individ-

ual users according to their applications’ need. Thus VirtualClock, can fall

far behind the real time without not being checked until AIR, packets have

been received.

We conclude that, if VirtualClock is used for both service ordering and flow

monitoring, the two purposes have a conflict between tolerating statistical

variations within each AI time period and not allowing credit saving even

within an AI period. Therefore a second control variable, named auxiliary

VirtualClock (auxVC), is needed in order to take the arrival time of packets

into account. When a burst of packets arrives very late in an average

interval, although the VirtualClock value may be behind real time at that

moment, use of auxVC will ensure the first packet to bear a stamp of the

current time and each of the subsequent packets to bear a stamp value with

an increment of Vtick to the previous one. These stamp values will then

cause this burst of packets to be interleaved with packets arrived from other

flows, if there are any, in the waiting queue.

By replacing VirtualClock by auxVC in the packet stamping, no longer can

a flow increase the priority of its packets by saving credits, even within an

average interval. VirtualClock retains its role as the flow meter that mea-

sures the progress of a statistical packet flow; its value may fall behind the
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real-time clock between checking points in order to tolerate packet burstiness

within each average interval.

Another design issue we have not discussed so far is how to choose a proper

threshold value, T, such that whenever (VirtualClock, – real time) > T, the

switch can assume with confidence that fZo W, has indeed been transmitting

too fast and that control actions are necessary. Intuitively, one might expect

that the variations in a flow’s data generation would cancel each other out

over time and that the VirtualClock reading would fluctuate about real time

within finite limits. If so, a moderate value of T would work well. We

conducted a number of simulation tests to experiment with various threshold

values. The test results show that, contrary to intuition, the difference

between the VirtualClock and real time may exceed any fixed threshold,

triggering false control actions even when the flows have specified the

average throughput accurately. Below we give a simple analytical explana-

tion and a proposed solution to this problem.

3.3 User-Behavior Envelope: Balancing Tolerable Burstiness with Monitorability

To make the analysis simple, first let us assume that packet arrivals within a

flow follow a Poisson process. Let us also use reasonably large average

intervals (e. g., AR = 5 packets/second, AI = 10 seconds) and assume that the

VirtualClock is advanced only by packet arrivals. We are interested in how

the difference between a flow’s VirtualClock and the real-time clock may

grow as time passes.

Let us partition packet arrivals from a Poisson source into equal time

intervals of AI seconds, Tl, Tz, . . . , T, . . . . and let P, represent the number of

packets arrived during T,, D, the difference between the number of actual

arrivals and the expected value, and S’um. the accumulation of D,’s over n

time intervals. Thus,

Sumn=~Dz=f PL–~AIR, (2)
1=1 L=l ~=1

= (VirtualClock - real time)/ Vtick. (3)

The P,’s are independent, identically distributed (IID) random variables, so

are the D,’s. Thus, Sum. is a sum of n IID variables, and we have

Mean(Sumn) = Mean(D,) X n = O (4)

Var-(Sum~) = Var(DL) x n ‘~m W. (5)

Sum. represents a random walk process. Equation (5) indicates that, proba-

bilistically, the value of Sum., i.e., the difference between a flow’s Virtual-

Clock and the real-time clock, may vary above any fixed threshold after the
flow has run for long enough. This phenomenon has indeed been observed in
simulations.
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When VirtualClock is advanced either by packet arrivals or by the real

time (at each periodic checking point), Sum. in (2) becomes

Intuitively, the variance of Sum; should grow with n at least at the same

rate as Sum..

It is also worth pointing out that the value of Var ( D,) is application

dependent; so is Var(Sum:). If applications are allowed to transmit data

with no constraint, the burstier the generation process, the bigger the D,

values will be. This fact adds to the difficulty in distinguishing whether a

VirtualClock that is running ahead of the real time indicates a misbehaving

flow or whether it is merely caused by large variations in data generation.

Facing this variance accumulation problem in flow measurement, we

propose a user-behavior enuelope (UBE) control as a solution: a flow source

should constrain itself from sending more than AIR packets during an

average interval. Under this UBE constraint, DL (and hence Sum’J in (6)

will become zero at the first switch hop from the source host. If packets do not

clump together significantly while traversing through the network, as is the

case in a VirtualClock controlled network,5 the value of Surn~ will remain

small at subsequent switches en route. Thus, it is safe to choose the threshold

value T to be the value of AIR x Vtick. (Also see Zhang [251 for a complete

description of the solution.)

3.3.1 Justification for UBE Control. We conclude from the above analysis

that, without the UBE control at sources, it will be difficult for the network

to correctly measure the average throughput of statistical data flows. When-

ever control feedback is needed, UBE (or other similar measures) is necessary

for the network to provide correct feedback information and to reduce false

alarms.

We assume that the applications that generate flows, which can be either

real-time applications or data retrieval processes that fetch data from stor-

age, are able to adjust the generation rate in some way according to the UBE

constraint. Either the data generation rate is controllable (as when the data

sources are in support of bulk data transfer or are produced from variable-rate

video/audio encoders), or some of the packets are marked droppable and can

be safely discarded [161; or the data in the excessive packets (i.e., those that

would have been sent if there were no UBE control) can be encoded in
subsequent packets.

Packet switching offers unbounded flexibility to users. A well-defined

UBE is therefore necessary to counter-balance this flexibility. The widely

5 Because packets are served in VirtualClock stamp order, packets from different flows are

interleaved as much as possible The interleaving makes it very unlikely that packets from

individual flows will clump into bursts In our simulation tests, after the flow sources restrict the

transmission by the UBE, the VirtualClock value only fluctuates over a small interval around

real time
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employed window flow control algorithms have long enforced such con-

straints. A window flow controlled data connection is prohibited from having

more than a certain amount of outstanding data in the network at any time.

Our proposed UBE control somewhat resembles the window flow control

mechanism in constraining data transmission, except that now the transmis-

sion “window” is opened up continuously by time rather than by acknowl-

edgment returns. It is superior to window flow control in that, instead of

waiting for acknowledgments (whose arrival times incur random delays)

before further transmission, applications can schedule ahead in data genera-

tion. The overhead of processing and transmitting the acknowledgments is

also eliminated.

Requiring self-constraints on users is a necessary cost, which ought to be

recognized explicitly. Significant work remains to be done on how to design

application protocols that can adjust themselves to such flow constraints.

3.3.2 Resource Over reservation. The above discussion leads to a related

question: if the partial sum of a random data source can depart significantly

from the average at a given moment, there will be flows that generate traffic

at well above the specified average rate, as well as flows that transmit at

well below the average rate. Further, for each flow, there may be periods of

heavy data generation as well as periods of relatively low activity. Restrict-

ing a flow’s transmission to fall within a fixed envelope means cutting off the

high peaks. The overall transmission rate, therefore, may average lower than

the specified value, and the resources may be over reserved.

Simulation tests have indeed manifested such resource over-reservation

(see the simulation results in Section 4.2.1). When a statistical data source

restricts its transmission according to the UBE, its actual throughput is

lower i,han the expected average. Choosing an adequate average interval can

make this difference negligible. One cannot, however, totally eliminate it by

a finite-average interval as long as flow sources are statistical processes.

It is also conceivable that a user, predicting a high variation in its data

generation process that cannot fit into a reasonable average interval, may

purposely specify an average rate higher than the estimated mean in order to

minimize the cut-off by the UBE constraint, even if such over-reservation

may be associated with a cost.G Besides a reduced constraint on its data

transmission, a flow that over reserves resources may also receive a better

delay performance, because its VirtualClock will advance by a smaller step

at each packet arrival. This is an interesting area for further exploration.

3.4 Summary

Although a VirtualClock-controlled packet-switched network mimics the op-

eration of a TDM system, there exist fundamental differences between the

two. One is that the VirtualClock algorithm merely orders packet transmis-

sion; it does not change the statistical sharing nature of packet switching—the

network forwards all packets as quickly as possible and as long as resources

6 However, the case where malicious users over reserve resources to deny service to others must

be prevented by proper charging or authentication mechanisms.
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are available. Another major difference is that a VirtualClock-controlled

network can support arbitrary throughput rates for individual flows. The

network reservation control algorithm determines what fraction of the re-

sources each flow may consume on average; the VirtualClock algorithm

determines, if more than one packet is waiting in a switch, which one should

go first based on the reserved transmission rates of the flows through that

switch.

Summing up, the VirtualClock algorithm should be able to ensure the

following functionalities:

– Every flow receives guaranteed service as measured by its reserved

throughput rate.

– Flows running faster than the reserved throughput rate will be detected by

their fast-running VirtualClock. Depending on resource availability, they

may be punished by longer queueing delays, or even packet losses, while

other flows will not be disturbed.

– Multiple-level priority services can easily be provided.

— Packets from different flows are maximally interleaved, which is an

important contributor to good network performance [41.

Extensive simulations have been conducted to verify the above conclusion.

We discuss the simulation results in the next section.

4. SIMULATION RESULTS

In this section, we first describe the network model used in our simulations

and then present some of the results demonstrating that VirtualClock pro-

vides a fair service, supports diverse throughput rates, and builds firewalls

between individual flows. Some interesting results showing the impact of

VirtualClock on packet-queueing delays will also be discussed briefly. It is

not possible, however, to include all the simulation results in a single paper;

in particular, testing results of priority flows have been omitted. Interested

readers are referred to Zhang [25] for a more complete presentation of the

simulation results.

4,1 Simulation Model

4.1.1 Network Topology. A simple network topology model is used in the

simulations (see Figure 2). It is constructed of four switches in a row. Each

link is a duplex communication channel (below we use the words link and

channel interchangeably). All the switches and links are assumed to provide

error-free transmission. The link from each host to its attached switch has a

bandwidth of 10 Mbps and a propagation delay of 1 msec. The three switch-

to-switch links each has a bandwidth of 400 Kbps and a propagation delay of

5 msec. All the four switches have a moderate buffer pool size of 100 packets.
The switches are assumed to have adequate capacity to process incoming

packets from all attached links at their full speed.

Although the network bandwidths used in the simulation model are rela-

tively low, we expect to be able to extend the results presented below directly
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Fig. 2. The simulation topology.
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Fig. 3. Packet train model.

to higher-speed environments. We hold this belief because it is the channel

utilization that determines the queueing distribution. If we scale up both the

transmission rates of flows and the network bandwidths by a factor of 1000,

for example, the channel utilization will remain unchanged and so will the

queue length distribution. The queueing delay, however, will be decreased by

a factor of 1000.

4.1.2 Data Generator Model. Data generation is an application-depen-

dent random process. Because packet-switched networks must serve various

types of current and potential applications, a universally accurate data

generation model does not exist. In previous network performance studies, a

commonly used data source model is an infinite data source where there is

always data ready to be sent [111. This model, although it is simple and

stresses the network performance under heavy load, lacks the randomness

that is a typical feature of packet traffic. Another commonly used data

generation model is the Poisson-arrival model. There is a widely held suspi-

cion, however, that use of the Poisson model may not result in a realistic

performance estimate. We chose to use a train model proposed by Jain and

Routhier [10] for data generation in all of the simulations discussed below,

except where the data generation models are explicitly specified.

Modeling each packet as a railroad car, a group of packets following one

another closely is modeled as a train. The generation process of a packet

train model can be described by three parameters: train length, intertrain

gap, and interpacket gap (see Figure 3).

In simulation tests, we model the train length as a geometrically dis-
tributed random variable, the intertrain gap as an exponentially distributed

random variable, and set the interpacket gap to a constant of 1/2 AR. With
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the above parameters, the packet trains fit into a two-state Markov chain

model. Many applications can be coarsely modeled by a Markov chain

(probably with more states) [21, 18]. For simplicity, we assume that all data

packets have a constant size of 250 bytes, All the simulation tests discussed

below also assume long-lasting data flows, since our focus is mainly on how

well the VirtualClock algorithm performs, rather than on how well the

network can handle dynamic data flows.

4.1.3 Misbehaving Data Sources. As a measure of robustness, a network

control algorithm must be prepared to handle users that do not obey the

control rules. We call them misbehaving users. This group does not include

malicious users who attack purposely. We simulate misbehaving users as

data sources that transmit much faster than the specified rate and that do

not respond to network control messages.

4.2. Simulation Results

4.2.1 Flows with the Same Throughput Requirements. We first present

the results from a simulation with the following traffic load: there are total

60 flows, each generating data in packet trains with a mean of 10 packetsjsec

(20 Kbps) and requesting an average throughput of 10 packets/see. Flows 1

through 24 follow l-hop paths, flows 25 through 48 2-hop paths, and flows 49

through 60 3-hop paths. (The hop count of a flow is the number of the

switch-to-switch link(s) it crosses. ) The sources and destinations of the 60

flows are more or less uniformly distributed. Later we will refer to this test

as Test One.

The goal of this test was to demonstrate the VirtualClock algorithm’s

performance under heavy load. There were 18 flows on each of the inter-

switch links in each direction, driving the link utilization above 85 percent.

The test simulated a 10-minute run of the real system. The measurement

statistics in both directions for Link-12 are given below as a sample of the

network performance.7 The link utilization is averaged over every 100-msec

period. The queue length measures the number of packets in the queue,

including the one being transmitted; “99-tile” means the 99th percentile of

the queue length samples. The effective throughput is the number of packets

delivered successfully from end to end. The total loss is the number of packet

losses during the entire simulation run.

Switch Performance with Homogeneous Flows

Swit Link Utilization Q.e.e Length

ID ID mean dev mean dev 99-tile

2 12 0.86 0.11 2.64 1.8 10

3 12 0.86 0.11 2.61 1.7 9

Effective throughput: 584 packets/see

Total loss: O

7 Due to the disk space limitations, it is impossible to log queueing data for all the links.
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Dividing the 60 flows into three path-length groups, we computed the aver-

age throughput and the average queueing delay of each group below. Here

the queueing delay is the waiting time each packet experienced in the

queue(s), excluding its own transmission time.

Throughput Queueing Delay
(packets/see) (msec)

l-hop flOW 9.59 7.76
2-hop flOW 9.58 14.58

3-hop flOW 9.62 22.37

Converting the packet-waiting time to the queue length (it takes 5 msec to

transmit a 250-byte packet over a 400 Kbps link), we can see that the two

measurements agree with each other (remembering that the queue length

includes the packet being transmitted). Also notice that, due to the effect of

the source UBE control, the actual average throughput is slightly lower

(about 4 percent) than the expected value, as we have discussed earlier.

Summarizing the test results, we see that

— the network meets the flows’ average throughput requirements,

— the average queueing delay is 10W,S

— the network load is stable and congestion free, and

– the network provides a fair service, independent of the path length of the

flows.

4.2.2 Supporting Diverse Flow Throughput. Next we simulated flows

with different throughput requirements, varying from 5 packets per second to

50 packets per second, as specified in the following table.

Diverse Throughput Rate of Flows

Throughput
(packets/see) Flow ID

50 1, 18, 35
30 8,25, 36
20 3, 12,20, 29, 37
10 2,4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 19,

21,22, 23,24,26,27, 28, 30, 31, 32
5 16, 17, 33, 34

Among the total of 37 flows, flows 1 through 17 are l-hop flows, 18 through

34 are 2-hop flows, and the rest are 3-hop flows. The test simulated a

aAs a point of reference, an M/D/l queue’s average length under the same utilization would be
around 4 packets or an average waiting time of 15 msec.
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10-minute run of the real system and the results are presented in the same

way as before.

Switch Performance with Diverse Throughput Flows

Swit Link Utilization Queue Length

ID ID mean dev mean dev 99-tile

2 12 0.81 0.14 2.29 1.41 8
3 12 0.82 0.12 2.34 1.60 9

Effective throughput: 564 packets/see

Total loss: O

Again, we show the average throughput and queueing delay of the flows

averaged by path length groups.

Flow Performance with Diverse Throughput Rate

Average Throughput (packets/see)

Expected 50 30 20 10 5

l-hop 48.2 29.0 19.3 9.6 4.7
2-hop 48.3 28.8 19.0 9.6 4,9
3-hop 47.8 29.0 19.4

Average Queueing Delay (msec)

rate 50 30 20 10 5

l-hop 5.6 4,2 5.2 10.8 12.3

2-hop 8.5 8.3 7.8 17.6 21.3
3-hop 9.5 8.0 10.7

These results demonstrate that the VirtualClock algorithm provides the

users with their expected throughput; different path lengths show no effect

on either the flows’ throughputs or delays. The different throughput rates of

the flows, however, do have a slight impact on the average queueing delay:

flows with lower throughput seem to experience higher queueing delays. This

is so because their VirtualClocks tick by bigger increments; one packet

arrival may advance the VirtualClock so much that the next packet has to

wait to let one or more packets from higher-speed flows, which arrived in a

burst, pass by first.

4.2.3 Building Firewalls between Flo WS. Here the test condition is

changed back to that of Test One, except that every 6th flow is now a

misbehaving one: it sends at 5 times the specified rate and does not respond

to network control. The test simulated a 5-minute run of the real system.

Switch Performance in the Presence of Misbehaving Users

Swit Link Utilization Queue Length

ID ID mean mean dev 99-tile

2 12 1.0 47.4 7.65 65
3 12 10

Effective throughput: 680 packets/see
Total loss: 47,106 packets (all from misbehaving users)
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Performance of Normal Flows in the Presence of Misbehaving Users

Throughput Queueing Delay

(packets/see) (msec)

l-hop flOW 9.59 8.33
2-hop flOW 9.64 14.82
3-hop flOW 9.65 16.36

The above results show that normal flows are well protected from the few

misbehaving ones; no one loses a single packet. Also not that, even though

the misbehaving users drive the link utilization to 100 percent, the queueing

delay of the normal flows remains about the same as before. The 3-hop flows

even receive a lower queueing delay than in Test One, because all packets

from the few misbehaving flows are put at the end of the service queues,

making normal flows see a lower utilization. The VirtualClock algorithm

builds firewalls between flows both in terms of the throughput and of the

queueing delay.

4.2.4 Effects of VirtualClock on Queueing Delay. The major role of Virtu-

alClock is to build firewalls among flows in statistical multiplexing and to

meter the average volume of statistical data flows. It should be made clear

that VirtualClock does not contribute directly to queueing delay reduction.

Rather, it helps indirectly by interleaving packets from different flows so

that packets of each flow will not bunch together, by assuring individual

flows their reserved throughput rates so that each flow will experience

minimal queueing delay if it is transmitting at the reserved rate, and by

feeding back the monitoring information to flow sources so that any potential
overloading can be quickly corrected.

In addition, simulation results also reveal a useful side-effect of the Virtu-

alCloc k algorithm: VirtualClock allocates the queueing delay of each flow

according to the burstiness in the flow’s data generation pattern, as we show

next.

4.2.5 Queueing Delay of Different Data Generation Patterns. Statistical

multiplexing absorbs randomness and burstiness in individual flows’ data

transmissions. Nevertheless, highly bursty data arrivals can still result in

significant queueing delays even when the average load is held below the

network capacity. Because of the strict service ordering enforced by Virtual-

Clock, however, a higher burstiness in a flow’s data generation results

mostly in an increase of its own queueing delay.

This effect is demonstrated by the results of a simulation test with three

different data generation patterns, constant rate, Poisson arrival, and packet

train. The test condition is the same as that in Test One except that the last

four flows are removed to lower the link utilization (the measured utilization

in this test is 78 percent),g and the data generation patterns are changed.

The data generation models of flows 1 through 48 repeat the patterns of two

9 Experiments show that when the utilization is too high (say above 80 percent) the difference in

queueing delays among different data source models gradually diminishes.
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constant-rate sources, two Poisson arrival sources, and two packet train

sources. Flows 49 through 56 repeat the pattern of one constant-rate source,

one Poisson source, and two packet train sources. The average and deviation

of the queueing delays of all the flows are summarized below, sorted by the

path length groups.

Queueing Delay Statistics of Diverse Data Patterns

Average Delay (msec) Delay Deviation

l-hop 2-hop 3-hop l-hop 2-hop 3-hop

Constant rate 1.76 4.50 5.57 1.58 3.40 4.09

Poisson arrival 4.55 8.37 11.40 6.44 9.74 11.15

Packet train 6.49 10.47 15.25 9.50 12.17 15,49

Among the three data generation models, packet train has the highest

burstiness. Consequently, the flows generated by packet trains attained the

highest queueing delays and delay variations. It seems fair to make highly

bursty data sources bear the bulk of the consequence. It is also possible for an

individual flow source to adjust its queueing delay and delay variance by

adjusting its own data generation patterns.

In particular, notice that the flows of the Poisson data sources have both a

lower average delay and a smaller delay deviation than the flows of packet

trains. By using the packet train model instead of the Poisson model in

simulation tests, we have stretched the performance of the VirtualClock

algorithm, demonstrating its enhanced robustness for a wider range of data

generation patterns.

5. RELATED WORK

Before concluding, we compare the VirtualClock algorithm with a few others

that have been proposed for network traffic control, mainly fair queueing, a

schedule-based approach, and the Leaky-Bucket algorithm.

5.1 Fair Queueing

Fair queueing is a simple control strategy that provides all users with an

equal allocation of network resources. Similar to the round-robin-scheduling

algorithm often used in operating systems, the basic idea of fair queueing is

to transmit data from each user in turn. Hahne [8] and Demers et al. [3] have

done extensive analysis and simulation work on the performance of fair-

queueing algorithms.
VirtualClock can be considered as performing a fair-queueing function,

where the fairness is defined to be assuring each user the requested through-

put. In fact various queueing policies can all be implemented by a simple

computation on the VirtualClock value. In particular, the VirtualClock

algorithm shares a number of features with the fair-queueing algorithm

proposed by Demers et al. [3]. A major difference between the two is that

VirtualClock is based on the resource reservation. Therefore, instead of

allocating resources equally among all present users, VirtualClock is able to
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allocate, and enforce the usage of, any specific amount of resources for each

user and to monitor individual flows against their reservations for control

feedback.

5.2 Schedule-Based Approach in Data Flow Control

Mukherji has proposed a schedule-based approach to data traffic control [141.

In this approach, channel bandwidths are divided into equal time frames;

each frame has a fixed number of slots, which are assigned to individual

users. A user can send a packet by using its own slot or by using a slot whose

designated user has no packet to send at the moment. Each user has an

auxiliary flow control window that limits the number of packets a user may

send by using others’ slots.

The VirtualClock algorithm takes a similar approach of reserving re-

sources for individual users. However, instead of assigning specific channel

slots to individual users, VirtualClock orders packet service sequences ac-

cording to the reservation. Hence it achieves the same functionalities of the

Mukherji algorithm, but with more flexibility in handling different channel

bandwidths and different user throughput demands.

5.2.1 Leaky-Bucket. Leaky-Bucket has been suggested as a network ac-

cess algorithm for high-speed networks [17, 20]. Various versions of the

algorithm have been proposed. A simple model, described by Turner [20],

works in the following way: each switch at the network entrance puts packets

from each data flow into a corresponding bucket that has a fixed size. The

bucket opens periodically to emit packets for transmission. When the bucket

is full, incoming packets are discarded. In another version of Leaky-Bucket,

credits for each flow are generated at a constant rate, and a certain number

of credits (up to the bucket size) can be saved. Arriving packets are transmit-

ted immediately if the corresponding flow has credits; otherwise the packets

are either dropped or stamped with a droppable mark and are then transmit-

ted (if possible) at a low priority.

Packet-switching networks should tolerate variations in packet arrivals

while controlling flows’ average transmission rates. The first version of

Leaky-Bucket, as described above, reduces statistical multiplexing because

packets are transmitted at a constant rate rather than whenever the channel

is available. The second version may result in bursty transmissions if buck-

ets in the switch are served in FIFO order. The VirtualClock algorithm

avoids those drawbacks by merely ordering packet service without reducing
statistical sharing; at the same time, it also makes packets from different

flows maximally interleaved.

The major difference between Leaky-Bucket and VirtualClock, however, is

that the former is an admission control algorithm while the latter is a service

order control algorithm. Leaky-Bucket enforces control at the network en-

trance and determines whether an incoming packet should be accepted. Once

packets are accepted, Leaky-Bucket has no further control over the order of
service. Thus it may not make maximal use of the resources if the admis-

sion policy is too conservative. Neither can it discriminate among packets
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according to different delay requirements. VirtualClock can also be used for

admission control (when a flow’s VirtualClock is running too fast, further

packets from that flow can be rejected). Its main merit, however, is in

controlling service orders. VirtualClock determines the service order of pack-

ets from all users. The action is applied right at the multiplexing point,

controlling exactly which packet may be served next and what share of the

resources individual users can receive.

6. SUMMARY AND FUTURE RESEARCH

In this paper we have presented VirtualClock as a new traffic control

algorithm for packet-switched networks. Its fundamental merit arises from

its imitation of a TDM system in a statistically multiplexed packet network,

achieving the desired properties of both approaches. A network controlled by

VirtualClocks maintains the statistical multiplexing flexibility of packet

switching while ensuring each flow its reserved average transmission rate.

All data traffic control algorithms place certain constraints on users. In the

VirtualClock algorithm, such constraints are expressed as a user-behauior

envelope (UBE), which states that each flow source must refrain from sending

more than (AR x Al) units of data over each AI time period. Although the

UBE is introduced as a solution to our specific problem in using VirtualClock

for flow measurement, we believe that a data transmission constraint such as

UBE should be a mandatory part of all rate-based traffic control systems in

general. How to design application protocols that can adjust themselves to

such flow constraints is an interesting and important area for further study.

We are currently developing a prototype implementation of the Virtual-

Clock algorithm, using Sun Microsystems Sparcstation as the packet switch

box. Our experience to date indicates that the algorithm itself is simple and

adds minimal overhead to per-packet-processing time. A variable overhead

cost in our implementation is the time to insert packets into the ordered

service queues, since we use a simple linear search at present. In our limited

local test environment we have not been able to build up long packet queues

at the switch and thus have not noticed any significant processing overhead.

Nevertheless, we are currently looking into better queue insertion algo-

rithms in order to maintain a low overhead even in the presence of substan-

tially long packet-waiting queues.

We also plan further exploration of the performance of the VirtualClock

algorithm under more bursty traffic. Some preliminary simulation tests
indicate that, with the traffic burstiness degree increased from two to eight,

the network can maintain the same queueing delay by a modest decrease in

the channel utilization. However, more rigorous testing is needed to achieve

more quantitative conclusions.

Design of, and experimentation with, the VirtualClock algorithm has also

raised a number of other interesting issues for future study. First, it may be

attractive to applications with stringent delay requirements to slightly over-

reserve resources in exchange for an improved transmission delay. More

work is needed to investigate a quantitative relation between the percentage
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of resource over-reservation and the corresponding delay reduction. Another

interesting area to explore is to provide a bounded transmission delay and
guaranteed delivery to emulate services provided by a circuit-switched net-

work. Although the VirtualClock algorithm, as described in this paper,

shows low queueing delay in simulation tests, it does not guarantee bounded

transmission delays nor loss-free data transmission. The algorithm is being

further developed to achieve these properties.

As a final remark, the concept of the average interval seems particularly

interesting. The VirtualClock algorithm uses two parameters, average rate

(AR) and average interval (AI), to describe and control statistical data flows.

As a tuning knob between the system constraints and the user flexibility, AI

sets the bound of permitted burstiness in the transmissions of data sources.

By tuning the AI value, we can tune a data transmission network along a
continuous spectrum, with a TDM system at one end and an uncontrolled

datagram network at the other. Similar choices in using AI as a data flow

parameter are also being explored by others [5, 121.
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