
NDN Technical Report NDN-0073. http://named-data.net/techreports.html
Revision 3: Jan 2024

A Brief Introduction to State Vector Sync
Philipp Moll, Varun Patil, Nishant Sabharwal, Lixia Zhang

UCLA
Los Angeles, USA

{phmoll,varunpatil,nsabharwal,lixia}@cs.ucla.edu

ABSTRACT
This report provides a brief introduction to State Vector Sync (SVS),
a Sync protocol for Named Data Networking (NDN). To support
distributed applications, sync protocols synchronize the data names
of a shared dataset among a group of participants. In this report, we
explain how the SVS design is influenced by the lessons that have
been cumulated over previous sync protocol designs and describe
the protocol and its functions to allow experimentation with the
SVS library implementations.

VERSION HISTORY
Revision 1 (May 2021): Description of the initial SVS design.
Revision 2 (July 2021): Updated the protocol description and added
the processing flowchart (Fig. 3) to aid the comprehension.

1 INTRODUCTION
In Named Data Networking (NDN) [12], applications communicate
by requesting named, secured content chunks. To do so, one needs
to know the set of available data names. This goal is easy to achieve
with the traditional client-server application paradigm, where the
server informs the client of the available data. However, in a dis-
tributed application with multiple participants, where any of them
may produce new data items at any time, it is challenging to keep
all participants synchronized with all available data.

A Sync protocol addresses this challenge for applications devel-
oped over NDN. A group of participants in the same sync group
maintains a shared dataset, with each data item having a unique
name. The role of sync is to keep the dataset state – i.e., the names
of all data items – synchronized among all the participants.

Compared to other sync protocol designs that preceded SVS, a
distinct goal in the SVS design is the desire to operate effectively
and resiliently in both infrastructure-based and infrastructure-free
environments. In the latter case, network infrastructure is either
non-exist, eg., ad hoc mobile, or otherwise disrupted, eg., during
disaster recovery.

In this report, we start with providing a brief background on
sync protocols with a focus on lessons learned from previous devel-
opments. We then describe the SVS protocol, the ongoing efforts in
extending SVS scalability, and finally wrap up the report with the
remaining issues and future plans.

2 NDN SYNC PROTOCOL DESIGN
Over the years, a variety of NDN sync protocols have been de-
veloped. The first sync protocol (CCNx 0.8 Sync [6]) supports the
synchronization of datasets made of application data names that
follow a hierarchically structured tree. The protocol performs hash-
ing at each node of its direct child node data names, and uses the
digest at the tree’s root node to represent the dataset state. Each

participant communicates its dataset state with others in the group
using its root digest. Receiving a digest from another participant
that differs from the local digest indicates a dataset state inconsis-
tency. However, the different digest does not tell whether the local
or the remote dataset is newer, nor exactly which data item caused
the difference; the problem gets worse when multiple participants
publish data simultaneously. When a digest difference is detected,
the protocol walks down the tree level by level, branch by branch,
to identify dataset state differences. This step may take multiple
rounds.

2.1 Use of Sequential Naming in Sync
Instead of supporting the synchronization of arbitrary data names,
the ChronoSync [13] protocol adopts the sequential data naming
convention and names data items using sequence numbers, similar
to TCP’s use of sequence numbers in its reliable delivery mech-
anism. With sequential data naming, every participant publishes
data under a participant-specific publishing prefix, and names in-
dividual data items with monotonically increasing sequence num-
bers. Knowing the participants publishing prefix and its latest se-
quence numbers thereby allows inferring the names of all the par-
ticipant’s previously published data items. Consequently, knowing
the [participant-prefix, seq#]-tuples of all participants al-
lows inferring the names of all data items in the dataset. Similar to
CCNx 0.8 Sync, ChronoSync uses a digest to represent the dataset
state, with the digest computed across all [participant-prefix,
seq#]-tuples in the sync group. Thereby, ChronoSync inherits the
limitation that additional means to identify dataset differences are
required. However, using sequential naming brings advantages in
dataset state reconciliation: instead of walking down the name
tree to identify data item differences, ChronoSync uses a sim-
pler recovery mechanism. If participant 𝑃 cannot figure out the
dataset difference with a received digest 𝐷 , 𝑃 requests the list of
[participant-prefix, seq#]-tuples from the sender of 𝐷 .

A vigilant reader might raise a question regarding the use of
sequence numbers as data item identifiers: although sequence num-
bers simplify a sync protocol design, in general, sequence numbers
cannot replace semantic names of application data. We discuss this
mismatch in Section 5.

2.2 Vector-Based Sync Protocols
The branch of state vector-based sync protocols is inspired by the
concept of Vector Clock [2]. Combined with the sequential data
naming convention, this protocol family encodes the dataset state in
so-called state vectors – a data structure storing the latest sequence
number of every participant as a vector. In contrast to digest-based
protocols, a state vector encodes the state of the entire dataset,
making it possible to directly infer the exact difference(s) when

http://named-data.net/techreports.html

Philipp Moll, Varun Patil, Nishant Sabharwal, Lixia Zhang

/ucla/alice/111 /ucla/bob/129 /usc/ted/112

/ucla/alice/112 /ucla/bob/130 /usc/ted/113

/ucla/alice/113 /ucla/bob/131 /usc/ted/114

...

Shared Dataset

/ucla/alice: 113 /ucla/bob: 131 /usc/ted: 114

[/ucla/alice: 113, /ucla/bob: 131, /usc/ted: 114]State
Vector

Figure 1: Relation between the Dataset State and the Repre-
sentation as a State Vector

comparing two state vectors. Fig. 1 visualizes the relation between
sequential data naming and the dataset encoding using state vectors.

The first state vector-based protocol is VectorSync [7]. VectorSync
maintains two separate data structures. A membership info object
summarizes information about all active producers in the sync
group. The version vector encodes the latest sequence numbers
of each producer. This version vector, however, does not include
participant-specific publishing prefixes and requires that all par-
ticipants in a sync group have the latest membership info object.
Otherwise, the individual vector entries cannot be assigned to the
correct participant.

Since NDN aims to enable asynchronous communications, re-
quiring perfectly consistent membership information among all
group members is deemed infeasible. Therefore, VectorSync was
quickly followed by another sync protocol DataSet Synchronization
in NDN (DSSN) [11], which made a simple yet significant change to
VectorSync that supports dataset synchronization among a group
of sensors that enter a sleeping state from time to time. DSSN
changed the vector format from a list of sequence numbers to a list
of [participant-prefix, seq#]-tuples. Each DSSN sync inter-
est carries a state vector, which directly encodes the entire shared
dataset state. Directly carrying the dataset state enables a DSSN
message to be interpreted by any recipient, independent from the
degree of state inconsistency between participants.

DSSN is designed to work in environments with intermittent
connectivity among stationary nodes. Using DSSN as a starting
point, the Distributed Dataset Synchronization over Disruptive Net-
works protocol (DDSN) [1] extended DSSN to work in wireless ad-
hoc environments with high node movement dynamics. Therefore,
DDSN introduces a number of features tailored for such target envi-
ronments, including i) transmission prioritization that determines
which messages to send first during short transient connectivity
between nodes, and ii) an inactive mode to reduce traffic and to
improve on energy consumption when participants detect no oth-
ers within operating distance. The exclusive focus of DDSN on
disruptive environments, however, makes it perform sub-optimally
in well-connected networks.

Combining the lessons learned from the aforementioned proto-
cols led to the development of State Vector Sync (SVS). SVS inherits
DSSN’s State Vector encoding of Sync Interests but removes fea-
tures that are specifically tailored for sensor communications and

/<grp-prefix>/v=2/<digest>

/<publishing-prefix>/<grp-prefix>/<seq-no>

/ucla/cs/irl/chatroom/v=2/c9ff1f50...

/ucla/cs/alice/ucla/cs/irl/chatroom/124

(1) (2) (3)

(1) (2) (3)

(1) (2) (3)

(1) (2) (3)

(a) Sync Interest Naming Scheme and Example

(b) Data Item Naming Scheme and Example

Figure 2: Naming for Sync Interest and Data Items

disruptive environments. Also, SVS further simplifies the overall
design as we explain next.

3 THE DESIGN OF STATE VECTOR SYNC
In SVS, a Sync group uses a multicast group prefix that allows
reaching all other participants in the sync group. Moreover, each
participant uses a participant-specific data publishing prefix under
which the participant’s data items are made available. The protocol
uses a single message type which is referred to as Sync Interest,
for dataset synchronization. Those Sync Interests are sent to the
multicast group prefix in two cases: i) event-driven to inform other
participants about a recent change, and ii) periodically, to maintain
a consistent view on the dataset, even under loss of event-driven
messages.

Sync Interests carry the state vector in the Application Param-
eters field of the Interest. To prevent unauthorized parties from
injecting incorrect state, Sync Interests are authenticated using
Interest signatures [4]. We illustrate the naming scheme for sync
interests and an example name in Fig. 2a.

As indicated in Fig. 1, SVS’s state vector contains tuples con-
sisting of the participants’ data publishing prefixes and their latest
sequence numbers. The naming scheme for data items and an ex-
ample name are illustrated in Fig. 2b. While the publishing prefix
component (1) supports forwarding the Interest towards the data
producer, the group prefix component (2) allows dispatching inter-
ests to the corresponding application on a processing host.

3.1 Sync Interest Processing and Generation
Each member of a Sync group sends a Sync Interest under two
conditions: i) event driven, i.e., the node identifies a new dataset
state change, or receives a Sync Interest with obsolete dataset state;
and ii) time driven, i.e., periodically, in the absence of event-driven
Sync Interest generation. The former is used to disseminate new
dataset state information through the network with minimal delay,
while the latter is to maintain the group dataset state consistency
in the face of packet losses and transient network disconnections.

Event-driven Sync Interests aim to keep the group synchronized
about the shared dataset state, however, a member’s dataset state
can potentially get out of sync with that of the others due to various
unforeseen causes, such as packet losses, temporary link failures,
network partitions, or even node failures and recoveries. To address
this problem, each Sync entity maintains a Sync Interest timer to

A Brief Introduction to State Vector Sync

On Sync Interest

Incoming SV ② has obsolete entries

Random wait

Send Sync Interest

On Publication

Missing State mitigated?

no

On tsync_interest

Expiration

tsuppression

SV: State Vector
tsync_interest: Countdown timer for sending next Sync Interest
tsuppression: Delay timer for Sync Interest suppression
tcollision_avoidance: Random delay timer to avoid collisions on the wireless media

event driven time driven

Reset tsync_interest

① is identical

Environmentinfrastructure

③ has newer entries
 (no outdated entries)

MANET

yesRandom wait

tcollision_avoidance

Parse received SV
and update local SV

Figure 3: SVS’s Sync Interest Processing Pipeline

trigger periodic Sync Interests, which help keep the group members
synchronized for the shared dataset state in the face of such un-
foreseen issues. The periodic timer gets reset after an event-driven
interest is sent or received, as we explain below.

Now let us examine event driven Sync Interests. An SVS event
can be triggered in two cases. The first case is when a participant 𝑃
produces a new piece of data. 𝑃 will increase its sequence number
by one to name this new piece of data, and immediately emit a new
Sync Interest carrying the new dataset state. It will also reset its
timer for periodic sync interests. When the other sync nodes receive
the Sync Interest, they will notify their local applications of the new
data name. Note that NDN Sync keeps the group synchronized in
the shared dataset state; it is up to the application to decide whether,
or when to fetch newly produced data.

The second case of event generation is when 𝑃 receives a Sync
Interest 𝐼recv sent by others in the group. The processing logic of
a received Sync Interest is illustrated in Fig. 3. The receiver first
assesses whether the state vector carried in 𝐼recv contains the same,
older, or more recent state information, by directly comparing the
sequence number under each member prefix in the received vector
with the sequence numbers in its local state vector.

If the received Sync Interest 𝐼recv is identical to 𝑃 ’s dataset state
(branch labeled with ①) 𝑃 simply resets its periodic Sync Interest
transmission timer to the original full period value. This is because
someone else just notified the group of the same dataset state, there
is no rush for 𝑃 to repeat the same information soon after. We refer
to this process as Sync Interest suppression, and it helps keep the
packet overhead of SVS to a minimum.

If 𝐼recv contains obsolete information (that is, one or more pro-
ducers’ sequence numbers are smaller than that of 𝑃 ’s1), 𝑃 needs
to notify whoever sent the obsolete dataset state by sending a Sync

1It is possible that 𝐼recv may contain some other producers’ sequence numbers that
are higher than that of 𝑃 ’s.

Interest with its own latest dataset state, as indicated by the branch
labeled with ②. However 𝑃 must keep in mind that other members
in the Sync group may have also received the same Sync Interest
and planned to act on it. To minimize duplicate Sync Interest trans-
mission, 𝑃 will wait for a random time period before sending the
Sync Interest. If 𝑃 receives a Sync Interest during this waiting time
which is identical to or carries even newer information than the
one it plans to send, 𝑃 cancels its own transmission; otherwise, it
sends its Sync Interest upon random timer expiration.

If 𝐼recv carries information about new data that 𝑃 is unaware
of (branch labeled with ③), i.e., the sequence number under some
member prefix is higher than 𝑃 ’s local vector and none is lower
than 𝑃 ’s local vector, or the received vector contains new member
prefixes, 𝑃 merges the received vector with its own dataset state.
Whether 𝑃 should immediately notify others about its updated
dataset state depends on the environment 𝑃 is currently in. If 𝑃
is infrastructure connected and has no mobile neighbors, 𝑃 can
trust that other members in the Sync group most likely received
the new dataset state through the network’s multicast delivery.
In this case, it simply resets its timer for the next periodic sync
interest. On the other hand, if 𝑃 is in a MANET setting, 𝑃 needs to
help further propagate the new dataset state by passing the sync
interest to mobile neighbors, or newly encountered neighbors. To
reduce collisions on the wireless broadcast media resulting from
multiple participants sending the Sync Interest simultaneously, we
introduce a random collision-avoidance timer (in the range of a few
milliseconds), as suggested by Wang et al. [10].

4 DISCUSSION
In this section, we discuss some of our important design decisions
in further detail.

4.1 Use of sequence numbers
Sync protocols including SVS utilize sequence numbers for re-
siliency and recovery from packet losses. If one or more Sync
Interests are dropped, members in the Sync group may have an
older local state vector. In this case, receiving a single SVS Sync
Interest is sufficient to update the state to the latest, without any
further exchanges. This is enabled by the use of sequence numbers
in SVS, since a single sequence number can convey information
about multiple missing pieces of data.

While sequence numbers are essential to transport layer (i.e.
Sync) functionality, applications typically desire to utilize and syn-
chronize semantic application layer data names. This important
requirement can be fulfilled by Sync through the use of higher layer
protocols built over Sync, such as SVS Pub/Sub [3].

4.2 Multicast Interests without reply
As a significant departure from earlier vector-based Sync protocol
designs, SVS Sync Interests are used as one-way notification only,
and do not trigger reply Data packets. This design decision is based
on the lessons learned from previous sync protocol designs as we
describe below:
1) All Sync protocols use Sync Interests to carry the dataset state;

they differ only in the encoding of the dataset state.

Philipp Moll, Varun Patil, Nishant Sabharwal, Lixia Zhang

2) Participants in a Sync group multicast Sync Interests to the
group. Soliciting notifications of dataset state changes using
multicast interests leads to three issues:
i) Given the time of next dataset state change is unpredictable, a

reply-soliciting Sync Interest stays pending on all forwarders
(long-lived) until its lifetime expires, and gets refreshed by a
follow-up sync interest. This creates a persistent PIT state
from every member to every other member in the sync group.

ii) A multicast Interest solicits a reply from each of multiple
potential producers. If multiple producers reply around the
same time, due to NDN’s one-Interest-one-Data principle
only one of the replies is delivered to the Interest sender.

iii)As a consequence: different members in the group are likely
to receive different updates, which leads to dataset state diver-
gence, which will take up to multiple Interest-Data exchange
cycles to converge.

Instead of using multicast Sync Interests to solicit replies, SVS uses
multicast Sync Interests to let each participant notify the rest of
the group of its own dataset state. Removing replies to multicast
Interests removes all the above-identified issues.

4.3 Timer Optimization
SVS utilizes a single timer loss recovery mechanism, which can
take on two different values depending on the state of the Sync
participant.
(1) In steady state, the timer is set to the relatively longer periodic

timer value.
(2)When an outdated Sync Interest is received, the timer is set to

the shorter suppression timer value.
In either case, the timer is reset to the periodic timer value when an
up-to-date Sync Interest is received at the node. If the timer expires,
the node sends out a Sync Interest with its local state vector. The
random suppression timer ensures that the overhead of SVS stays
low, by reducing the number of Sync Interests sent in response
to an outdated Sync Interest. In the ideal case, only a single Sync
Interest would be triggered in response to an outdated Sync Interest
and all others would be suppressed

The specification of SVS details several optimizations that can
be performed with the timer settings and Sync Interest generation.
(1)Exponential suppression timer
(2)Round trip suppression
(3)Fast data generation
(4)Timer values

4.4 Scalability
5 ONGOING EFFORTS TO IMPROVE SVS
In this section, we identify a few additional issues related to the
SVS design.

SVS Scalability. Looking at the design of SVS might raise scalability
concerns, because the state vector design carries the entire dataset
state in the sync interest name. A big number of sync participants
leads to a big state vector size, and interests have a strict upper
size limit by network MTU (maximum transmission unit). Efficient
state vector encoding and compression schemes may help alleviate
this concern to certain degree only. The most promising direction

is to utilize SVS’s property of each [producer, sequence number]
pair is independent from other pairs, therefore each sync interest is
not required to carry the full dataset state. As part of our ongoing
work, we are evaluating approaches that let sync interests carry
partial state vectors.

SVS Data Naming. With sequential data item naming, data item
names no longer carry the complete application semantic informa-
tion; instead a sequential name carries the producer’s name, and
replaced the lower part of the name by a sequence number. Do-
ing so enables SVS to scale well with large number of data items
with a compact dataset state representation. As next step, we plan
to enable SVS to support pub/sub APIs with general application
layer data names, by providing a mapping between each app data
name and the sequence number assigned by SVS, so that when
a participant fetches a data item using its sequence number, the
producer can reply with the original data packet produced by the
application (by encapsulating it in the content of an outer packet
with the sequence number name).

This solution takes after the solution described in Nichols [5],
where the reply to a sync interest contains NDN Data packet(s),
with the original semantic name as produced by the application
This proposed approach should enable synchronizing arbitrary
application names using SVS by requiring SVS maintain a mapping
table between sequence numbers and original names.

SVS Group Membership Management. Also, one might consider
the management of group membership as part of sync. However,
we argue that membership management should not be part of
the transport layer. Deciding whether a sync interest sender is
authorized requires information that is available in upper layers
only. Some higher-level libraries [9] can provide support for this
verification using standard NDN security mechanisms. Although
not part of the conceptual design of SVS, we aim to integrate SVS
as transport in such libraries.

6 WRAPPING UP
This technical report introduces the function of SVS yet not pro-
viding performance comparisons or a broad discussion of design
decisions. Preliminary evaluations (not part of the report) showed
a good performance of SVS on networks with no or minor packet
loss. Further, SVS improves on traffic and computational overhead
compared to the DDSN implementation.

With this report, we expect to provide information to render
existing SVS libraries useful for NDN experimentation.We highlight
the availability of the online specification of SVS [8]. Furthermore,
the aforementioned reference features open-source SVS libraries in
different programming languages and refers to demo applications
showcasing the use of SVS.

We plan to update this report according to the SVS protocol
updates over time.

ACKNOWLEDGMENTS
We would like to thank Justin Presley from Tennessee Tech for his
efforts in developing the Python implementation of SVS. This work
is partially supported by the National Science Foundation under
award CNS-1719403.

A Brief Introduction to State Vector Sync

REFERENCES
[1] Tianxiang Li, Zhaoning Kong, Spyridon Mastorakis, and Lixia Zhang. 2019.

Distributed Dataset Synchronization in Disruptive Networks. In 16th IEEE Inter-
national Conference on Mobile Ad-Hoc and Smart Systems (IEEE MASS). IEEE, 10.
https://doi.org/10.1109/MASS.2019.00057

[2] Barbara Liskov and Rivka Ladin. 1986. Highly Available Distributed Services
and Fault-Tolerant Distributed Garbage Collection. In Proceedings of the Fifth
Annual ACM Symposium on Principles of Distributed Computing (Calgary, Alberta,
Canada) (PODC ’86). ACM, 29–39. https://doi.org/10.1145/10590.10593

[3] Philipp Moll, Varun Patil, Lixia Zhang, and Davide Pesavento. 2021. Resilient
Brokerless Publish-Subscribe over NDN. In MILCOM 2021 - 2021 IEEE Mili-
tary Communications Conference (MILCOM). 438–444. https://doi.org/10.1109/
MILCOM52596.2021.9652885

[4] Named Data Networking (NDN) project. 2021. NDN Packet Format Specification
version 0.3 – Signed Interest. https://named-data.net/doc/NDN-packet-spec/
current/signed-interest.html accessed: 2021-05-20.

[5] Kathleen Nichols. 2019. Lessons Learned Building a Secure Network Measure-
ment Framework Using Basic NDN. In Proceedings of the 6th ACM Conference on
Information-Centric Networking (ICN ’19). Association for Computing Machinery,
New York, NY, USA, 112–122. https://doi.org/10.1145/3357150.3357397

[6] ProjectCCNx. 2012. CCNx Synchronization Protocol. CCNx 0.8.2 docu-
mentation. https://github.com/ProjectCCNx/ccnx/blob/master/doc/technical/
SynchronizationProtocol.txt

[7] Wentao Shang, Alexander Afanasyev, and Lixia Zhang. 2018. VectorSync:
Distributed Dataset Synchronization over Named Data Networking - Named

Data Networking (NDN). Technical Report. Named Data Networking. 9 pages.
https://named-data.net/publications/techreports/ndn-0056-1-vectorsync/

[8] NDN Project team. 2021. Spec and API description of the StateVectorSync (SVS).
NDN documentation. https://named-data.github.io/StateVectorSync/

[9] Jeff Thompson, Peter Gusev, and Jeff Burke. 2019. NDN-CNL: A Hierarchi-
cal Namespace API for Named Data Networking. In Proceedings of the 6th
ACM Conference on Information-Centric Networking (Macao, China) (ICN ’19).
Association for Computing Machinery, New York, NY, USA, 30–36. https:
//doi.org/10.1145/3357150.3357400

[10] Lucas Wang, Alexander Afanasyev, Romain Kuntz, Rama Vuyyuru, Ryuji
Wakikawa, and Lixia Zhang. 2012. Rapid Traffic Information Dissemination
Using Named Data. In Proceedings of the 1st ACM workshop on Emerging Name-
Oriented Mobile Networking Design - Architecture, Algorithms, and Applications.
7–12. https://doi.org/10.1145/2248361.2248365

[11] Xin Xu, Haitao Zhang, Tianxiang Li, and Lixia Zhang. 2018. Achieving resilient
data availability in wireless sensor networks. (2018), 1–6. https://doi.org/10.
1109/ICCW.2018.8403581

[12] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
Data Networking. ACM SIGCOMM Computer Communication Review (CCR) 44,
3 (July 2014), 66–73.

[13] Zhenkai Zhu and A. Afanasyev. 2013. Let’s ChronoSync: Decentralized dataset
state synchronization in Named Data Networking. In Proceedings of the 21st IEEE
International Conference on Network Protocols (ICNP). 1–10.

https://doi.org/10.1109/MASS.2019.00057
https://doi.org/10.1145/10590.10593
https://doi.org/10.1109/MILCOM52596.2021.9652885
https://doi.org/10.1109/MILCOM52596.2021.9652885
https://named-data.net/doc/NDN-packet-spec/current/signed-interest.html
https://named-data.net/doc/NDN-packet-spec/current/signed-interest.html
https://doi.org/10.1145/3357150.3357397
https://github.com/ProjectCCNx/ccnx/blob/master/doc/technical/SynchronizationProtocol.txt
https://github.com/ProjectCCNx/ccnx/blob/master/doc/technical/SynchronizationProtocol.txt
https://named-data.net/publications/techreports/ndn-0056-1-vectorsync/
https://named-data.github.io/StateVectorSync/
https://doi.org/10.1145/3357150.3357400
https://doi.org/10.1145/3357150.3357400
https://doi.org/10.1145/2248361.2248365
https://doi.org/10.1109/ICCW.2018.8403581
https://doi.org/10.1109/ICCW.2018.8403581

	Abstract
	1 Introduction
	2 NDN Sync Protocol Design
	2.1 Use of Sequential Naming in Sync
	2.2 Vector-Based Sync Protocols

	3 The Design of State Vector Sync
	3.1 Sync Interest Processing and Generation

	4 Discussion
	4.1 Use of sequence numbers
	4.2 Multicast Interests without reply
	4.3 Timer Optimization
	4.4 Scalability

	5 Ongoing Efforts to Improve SVS
	6 Wrapping Up
	Acknowledgments
	References

