
The Information Discovery Graph:
Towards a Scalable Multimedia Resource Directory

Nathan R. Sturtevant, Nelson Tang, Lixia Zhang
University of California Los Angeles
{nathanst, tang, li xia}@cs.ucla.edu

Abstract
In this paper, we present the design, rationale, and

basic mechanisms of the Information Discovery Graph
(IDG), a scalable multimedia resource directory. Facing
the fundamental challenge of scaling with both large
amounts of resources and large numbers of users, the
IDG is made up of a self-organizing hierarchy of
information managers, each maintaining resource
information for specific topics or areas. Multimedia data
sources register themselves with the IDG system and keep
the information up-to-date. Preliminary simulation results
demonstrate the approach’s promise. A number of open
research issues are also addressed.

1. Introduction

The Information Discovery Graph (IDG) is a
component of the Semantic Multicast project [1]. The
goal of Semantic Multicast is to facil itate distributed
collaborations by selecting and filtering content available
on the network. Selections use criteria such as user
interest and network bandwidth, bringing appropriate
material to the user’s desktop. Semantic Multicast aims at
providing a fast and intuitive method for connecting users
with content that matches both their interests and their
processing capabiliti es. Specifically, the IDG’s role in this
framework is to provide the directory and search
mechanisms to locate any relevant content, such as video
streams stored in a database or a real-time multimedia
conference sessions on the MBone [2].

One of the principal goals of the IDG is to be able to
handle large amounts of online multimedia information in
a scalable fashion. Not only should users be able to find
information quickly, regardless of the amount of
information available, but the control protocol used to
maintain the information directory should also have as
littl e overhead as possible.

The IDG is based on a distributed cache, which can be
browsed by topic or searched for specific content. By
maintaining the resource information in a sorted mesh of
caches, the user can find information quickly. In this
paper we will discuss the existing tools and their

limitations, and then explore the design of the IDG. Then,
we will describe simulations of the IDG that demonstrate
its correctness and usefulness, and finally, we will present
ideas of future research.

2. Current information discovery tools

The IDG design aims at addressing the challenge of
information search in large-scale networks. We expect
that in the future Internet, orders of magnitude more
multimedia contents will be online that cover a diverse
range of topics. We therefore begin by exploring the
current tools used for discovering online multimedia
resources. In particular, we will highlight the limitations
of the present tools and architecture.

There are two kinds of multimedia content available on
the Internet today: stored multimedia content, and live
(real-time) multimedia content. Currently, users find these
two kinds of resources by using different sets of tools, and
we will describe each set separately.

2.1. Stored multimedia content

Information about stored multimedia content is
generally not propagated to users and is not categorized
using any specific mechanism. In most cases users look
for interesting content with a Web search engine. Existing
Web search engines perform searches by either counting
how often the search terms occur on a page, such as
AltaVista’s approach, or by matching search terms against
a manually chosen category description, such as Yahoo’s
approach. In the first case, the content must be textual to
permit effective searching; however, a large amount of
multimedia content is not text-based. In the second case,
the categories are fixed and are chosen by the search
engine. In both cases the inherent problem of today’s Web
search engines is also introduced: poor scalabilit y due to a
centralized database. Scalabili ty is a problem because
crawlers of individual Web search engines must spend an
increasing amount of time discovering the new contents
that are added online everyday. The task becomes more
diff icult as the amount of content continues to grow. In



addition, over time many of the Web pages discovered by
crawlers get moved to different locations, or deleted
entirely. As a result, it has becoming increasingly
common to encounter stale links from a search engine’s
reply. Furthermore, because each search engine works in
isolation, a popular Web site often observes visits from
multiple crawlers, one for each different search engine,
resulting in increased network and Web server load.
Finally, the lack of semantic content searching stems from
the inability of the search engine to derive semantic
meaning from the resource using its text matching
algorithms. Web search engines provide a rudimentary
mechanism for categorizing stored multimedia content,
but it is not a sufficient architecture for handling the
presumed growth of online multimedia content in the
future.

More recently, another approach to bringing online
multimedia content to users is by listing available content
on a well-known web server using a proprietary directory,
such as Broadcast.com. Broadcast.com uses a centralized,
manually-categorized directory of multimedia sources,
and users can retrieve interesting content by unicast. This
approach suffers similar scalabili ty problems.

2.2. Real-time content

Due to its time-sensitive nature, information about
real-time multimedia conferences on the Internet, as
opposed to stored multimedia content, is multicast to all
users. Multicast takes place on the MBone, a virtual
network built on top of the Internet where IP multicast has
been deployed. Information about multimedia conferences
is currently advertised using the Session Announcement
Protocol (SAP) [3], which also outlines bandwidth
guidelines for session announcements. These guidelines
suggest using a fixed amount of bandwidth on a single
well-known multicast address to periodically announce
existing content. It is the responsibil ity of a content
provider to advertise its content on this multicast address.
Client programs, such as SDR [4], list content that has
been announced. These advertisements time-out in SDR
after some appropriate interval. There are no intermediate
agents in the network, so there is no way to learn of the
existence of real-time content except by waiting to hear
directly from the sources.

This approach results in a number of very good
features. SAP provides robustness and automatic error
recovery due to its soft-state listings of content and lack
of intermediaries. Additionally, the lack of intermediaries
means direct source delivery and enables the user to
directly select relevant content. However, these
advantageous features also result in a few problems with
SAP. First, when a new client initially comes online, it
must wait patiently to learn about all existing
announcements. Currently it can take up to 30 minutes to

hear all available sessions [5], and this time can only be
expected to grow as the number of content providers
grows. The delay is due to the fixed bandwidth used by all
session announcements and the extreme sensitivity to
announcement packet losses. SAP dictates that only 200
bits per second of global bandwidth be used for content
announcements; thus for new clients, a dropped
announcement packet can result in a significant delay for
learning of the existence of an ongoing session. Second,
there is no ordering of listings within the single channel.
Although provisions have been made in the Session
Description Protocol (SDP) to allow keywords [6], few
announcements currently use this option. Accordingly, a
user must scroll through a long, flat list to find interesting
content. When many more multimedia content providers
exist, this approach will not be feasible.

We would like a resource directory that is scalable
enough to support many orders of magnitude more
resources than are currently supported. It should handle
stored and real-time multimedia content equally well ,
have the simplicity and robustness of SDR, and overcome
the lengthy client startup time and reduce sensitivity to
packet loss. In addition, items should be grouped
according to content, so relevant resources can be easily
located. These goals motivate the design of the IDG.

3. IDG design

To describe the design of the IDG, we begin by
describing the overall organization of the IDG. We then
discuss specific features of the IDG design.

3.1. Overall organization

The IDG is a directory of multimedia content that
helps users rendezvous with data sources with multimedia
content in which the user is interested. The directory is
organized around a taxonomy, which is a hierarchy based
on the semantic information of whatever content data is
available. Levels of the hierarchy represent a narrowing of
focus of the semantic categories. Levels near the top of
the hierarchy represent broad semantic categorizations,
such as “sports” or “entertainment,” and the categories
lower in the hierarchy represent categories that are more
specific. Figure 1 shows a high-level view of the IDG
organization of a sample taxonomy.

The multimedia content is represented as a data
source. A record for each data source is inserted into the
IDG hierarchy at a semantic category that best categorizes
the data source’s content. This matching process is
described in greater detail i n Section 3.2.1. The data
source itself is responsible for properly characterizing its
content, as it has the most knowledge of the content.

Users, whether human beings or software agents, use
the IDG to find data sources that serve relevant content



data. A user can find relevant data sources in two different
ways: the user may browse the IDG for listings of data
sources of interest, or the user may send a query for the
appropriate category. The exact mechanism is described
below in Section 3.2.1. Once a user finds an appropriate
data source, it can contact the source directly and receive
the content; the IDG is used only to connect data sources
and interested users.

Managers are responsible for maintaining the
semantic categories of the hierarchical taxonomy. The
hierarchy is implemented as a collection of multicast
groups. A number of managers listen to each multicast
group; some managers also listen to two groups, forming
the interconnections between the levels of the hierarchy.
The categories are merely listings of information of
semanticall y-related data sources. The listings are stored
by a manager, and each manager is responsible for one or
more given semantic category. Note that managers are
logical entities, not physical entities; thus, a single
physical machine may house several separate managers.

3.2. IDG features

We now discuss some of the features of the IDG in
greater detail . In particular, we point out the robust and
fluid architecture that allows all users to register their own
data sources as particular aspects of our architecture that
makes it well suited for directory services.

3.2.1. Querying the IDG. Both users and data sources
need to locate managers within the IDG; users look for

managers to find interesting data sources, and data
sources locate the most fitting manager with which to
register themselves. This location process is the same for
both users and data sources and can happen by one of two
methods: manual traversal or querying a manager.

First, the IDG hierarchy can be manually traversed,
and a relevant manager manually selected. Traversal
means either passively listening to a group for manager
descriptions (see Section 3.2.3), or it means asking a
group for a description of the hierarchy. Both ways reveal
a list of managers listening to a multicast group and to
what subgroups, if any, they are connected. If the
appropriate manager is not found in this group, the most
appropriate subgroup can be selected and recursively
traversed. This continues until an appropriate manager is
found.

Second, a search query can be given to any manager.
This search query attempts to find a match with a
manager’s semantic categories or keywords listings for its
data sources. Managers can directly respond to the query,
indicating that the manager can appropriately handle the
request, or they may instead forward queries to a sub-
multicast group. Additionally, since managers inform
their multicast group peers of their descriptions, a
manager has some knowledge of its peers, so its responses
need not be for just its own categories or data sources.

For example, consider the sample taxonomy shown in
Figure 1. Suppose a user wishes to view a broadcast of a
golf tournament containing Tiger Woods and David
Duval. A query can be given to any topical manager in the
well-known multicast group. This manager can use its

Figure 1. IDG layout of a sample taxonomy

Sub-sub
topic

multicast

Sub-sub
topic

multicast

Subtopic
Multicast Group

(sports)

Subtopic
Manager
(volley-

ball)

Subtopic
Manager
(tennis)

Subtopic
Manager

(golf)

Subtopic
Multicast Group

(fine arts)

Subtopic
Manager
(music)

Subtopic
Manager

(liter-
ature)

Subtopic
Manager

(film)

Well Known
Multicast Group

Topical
Manager
(news)

Topical
Manager
(finance) Topical

Manager
(health)

Topical
Manager

(fine arts)

Topical
Manager
(sports)



cache to match the query with the sports manager, and it
will forward the query to the sub-multicast group under
the sports manager. At this level, the golf manager would
pick up the query and respond directly to the user. This
process is controlled by the matching mechanism between
queries and managers, which is still under development.

For both manual traversal and querying, users and data
sources need not start at the top-level well -known
multicast address. Since the upper levels of the hierarchy
are not likely to change very often, users may cache their
knowledge of the hierarchy and start traversals or queries
at lower, more appropriate levels. This caching of the IDG
hierarchy provides scalabili ty; users traversing or
querying the hierarchy will start at levels much closer to
likely data sources, reducing the amount of traffic
generated by each user. If the user’ s cache has stale
hierarchy data, the user can simply return to the top-level
well-known multicast address. However, since this is the
starting point for new users as well, it is imperative to
take as much traff ic out of the upper hierarchy levels as
possible to support scaling of the number of users of the
IDG.

3.2.2. Data source registration. SAP calls for data
sources to broadcast an advertisement of their content to
the well-known multicast address on a periodic basis. Our
IDG design takes a slightly different approach; data
sources do not make announcements to any multicast
groups, but rather they register themselves with a
manager. (In our design, managers may also share data
source registrations with other managers if the content
spans multiple semantic topics, allowing for more
effective user searches for interesting data. However, the
details of this sharing have not been fully explored, and
we leave it as an item for future research.)

When a data source registers with a manager, the
manager acknowledges the registration and creates a soft-
state connection with the data source. The manager will
eventually time-out the data source’s registration, so the
data source must periodically refresh its registration with
its manager, which the manager will acknowledge. This
process prevents the buildup of stale entries to data
sources that are no longer available, and it also allows
data sources to know that their managers are still alive,
providing a measure of robustness.

It is important that the announcement from a data
source be descriptive enough to allow proper
classification by managers. The data source itself will be
best able to provide such a description. Thus, the
responsibili ty for an accurate characterization of the
multimedia data is on the creator of the data source.

3.2.3. Description announcements. Since a data source
does not directly advertise its content to users, its manager
is responsible for doing the advertisement. Managers

periodically send their descriptions to the multicast
group(s) to which they are connected. These descriptions
identify the manager and its place in the hierarchy and
also include a list of keywords to characterize the data
sources that have registered with the manager.

This serves two purposes: it provides a way for users
and other managers to passively learn the IDG hierarchy,
and it serves as a heartbeat to other managers to support
robust failure recovery. The first aspect lets users learn
the IDG hierarchy without having to send queries to any
multicast groups or managers; users that monitor a group
will eventually hear all manager descriptions for that
group at a minimal cost. This very closely approximates
the operation of SAP, and thus we can reap the same
benefits of simplicity that this design entails. For
example, a client program might passively collect
information about the IDG while the user is idle.
However, our design improves upon SAP by using
managers to aggregate and simplify data source
announcements into a single, more compact manager
description. Users can always get full i nformation on data
sources by contacting the manager directly. We thus
reduce the global multicast traff ic both by using smaller
periodic announcement packets and by only sending
lengthy data source information, via unicast, to users who
request it.

All managers in a multicast group will cache broadcast
descriptions in order to share their knowledge of the IDG
hierarchy. This means any manager can accurately
respond to queries. The manager description also serves
as a heartbeat, which is needed to support a robust failure
recovery scheme. If a manager is not heard from after
some interval, other managers in the same group(s) will
assume the manager has failed. At this point, a failure
recovery mechanism starts. Another manager in the
multicast group (or the “ lower” group, if the failed
manager bridged two groups) will be elected to take over
for the failed manager. “Taking over” entails assuming
control of the semantic categories for which the failed
manager was responsible. Data sources that were
registered with the old manager will re-register with the
new manager taking over for the old one. Note that at this
point, the new manager may try to recruit more managers
to help properly distribute the load (see Section 3.2.4).

3.2.4. Hierarchy fluidity. The IDG hierarchy is
completely dynamic; it changes as the registered data
sources come and go. This means that if a manager
reaches some threshold of load or has too many data
sources registered, it may create a new semantic
subcategory and delegate another manager to handle that
subcategory. It will then divest itself of data sources that
better fit the subcategory, instructing them to re-register
themselves with the new manager. Similarly, if a manager
finds itself below some threshold of load or data sources,



it may decide that its category is too specific and is no
longer needed. In this case, it wil l pass any remaining data
sources on to a manager of a more general category and
then terminate itself. This design scheme provides
maximal flexibili ty and scalabili ty for the IDG; we do not
need to full y specify the entire manager hierarchy in
advance, as the managers will adapt to whatever data
sources there are. As the amount of online multimedia
content increases, one can simply add more resources to
the information managers pool, and the IDG protocol will
utili ze as many managers as the work load demands.

4. Overhead model

In order to compare our design to the architecture
currently in place, we need some sort of metric to
compare. We look at two such metrics. First, we consider
the time it takes a user to find a relevant data source.
Then, we compare the global multicast bandwidth used.

4.1. SAP search time

For globally announced sessions, SAP dictates that
only 200 bps are used for all announcements. Sources
announce their sessions at minimum once every 5
minutes, and announcement times increase directly with
the number of sessions. To calculate the time it takes for a
user to find the session in which they are interested, we
suppose that a user has some sense of what they are
interested in. The user will then listen for announcements
until the most interesting session announcement arrives.
Since it is difficult to predict what the “most interesting
session” is, we use the worst case of waiting until all
sessions arrive, assuming no packet loss.

More formall y, given

N = number of announcements
R = max(300, (8*N*ad_size)/limit), in seconds

limit ranges from 200bps to 2Kbps; see [3]

Then, the search time for SAP is

STsap = N*R

Thus, the search time is linear in the number of
announcements being made.

4.2. IDG search time

Using the IDG, the time to get an interesting session is
the amount of time it takes to locate a manager containing
interesting sessions plus the time to retrieve all data
source listings from that manager. The time to locate an
interesting manager is the cost of a path from the root of
the IDG to that manager. Along that path, we will retrieve

all manager listings at each level. Given an average
branching factor of b in the IDG and a depth d search, the
cost of reaching some particular manager is b·d. The exact
time to get to this manager will vary by some constant
factor. This factor will account for the bandwidth
available to the end user and the delay in processing any
requests. Once the best manager has been located, it sends
the session descriptions to the user.

Thus, given

B = branching factor of IDG (managers per level)
D = depth of manager with “ interesting” results
K = number of announcements per manager

Then, the search time for the IDG is given as

STidg = B*D+K

To make our calculations, we assumed that each
manager will have 50 data sources registered with it, and
that there will be 5 managers at each particular level. This
is a worst case bound; the amortized cost of searching
should actually be less in most cases, since the user will
often look in the same locations of the IDG that he or she
already has cached from previous searches. (This idea of
spatial caching is described further in Section 5.1.) The
comparison of search time between the IDG and SAP is
shown in Figure 2.

Thus, in the IDG, the search time depends on the depth
of the deepest manager, which, in a tree, is
logarithmically related to the number of data sources.

4.3. Global multicast bandwidth comparison

SAP uses a constant amount of global multicast
bandwidth: 200 bps. However, defining a constant value
in a protocol does not lend itself to scaling well .
Moreover, we argue that if there is enough bandwidth to

Figure 2. Search time comparison

10

100

1000

10000

100000

1e+006

1e+007

1 10 100 1000 10000 100000

Ti
m

e 
(s

ec
on

ds
)

Number of Data Sources

SAP Session Location Time
IDG Session Location Time



support many large multicast sessions, that some fraction
of that bandwidth should be available to a session
directory. We could put such a modification into SAP, but
this would only be a temporary fix to the problem, as it
would still neglect the issue of organization.

To compare the global multicast bandwidth used by
SAP to the amount used by the IDG, we assume that each
multicast group uses a constant amount of bandwidth, as
SAP does for the single multicast group. If each manager
contains a fixed number of data sources, the number of
multicast groups in the IDG will be linearly related to the
number of managers. Since the number of managers is
also proportional to the number of data sources, we
determine that the global multicast bandwidth grows as a
small fraction of the number of data sources. This was
confirmed by our simulation results (see Section 4.4
below).

Again, for

K = announcements per manager
N = number of announcements
M = number of managers = N/K

Our total global bandwidth used is

BW = M*(200bps)

This is on the order of the number of data sources,
which is unacceptable for general deployment. We
describe future work measures that will reduce the global
multicast bandwidth in Section 5.

4.4. Simulation results

We implemented our IDG model in Parsec, a scalable
simulation language developed at UCLA. We used this
simulation to get a preliminary indication of how well our
model works. We have not yet refined the simulation to
allow simulations involving thousands of managers and

data sources. The simulations we have run involved 45,
90, 135, and 180 entities. In these simulations, 22% of the
entities were managers, 66% were data sources, and the
remaining 12% were routers. Routers served to simulate
packet flow in the network.

To simplify the experiments, when a manager had 2 or
more data sources, it would begin to expand the manager
hierarchy. Since data sources do not contribute to the
global multicast bandwidth, this effectively simulates
many more data sources in the IDG. Each simulation was
run for 10,000 seconds, and the multicast bandwidth used
was recorded. As seen in Figure 3, our simulations so far
exactly match the expected bandwidth usage.

5. Current status and future work

In addition to the simulation, we have developed a
prototype implementation of the IDG in Java, including
the infrastructure as well as a simple user front-end (see
Figure 4). We have also created a special manager to
encapsulate SDR sources, which could be used for
incremental deployment. Our implementation provides
the core functionali ty of our design, but it needs to be
developed further. In addition, we list below a number of
issues deserving of future research.

5.1. Scaling in spatial dimension

The IDG fixes the delays in locating interesting data
sources by letting the managers maintain a sorted mesh of
caches. These caches are temporal caches; they allow
efficient searches based on semantics and save having to
wait to hear information directly from content source.
However, these caches do not address the spatial locali ty
of a user or data source. It may be that a source is
providing content for only a limited region, so the
announcement should be registered locally, and not sent

Figure 4. Java GUI

Figure 3. Multicast bandwidth usage

1

10

100

1000

10000

100000

1e+006

1 10 100 1000 10000 100000

T
im

e 
(s

ec
on

ds
)

Number of Data Sources

Experimental Data
SAP Global Bandwidth

Expected IDG Mcast bandwidth



globally. Also, it is undesirable to have every topic group
multicast globally, or to have a client make many queries
to managers widely distributed across the Internet.

Either TTL or administrative scoped multicast can be
useful tools in addressing the issue of scaling in spatial
dimension. A good outline of administrative scoping can
be found in [5]. This reference also shows how scoping
can be used to help support localized multimedia sessions.
The same concept should apply to IDG design. A local
manager, or set of local managers, could both manage
locally scoped data sources and provide a cache of
interesting global sessions.

5.2. Reduction of multicast bandwidth

Our design has made an exact tradeoff with the SAP
architecture. By reducing user search time, the IDG has
increased the multicast bandwidth used. Our original
efforts were directed towards optimizing the session
location experience. While the quality of search has
increased, the overhead costs are larger than we like. We
plan to see how, by changing our growth assumptions, we
can fix this issue. For instance, it may not be the case that
managers hold a constant number of data sources, which
changes the dynamics of how the overhead grows. There
also may not be a fixed number of managers in each level
of the tree. These issues depend partly on how the
taxonomy is defined to organize the managers.
Ultimately, we hope that our global bandwidth usage will
be logarithmically related to the number of data sources.

5.3. Kohonen nets

In the current design, a new data source is inserted into
the IDG wherever the managers determine it is most
appropriate. The managers determine this by using
heuristics such as keyword matching. This may or may
not be adequate for real usage. As society changes with
time, new areas of interest can quickly arise. It might be
desirable to have a system that could automatically detect
and incorporate such changes. One type of neural
network, the Kohonen net [7], has been used to classify
Usenet newsgroup articles [8]. Under this system, the
Kohonen network placed articles together on a feature
map based on their relevance to each other. This system
worked offline to produce the results. We are
experimenting to see if an online system could be
developed to enhance the IDG with a dynamically
growing and adjusting mesh of keywords for content
categorization. Initial experiments suggest that the
information contained within a data source description is
inadequate for this purpose, although other similar
methods may be more successful.

5.4. Database search methods

We have done littl e research on what search methods
can or will be used by managers to handle queries. As
another aspect of the Semantic Multicast project,
researchers at the University of Ill inois at Chicago are
investigating using relevance feedback to improve
database queries [9]. Exactly what, if any, query
mechanisms are supported by managers has yet to be
decided. If a manager contains only a few data sources, it
is reasonable to send the user all data sources and let the
user filter them. However, allowing the user to search
using characteristics such as session bandwidth
requirements and broadcast times would also be useful.

5.5. Security

Security is a common issue in any open system, and is
yet to be well addressed in our design. There are several
areas in which the IDG infrastructure is vulnerable to
attack. First, as one can do to a search engine with a web
page, a user can falsely insert thousands of session
announcements across the IDG. While the open design for
making announcements cannot prevent this, we can at
least curb this behavior by requiring some authorization
before announcements are submitted. The IDG is also
open to attack if someone attempts to “hijack” a session
announcement. Public key encryption can help establish
“ownership” of a session announcement and prevent this
problem. Additionally, a data source can detect a
malicious manager by querying the manager and checking
to see if its own description is returned. Both Web search
engines and SAP can suffer similar attacks, and we
acknowledge the need for good security in any session
directory. Many security issues have been discussed in
[10], and the ideas therein are applicable to the IDG.

6. Related work

As we stated earlier, the fundamental goal of this work
is to explore the design space of a scalable, robust,
effective, and efficient information discovery service
infrastructure. The most widely used tool for information
discovery today is Web search engines. As we pointed out
in Section 2, however, all existing Web search engines
suffer from two common defects: the inabili ty to derive
adequate semantic meaning from the content; and, more
fundamentally, the poor scalabili ty of a centralized
system. Given the phenomenal growth of the Internet over
the last few years, which predicts a corresponding
phenomenal growth in online content, we believe that a
distributed information infrastructure will be necessary to
provide scalable information discovery services.

An earlier research effort to build a scalable Internet
information discovery service is Harvest [11]. The design



of Harvest includes a few major components: Gatherer,
Broker, Index Subsystem, and Replicator. Gatherer runs
at content providers’ sites to summarize local content for
efficient export to the Broker. The Broker collects inputs
from all sources and uses the Index Subsystem to build a
space-eff icient index database. To make the index widely
available, the Replicator builds a weakly consistent, wide-
area file system to hold the broker index database. In
short, Harvest offers information discovery service by
replications of a central index database, while our IDG
design aims at building a distributed search database to
scale well with the Internet growth.

Similarly, the Domain Name System (DNS) is the
largest distributed database currently deployed on the
Internet. DNS service provides an essential component in
daily network operation, and the design has scaled
adequately with the Internet growth. The DNS system is
composed of a very large set of autonomous servers, each
in charge of name-to-address mapping services of a
different domain. The system achieves robustness by
server replication, and it achieves scalabili ty by heavy use
of caching, which is based on the assumption that name-
to-address mapping changes slowly. One undesirable, but
perhaps necessary, drawback of the DNS system is that
the entire system is manually configured. Network
operators decide on the exact structure of DNS name
space, configure the servers for each name domain,
manually input server addresses as the way to set up the
interconnection among servers, and manually maintain the
name database.

IDG design has borrowed a few key features from the
successful design of DNS, but also with one fundamental
difference. The IDG system is made up of a large set of
autonomous information managers, each in charge of
different topical contents. For efficient operation, the IDG
also plans on heavy use of caches of query results that do
not change frequently. However, IDG is also
fundamentally different from DNS by moving away from
manual configuration. Instead of a fixed name space,
IDG's hierarchical mesh of semantic information will
gradually adjust itself as the information contents are
added or deleted. Instead of configuring a server
hierarchy, IDG will draw information managers from a
pool of autonomous servers made available by network
providers and clients and place them at proper points in
the semantic structure as the demand warrants. In short,
IDG design aims at building a self-configured,
continuously re-organizing server infrastructure to
achieve the goal of scalabili ty and robustness.

7. Conclusions

We have presented the initial design and simulation
results of the Information Discovery Graph, one
component of the Semantic Multicast project. The IDG is

responsible for providing directory services for
multimedia sessions, both stored and real-time, and for
organizing the sessions according to semantic content.
Data sources can register with the IDG, and users can
browse or query for sessions by semantic content. The
IDG overcomes limitations of current multimedia
directories (conventional Web search engines and the
MBone’s SDR tool) to provide a robust and scalable
directory service. Our simulation confirms our model in
terms of the global multicast bandwidth overhead incurred
by IDG. Having developed the framework and a basic
model, we can move forward with our ideas of future
research on spatial caching, scoping, applying AI
techniques to improve searching heuristics, using
relevance feedback to improve querying, and exploring
security issues raised by a global deployment of the IDG.

8. References

[1] Semantic Multicast project, http://www.wins.hrl.com/
projects/semcast/.

[2] MBone home page, http://www.mbone.com.

[3] M. Handley, “SAP: Session Announcement Protocol” ,
Internet Draft draft-ietf-mmusic-sap-00.txt, Nov. 1996.

[4] SDR, http://north.east.isi.edu/sdr/.

[5] A. Swan, S. McCanne, and L. Rowe, “Layered
Transmission and Caching for the Multicast Session
Directory Service”, Proceedings of ACM Multimedia ’98,
Sep. 1998.

[6] M. Handley and V. Jacobson, “SDP: Session Description
Protocol” , RFC 2327, Apr. 1998.

[7] T. Kohonen, “Self-Organizing Maps” , Series in
Information Sciences, vol. 30, 2nd edition, Springer-
Verlag, Heidelberg, 1997.

[8] T. Honkela, S. Kaski, K. Lagus, and T. Kohonen,
“Newsgroup Exploration with WEBSOM Method and
Browsing Interface”, Technical Report A32, Laboratory
of Computer and Information Science, Helsinki
University of Technology, Espoo, 1996.

[9] Semantic Multicast project, internal documentation.

[10] P. Kirstein, G. Montasser-Kohsari, and E. Whelan, “SAP
Security Using Public Key Algorithms”, Internet Draft
draft-ietf-mmusic-sap-sec-04.txt, Mar. 1998.

[11] C.M. Bowman, P.B. Danzig, D.R. Hardy, U. Manber, and
M.F. Schwartz, “The Harvest Information Discovery and
Access System”, http://www.ncsa.uiuc.edu/SDG/
IT94/Proceedings/Searching/schwartz.harvest/schwartz.
harvest.html


