
Design of a Protocol to Enable Economic

Transactions for Network Services

Xinming Chen∗, Tilman Wolf∗, Jim Griffioen†, Onur Ascigil†, Rudra Dutta‡, George Rouskas‡, Shireesh Bhat‡,

Ilya Baldin§, and Ken Calvert†

∗Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA
†Computer Science Department, University of Kentucky, Lexington, KY, USA

‡Department of Computer Science, North Carolina State University, Raleigh, NC, USA
§RENCI, University of North Carolina, Chapel Hill, NC, USA

Abstract—Deployment of innovative new networking services
requires support by network providers. Since economic motiva-
tion plays an important role for network providers, it is critical
that a network architecture intrinsically considers economic
relationships. We present the design of a protocol that associates
access to network services with economic contracts. We show how
this protocol can be realized in fundamentally different ways,
using out-of-band signaling and in-band signaling, based on two
different prototype implementations. We present results that show
the effectiveness of the proposed protocol and thus demonstrate
a first step toward realizing an economy plane for the Internet.

I. INTRODUCTION

A key problem in deploying innovative features in the
network core is that many protocols and services need support
by providers throughout the network. Since network operators
are justifiably driven by business goals, there need to be clear
incentives to support new network features. The need for the
network architecture to associate innovation with economic
motivation is reflected in the work by Clark et al. [7] that
emphasizes the importance of tying real-world tussles to the
network architecture. An example of misalignment between
protocol design and economic motivation is multicast, which
has experienced limited deployment in the current Internet [8].

To address these challenges and expose economic tussles
within the architecture, an “economy plane”, complement-
ing the data and control planes, has been proposed for the
Internet [16], [17]. This economy plane, called ChoiceNet,
enables entities (e.g., users or their applications, providers,
etc.) to dynamically set up fine-grained, short-term economic
contracts for network services. These network services are
offered and sold through marketplaces and can range from
simple connectivity (à la pathlets [10]) to complex processing
and storage services (e.g., caching for NDN [12]).

While the principles and architecture of an economy plane
for the Internet have been described in [16], [17], there
has been no implementation and evaluation of protocols and
prototypes to enable such functionality. In this paper, we
provide these insights. In particular, we present a protocol
design that considers economic relationships as an integral part
of communication. The contributions of our paper are:

• Design of a service access protocol based on the estab-
lishment of economic relationships between entities.

• Design of economy plane functionality using two
fundamentally different approaches, one based on out-

of-band signaling and one based on in-band signaling,
highlighting the versatility of the proposed protocol.

• Results from prototype implementations of both types
of approaches.

The remainder of the paper describes the ChoiceNet ar-
chitecture, the design of a protocol to relate economy plane
interactions with data and control plane operations, and two
implementations on the GENI platform.

II. CHOICENET ARCHITECTURE

The principle idea of ChoiceNet [16], [17] is to enable an
explicit representation of economic relationships between enti-
ties in the network. In the current Internet, these relationships
are based on long-term, “paper-based” service agreements. In
ChoiceNet, the economy plane enables automated contracts for
network services at various time scales.

The goal of dynamic contracts is to enable market-based
competition among providers of network services, which im-
proves quality of offerings and reduces cost to customers. To
enable a dynamic and competitive market, ChoiceNet is based
on three components:

Services. Network services represent any functionality that
can be provided in a network ranging from connectivity
between two end-points (e.g., pathlet) to complex data
storage (e.g., caching) or lookup (e.g., DNS) services. In
order to create a competitive market for services, it is
necessary to specify the semantics of services such that
service offerings can be compared.

Contracts. Contracts relate economic exchanges (e.g., pay-
ments) with operations within the network (e.g., access to
a service). To be effective, contracts require enforcement.
Thus, a customer needs to be able to verify that a service
has been rendered to specification (e.g., as discussed
in [3]) and a provider needs to be able to perform
access control to limit services to those customers who
have established economic relationships. The latter is one
aspect of this paper.

Marketplaces. Marketplaces provide functionality to match
provider offerings with customer requests. These market-
places also may act as trusted intermediaries for economic
transactions and support service composition (e.g., as
discussed in [9]).

IEEE ICC 2015 - Next Generation Networking Symposium

978-1-4673-6432-4/15/$31.00 ©2015 IEEE 5354

The steps taken to set up connections (or more complex
service offerings) in ChoiceNet are: (1) Providers advertise
their services in one or more marketplaces. (2) An end-
system application (e.g., movie streaming app) queries the
marketplace for available service offerings (e.g., QoS pipes,
cached content). (3) The user (or a delegated entity, such as
the operating system) makes a decision on which service to
“purchase”. (4) The providers involved in the service offerings
set up their services in return for “consideration”. (5) The end-
system application uses the provided service.

A key challenge in this context is to connect the eco-
nomic relationship among entities to the network services
offered/purchased. In this paper, we describe a protocol that
establishes this connection, and we describe two prototype
system implementations that illustrate specific instantiations
of these mechanisms.

III. NETWORK SERVICES

At the heart of the ChoiceNet architecture is the concept
of a network layer service, the ability to compose services
together, and to choose among available services. Although
composed services have been explored in other contexts be-
fore [6], [11], past work has focused on the problem of
integrating functionality, rather than that of compensating the
operators of those services. A ChoiceNet network layer service
not only needs to define “what the service does” so that it can
be used/composed, but it must also specify “what a user of the
service must do to compensate the provider of the service.”

Here, we present our network layer service abstraction
for ChoiceNet, describe how it can be composed to form
complex/tailored services, and how we use our ChoiceNet
protocol for implementing the selection mechanism.

A. Consideration

In ChoiceNet, all network layer services require some form
of consideration along with each service request. Considera-
tion is the medium of exchange of value; that is, consideration
is used by one party to convince another to provide a good or
service. For practical reasons, the system must admit a variety
of forms of consideration.1 Some connection to a system
for transferring money may be required (e.g., a credit card
number or bitcoin transaction [1]); in other cases a user may
simply need to prove membership in some group (e.g., being
a faculty member at a particular univeristy). A receipt (proof
of purchase) might also be accepted as consideration. In short,
consideration in ChoiceNet can be any form that the customer
and provider agree on for exchanging value.

B. Service Description and Composition

A network layer service description contains information
about a service’s characteristics. It is used to advertise the
service in the marketplace, and is also used by planning
services to compose services together. There are six parts to
an network layer service description: (1) the data transfor-
mation/operation, (2) the type of input require, (3) the type
of output generated, (4) the input location, (5) the output

1In some cases a network layer service might be offered for free and not
require any particular consideration.

location, and (6) the consideration required. The first three
components—the operation, input specification, and output
specification—are similar to other interface description lan-
guages, web service definition languages, remote procedure
calls, etc. The other three components are needed by the
economy plane to sell/purchase services and compose them
together.

One can think of a network layer service as a channel
with one or more input endpoints and one or more output
endpoints. When the specified consideration is given along
with request for service, the channel performs the specified
operation, (possibly) transforming data arriving on the input
endpoint(s) into data leaving on the output endpoint(s). The
operation may also have side-effects (e.g., changing the state
of the channel).

Composition is achieved by connecting the output from
one channel to the input of another channel. However, it is not
sufficient to know that a service’s output type matches another
service’s input type. Channel endpoints need to be in the same
location so that they can be connected. Locations are simply
identifiers (names) selected from some namespace (i.e., scope)
meaningful to the network layer service (e.g., ID of a switch, a
port on switch, an AS number, an IP address, an ISP provider
name, a geo-location, etc.). Endpoints sharing a location are
composable, with ChoiceNet providing the functionality to
connect output to input.

Network layer service descriptions are “advertised” by
the network layer service to the marketplace, where the
marketplace itself is a set of marketplace services that al-
low applications to browse or search the set of available
services. Like all services, access to marketplace services
requires consideration. Given the ability to discover available
services (in the marketplace), one can implement planning
services, which, given a particular request for service, identify
(plan) a composed service that will meet the requirement.
The planning service might then invoke provisioning services
that “purchase” the planned set of composed services (i.e.,
providing the necessary consideration to each service), or
it might return the plan to the user who would invoke a
provisioning service to “purchase” the composed service. This
ability to hierarchically compose services enables a variety
of different business models including resellers, aggregators,
brokers, etc.

C. ChoiceNet Protocol for Network Services

Conceptually, ChoiceNet services are “purchased” in the
economy plane and “used” in the use plane (i.e., control and/or
data plane). One of the challenges is to develop suitable pro-
tocols that enable both invocation of economy plane services
and use plane services. For example, communication in the
economy plane is likely to resemble conventional request/reply,
client-server communication. Communication in the use plane,
on the other hand, may take various forms, such as a client
pushing data through a series of transformation services. Thus,
it might seem that ChoiceNet should support two distinct com-
munication protocols: one for customers purchasing services
from providers, and another for applications using services.

While the economy plane/use plane distinction is concep-
tually useful, the services that are implemented in practice

IEEE ICC 2015 - Next Generation Networking Symposium

5355

Service Flags

Service Identifier

Service Arguements

Service Consideration

Data/Payload

(a)

Service Flags

Service Identifier

Service Output

Tokens (proof-of-purchase)

Accountability

Data/Payload

(b)

Fig. 1. Basic components of a ChoiceNet (a) Request and (b) Output message.

often cannot be easily classified as economy plane or use plane
services. A path service, for example, may collect information
from forwarding services to construct and sell paths and thus
be considered a marketplace (economy plane) service, but
at the same time be considered a use plane service because
it computes and returns a set paths along with the “proof
of purchase” needed to use those paths. In other words, it
both sells forwarding service and computes paths, and this
combination may be necessary to dynamically determine/set
prices.

To embrace ChoiceNet’s conceptual distinction between the
economy plane and the use plane, but allow services to play
both roles at the same time, we designed a single ChoiceNet
communication protocol that is usable by services regardless
of the plane to which they belong (or fall between).

D. ChoiceNet Protocol Messages

In the ChoiceNet protocol, services are invoked with a
service request and may produce an output. Figure 1 shows
the general structure of a request and output.

The request message is similar to a remote procedure call,
indicating which service should be invoked at the server and
a list of arguements to be passed to the server. Unlike remote
procedure calls, a ChoiceNet request also carries consideration.
A generic service flags field carries flags understood by all
services (e.g., a “price check” flag that allows a customer to
learn the precise cost of performing tasks with a certain set
of parameters). The flags field can also be used to indicate
that certain fields will be carried in the payload, rather than
the header; this allows larger values to be conveyed. Like
the request message, the output message indicates for which
service it is providing results. The message may also carry
the output from the service (e.g., a list of “proof-of-purchase”
tokens for use with a forwarding service).

E. ChoiceNet Protocol Interactions

There are a number of ways of how this simple ChoiceNet
protocol can be used to create interactions that match realistic
networking scenarios:

• Iterative use to enable choice: Choice is critical to
enable service competition. To let users choose among
multiple services, repeated ChoiceNet protocol oper-
ations can be used: First, a marketplace is queried
to obtain a list of available services. The ChoiceNet
protocol is used to send the query to the marketplace
(and possibly provide consideration in case the search
needs to be paid for). The marketplace returns the
available services. In a second protocol exchange, the
user then contacts the provider of choice to purchase
the actual service.

• Recursive use for composed services: Network ser-
vices may consist of several pathlets and potential
processing and storage services. A provider can hide
this complexity to a user by offering a single service.
However, when a user purchases this service, multiple
subservices need to be instantiated for use. In this case,
the single ChoiceNet protocol interaction by the user
may trigger multiple, recursive ChoiceNet protocol
interactions.

• “One-shot” use for speed: In cases where the user has
already made the choice of service, our ChoiceNet
protocol can be used very efficiently since all nec-
essary information (service selection and considera-
tion) is included in a single protocol message. Thus,
this information can be included in-band with data
transmission and does not require additional messages
between user and provider.

Note that all three scenarios use exactly the same
ChoiceNet protocol, but can achieve different goals.

F. Specifying Service Semantics

Having defined a common message structure for messages
in both the economy and use planes, we ultimately need to
define precisely what goes into each field of the messages
shown in Figure 1. Depending on the target service, the
information exchanged in these messages may range from
simple flags and identifiers (similar to fields in an IP header)
for forwarding services to complex XML structures for ser-
vices that process packet payloads. Clearly, the customers and
providers must agree on the meaning/semantics of the data
carried in these fields. Much like there exist protocol standards
for the network and transport layers of the current Internet,
we expect similar standard will be defined for use/data plane
services in ChoiceNet. However, services in the economy plane
may rely instead on agreed upon vocabularies to define the
semantics of messages.

To support a variety of different (extensible) vocabularies,
we adopted a triple { Attribute Name, Attribute Value, Vocab-
ulary URL } as the general structure for information being
exchanged in the economy plane. Attribute Name identifies
the import of the field, and is a literal that must be interpreted
the same way by entities that exchange messages containing
this attribute. That is, such entities must share a common
vocabulary. A vocabulary, in this context, may be a simple
dictionary of literals; the meaning or import of such literals is
embedded in the logic of the entities exchanging the message.
More generally, it is an ontology, where some of the rules for
manipulation of such literals is embedded in the vocabulary
itself. Examples of Attribute Name values are ChoiceNet

Version or Message Type.

Attribute Value is a literal that provides the value of the
attribute named by the Attribute Name. It may be a number,
a string, a list, or it may nest a single, or multiple, other
fields (whose values, in turn, may nest others). This allows
ChoiceNet entities to ignore entire hierarchies of fields if they
are not relevant to the entity’s current role or interaction.
In other words, an entity may understand the import of a
message completely at the top level, without understanding
all of the detail structure (but being able to pass them on, say,

IEEE ICC 2015 - Next Generation Networking Symposium

5356

to another entity). For example, the concept of consideration
can simply be represented by an attribute field with Attribute
Name set to Consideration. Its value can be a nested
structure, representing many different methods of transferring
consideration such as mechanisms like PayPal, or previously
established contexts like an account number to charge, or credit
mechanisms like credit card numbers. Similarly, complex
concepts like tokens can be encapsulated in single attribute
fields with internal structure that can vary from use to use.

Finally, Vocabulary URL provides the basis for an exten-
sible vocabulary, by allowing the sender of the message to
indicate where the vocabulary being used for the value of the
Attribute Value is available. It may well be that this vocabulary
is the same as that needed to understand this field’s Attribute
Name itself, but the ability to specify a different vocabulary
for any field’s Attribute Value allows providers of innovative
services to immediately start using existing ChoiceNet mar-
ketplaces and other mechanisms, and incrementally build an
ecosystem of other entities who understand the new custom
vocabulary.

From the above, it is clear that services that rely on
vocabularies must a priori understand all top-level attribute
field Attribute Name values – this represents the bootstrap-
ping vocabulary, and can be considered the common core
vocabulary. This common core can be minimal. Further, we
reasonably expect that the core vocabulary will grow over time,
as practice makes it clear what vocabularies are most helpful
to the ChoiceNet user community.

IV. PROTOTYPE IMPLEMENTATION

To evaluate the ChoiceNet protocol, we developed two
GENI [5] prototypes. Both prototypes add new ChoiceNet
services to the IP protocol to leverage and maintain compati-
bility with existing applications. A fundamental requirement
of ChoiceNet is to support alternative paths. In particular,
ChoiceNet needs to support per-flow dynamic routing based
on the user/application’s requirements. Legacy static routing
and adaptive routing does not meet these requirements, so we
solved the dynamic routing problem using two approaches.
The first one uses SDN-based pathlets to compose end-to-end
paths, while the second one uses a set of link-to-link packet
forwarding services to compose end-to-end paths.

A. SDN-Based Prototype

Software Defined Networking (SDN) is an approach that
decouples network systems into the control plane and the data
plane [14]. Using SDN, we can allocate the path for each flow
by installing flow entries on switches along designated path.
This approach allows providers in ChoiceNet to provision path
services to users.

We build a minimal SDN-based IPv4 prototype of
ChoiceNet on ExoGENI [4] as shown in Figure 2. The two
ASes and the marketplace are in three different locations. The
two links between the two ASes are throttled to 1Mbps and
10Mbps, respectively, and unlabeled links are 1Gbps. In our
prototype, we use pox2 as the SDN controller, and Open-

2http://www.noxrepo.org/pox/about-pox/

Switch 2

Host 2

Host 1

10Mbps

1Mbps

Controller 2

Controller 1

Switch 4

Switch 1

Switch 3

Data path

Control path

Market Place

Fig. 2. SDN-based prototype topology.

vSwitch3 as the SDN switch. The SDN protocol is OpenFlow
1.0. The hosts are running 64-bit Ubuntu 12.04.

1) Marketplace Design: In this prototype, the marketplace
is a server written in Python. It uses standard sockets to
communicate with the controllers and user apps. The requests
and responses are encoded in JSON4 text format, and follows
the semantics defined in Section III. The marketplace currently
only offers one type of service—the pathlet service. The pathlet
service is a directional path defined by the location of source
and destination, which are IP addresses. An example of pathlet
service is shown in Table I. Note that the description can be
different for each service types, and the JSON representation
ensures the extendibility in the future.

The marketplace is responsible for handling users’ service
requests and notifying the control plane to do the provisioning.
It also serves as an intermediate of payment between the users
and providers. The marketplace constructs a directional multi-
graph from the pathlet services advertised by the controllers.
When the marketplace receives a service planning request, it
takes the source IP and the destination IP, and starts a modified
Breadth First Search on the graph. The search attempts to find
multiple Pareto-optimal solutions using a branch and bound
method as it traverses the network graph. Finally, the Pareto-
optimal subset of paths is presented to users for selection.

To handle payments, there is a web server co-located
with the marketplace to perform authentication with PayPal.
This web server interacts with the marketplace by sharing
its database and exposes a HTTP-based JSON API to user
applications for PayPal payments.

2) Use Plane Design: The use plane consists of the con-
trollers and the switches. The controller is an SDN controller
with customized control logic. It detects the topology of
switches with LLDP packets and detects hosts by their DHCP,
ARP, and IP packets. When a new host or a new link has been
detected, the controller updates the new pathlet service to the
marketplace, thus the marketplace knows all the services in
all ASes. Another task of the controller is provisioning: once
a provisioning request is received, the controller installs flow
entries on the switches along the designated path.

The main difference in paradigm of a controller in
ChoiceNet and a standard OpenFlow controller is: the instal-

3http://openvswitch.org/
4http://json.org/

IEEE ICC 2015 - Next Generation Networking Symposium

5357

TABLE I. EXAMPLE PATHLET SERVICE.

Attribute Name Attribute Value

Service ID 10.1.0.2 0 10.3.0.2
Service Type NetworkLink1000
Controller ID 192.168.0.15
Controller IP 192.168.0.15
Endpoint 1 ID 10.1.0.2
Endpoint 1 IP 10.1.0.2
Endpoint 2 ID 10.3.0.2
Endpoint 2 IP 10.3.0.2
Service Bandwidth 1Mbps
Service Latency 15 ms
Service Cost 0.001 USD

Fig. 3. ChoiceNet App interactions on end-system.

lation of flow entries is not triggered by the first packet of
each flow. Instead, flow entry installations are triggered by the
provisioning command from the marketplace–after the users
have requested and paid for the service.

3) User App Design: To allow the user to make choices,
a program (ChoiceNet App) on end-systems is used. The
function of this app is shown in Figure 3. It uses NetFilter
Queue5 to intercept the initial packet of each connection
(except the connections that goes to the marketplace). The app
then contacts the marketplace, asking for a path service to the
destination IP. After the marketplace returns a list of available
service combinations, the app prompts the user to select one
service. After the selection, the user is redirected to a PayPal
payment page. After receiving the payment notification from
PayPal, the marketplace transfers the money to the account of
the controller(s) and notifies the latter to provision the services.
After the provisioning, the app releases the intercepted packet
and traffic will traverse along the assigned path.

It may be impractical for the user to select and pay for each
network connection. Instead, network services can be made
more granular (e.g., encompassing all connections to a video
service provider for a week) and preferences can be specified
in the ChoiceNet app to automate the service payment process.

B. A Packet Forwarding Service

Our second prototype introduced a per-node packet for-
warding service (PFS) to support user-selected end-to-end
paths. The topology is similar to that of Figure 2, ex-
cept that SDN switches were replaced with programmable
Click [13] routers, each programmed to offer a PFS that

5http://www.netfilter.org/projects/libnetfilter queue/

advertises the ability to relay packets between every possible
ingress-to-egress combination of links attached to the router.
Each advertisement includes information about the most re-
cent performance (latency and bandwidth) of the links so
users/applications can select the path that best meets their
needs. We used IPv6 extension headers to encode the series
of forwarding services a packet should traverse end-to-end—
similar to carrying a source route in the packet, but with
the addition of the ChoiceNet header components (notably
consideration).

The PFS’s on the Click routers understand IPv6 extension
headers and use the next forwarding specification (i.e., the next
ingress/egress pair) in the packet to determine the outgoing
link. Prior to forwarding the packet, the service verifies, via
the consideration, that forwarding has been paid for in the
economy plane. Because this check is performed on every
packet, it must be efficient. We used delegated capabilities
similar to those used in Platypus [15], which simply involves a
cryptographic comparison (i.e., HMAC operation) as opposed
to a complex transfer of consideration in the use plane.

1) The Marketplace: To help find appropriate end-to-end
paths, we developed a path service that applications can
contact to request paths that satisfy their requirements. The
path service registers itself with a marketplace listing service
where users/applications can go to learn about, and purchase
access to, the path service. Having purchased the ability to use
the path service (i.e., sending it the appropriate consideration),
the sender’s machine is given a token (proof-of-purchase) that
is used as consideration when contacting the path service.

To allow legacy applications to select paths, we developed
a “wrapper library” that is loaded at runtime along with an
application (via the LD PRELOAD environment variable in
Unix) to intercept all networking calls made to the OS such
as socket(), bind(), connect(), send(), recv(), etc. The wrapper
library uses the previously acquired token to request a set of
paths from the path service. The path service then returns a
set of “paths” (i.e., a series of packet forwarding services) to
the wrapper library along with the consideration (delegated
capabilities) needed to use the forwarding services. The set
of paths that are returned also include information about the
performance of the path that can be used by the wrapper library
to select the most appropriate path. To determine which path
is the most appropriate, the wrapper library consults a local
policy file that contains a policy entry for each wrapped ap-
plications (e.g., “ssh: low latency” or “scp: high bandwidth”).
The wrapper selects the best path and includes it in the IPv6
extension headers for packets originating from the application.

To compute the best routes, the path service collects
the routing advertisements issued periodically by the packet
forwarding services. A single service collecting performance
information and computing paths may not appear to scale well,
but our recent analysis of current Internet paths shows that
the processing can be easily parallelized to produce a scalable
service [2]. To enable efficient consideration checking in the
use plane, the path service periodically “purchases” the right
to use the forwarding services by providing consideration to
the forwarding service and in return receives a (time-limited)
delegated capability that it can further delegate to customers
of the path service.

IEEE ICC 2015 - Next Generation Networking Symposium

5358

TABLE II. BREAKDOWN OF CONNECTION SETUP TIMES.

Task SDN PFS

Resolve DNS name to IP address 1.46 ms 1.46 ms
Contact marketplace/path service 17.93 ms 0.25 ms
Plan (SDN only) and select paths 24.59 ms 0.00 ms
Provision the path 44.67 ms 0.00 ms

Total connection setup time 88.65 ms 1.71 ms

C. Performance Results

Although the ChoiceNet marketplace enables choice, it also
introduces additional overhead when originating a flow. To
quantify the additional overhead, we measure the average time
it takes to perform each step of setting up a flow (see Table II).

The planning (path computation) and purchasing overhead
is included in the cost of accessing the path service for PFS,
while planning and purchasing is performed by the ChoiceNet
client machine for SDN (our results here assume the choice
is made programmatically—not by a human). The two ap-
proaches represent different business models. PFS precomputes
paths (in parallel) and repeatedly pre-purchases paths for
short periods of time so most paths queries can be answered
immediately. The SDN service, on the other hand, includes
the application in this planning/selection process giving the
user/application greater control of what is purchased/used, but
also increasing the setup overhead. So the numbers in Table II’s
SDN implementation are affected by the round trip time from
the user/provider to the marketplace. The provisioning step
for SDN also increases delay, but packets flow through the
use plane without any added overhead. The PFS has no
provisioning costs, but requires a consideration check (an
HMAC operation, which takes on average 11 usecs on a Xen
Click router) at every router along the path. Also note that
when compared with the time to do the DNS lookup (which
IP already requires), consulting the path service adds relatively
little to the overall connection setup time.

V. SUMMARY AND CONCLUSIONS

Economic relationships between entities in the network
are a critical driver for operation of the Internet. In this
paper, we have presented the design of a protocol that can
associate economic contracts with network layer services. We
have shown that this general approach can be instantiated
in two fundamentally different prototypes, one using out-of-
band signaling and one using in-band signaling. We have
presented results from implementations on GENI to illustrate
the effectiveness of our protocol design.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant Nos. 1111040, 1111088,
1111256, 1111276.

REFERENCES

[1] Bitcoin. https://bitcoin.org/.

[2] O. Ascigil, K. L. Calvert, and J. N. Griffioen. On the scalability of
interdomain path computations. In IFIP Networking 2014, June 2014.

[3] A. C. Babaoglu and R. Dutta. A verification service architecture for the
future internet. In Proc. of the 22nd IEEE International Conference on

Computer Communications and Networks (ICCCN), Nassau, Bahamas,
Aug. 2013.

[4] I. Baldine, Y. Xin, A. Mandal, P. Ruth, C. Heerman, and J. Chase. Ex-
ogeni: A multi-domain infrastructure-as-a-service testbed. In Testbeds

and Research Infrastructure. Development of Networks and Communi-

ties, pages 97–113. Springer, 2012.

[5] M. Berman, J. S. Chase, L. Landweber, A. Nakao, M. Ott, D. Raychaud-
huri, R. Ricci, and I. Seskar. Geni: A federated testbed for innovative
network experiments. Computer Networks, 2014.

[6] K. L. Calvert and E. W. Zegura. Composable active network elements.
http://www.cc.gatech.edu/projects/canes/.

[7] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden. Tussle
in cyberspace: defining tomorrow’s Internet. SIGCOMM Computer

Communication Review, 32(4):347–356, Oct. 2002.

[8] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen.
Deployment issues for the IP multicast service and architecture. IEEE

Network, 14(1):78–88, Jan. 2000.

[9] A. Dwaraki and T. Wolf. Service instantiation in an Internet with
choices. In Proc. of the 22nd IEEE International Conference on

Computer Communications and Networks (ICCCN), Nassau, Bahamas,
Aug. 2013.

[10] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet routing.
In Proc. of the ACM SIGCOMM Conference on Data Communication,
pages 111–122, Barcelona, Spain, Aug. 2009.

[11] X. Huang, S. Shanbhag, and T. Wolf. Automated service composition
and routing in networks with data-path services. In Proceedings of the

IEEE ICCCN 2010 Conference, 2010.

[12] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard. Networking named content. In Proceedings of the

5th international conference on Emerging networking experiments and

technologies (CoNEXT), pages 1–12, Rome, Italy, Dec. 2009.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek.
The Click modular router. ACM Transactions on Computer Systems,
18(3):263–297, Aug. 2000.

[14] Open Networking Foundation. Software-Defined Networking: The New
Norm for Networks. White paper, Open Networking Foundation, Palo
Alto, CA, USA, Apr. 2012.

[15] B. Raghavan, P. Verkaik, and A. C. Snoeren. Secure and policy-
compliant source routing. IEEE/ACM Trans. Netw., 17(3):764–777,
2009.

[16] T. Wolf, J. Griffioen, K. L. Calvert, R. Dutta, G. N. Rouskas, I. Baldine,
and A. Nagurney. Choice as a principle in network architecture. In
Proc. of ACM Annual Conference of the Special Interest Group on

Data Communication (SIGCOMM), pages 105–106, Helsinki, Finland,
Aug. 2012. (Poster).

[17] T. Wolf, J. Griffioen, K. L. Calvert, R. Dutta, G. N. Rouskas, I. Baldine,
and A. Nagurney. ChoiceNet: toward an economy plane for the Internet.
ACM SIGCOMM Computer Communication Review, 44(3):58–65, July
2014.

IEEE ICC 2015 - Next Generation Networking Symposium

5359

