Timer Adjustment in SRM *

Ching-Gung Liu (USC),
Deborah Estrin (USC/ISI),
Scott Shenker (Xerox),
Lixia Zhang (UCLA /Xerox)

Abstract

SRM is a generic framework for reliable multicast data delivery. The re-
transmission requests and replies used in SRM error recovery are multicast to
the entire group. SRM uses random timers to avoid the message implosion prob-
lem, and the effectiveness of SRM’s duplicate suppression depends critically on
the design of these random timers.

This paper investigates, through analysis and simulation, the relationship
between the timer setting parameters and error recovery performance in SRM.
The performance metrics are error recovery delay and duplicates per loss. We
propose an algorithm where the waiting period is proportional to a mem-
ber’s neighborhood size, and where a member’s estimate of neighborhood size
based on the observations of current performance. We find that this algorithm
achieves near-optimal duplicate suppression. Moreover, as the size of the global
group grows the recovery delay and duplicates per loss remain bounded.

1 Introduction

Scalable Reliable Multicast (SRM) [1] is one of the many proposed approaches to
support reliable multicast data delivery. The main focus of SRM is to achieve scala-
bility defined as efficient error recovery (low error recovery delay and few duplicate
messages per loss) across full range of group sizes and underlying network topologies.
As we explain later in Section 2 of this paper, a key component of SRM is the use of
random timers when sending retransmission requests and replies. In this paper, we
investigate the relationship between the timer setting parameters and error recovery
performance.

The original (see [1]) SRM timer algorithm incorporated both a deterministic
and a probabilistic waiting period (i.e., the timer was selected in an interval bounded
away from zero). Using both analysis and simulation, we find that removing the
deterministic wait in timer setting from the random timer reduces recovery delay

“This research was supported in part by the Advanced Research Projects Agency, monitored
by Fort Huachuca under contracts DABT63-94-C-0073; And by the National Science Foundation
under grant award No. NCR-96-28-729. The views expressed here do not reflect the position or
policy of the U.S. government.

significantly without degrading duplicate suppression. Moreover, we find that near-
optimal duplicate suppression can be achieved if the probabilistic waiting period
is proportional to the member’s neighborhood size. The neighborhood size refers
to the number of members who are competing to send retransmission requests or
replies regarding the same loss. These findings lead us to propose a new SRM timer
scheduling scheme that produces a near-constant recovery delay ! and duplicates
per loss, regardless how large the size of the multicast group.

The paper is organized as follows. Section 2 gives a brief description of the
SRM framework as described in [1], and the problems that we address in this paper.
Section 3 looks into the relationship between the timer setting parameters and error
recovery performance. Section 4 proposes a revised timer scheduling scheme. Section
5 introduces our dynamic mechanisms to measure the neighborhood size and adjust
the timer setting parameters. Section 6 presents the simulation models and analyzes
the simulation results, and Section 7 reviews related works. We conclude in Section
8 with a short summary.

2 Basic Approach of SRM

In this section, we give an overview of SRM as described in [1], emphasizing the
features relevant to our work here. We use the term session to mean a multicast
application that uses SRM as its underlying reliable multicast service. SRM provides
only basic reliability support; it guarantees the eventual delivery of data to all
members in the multicast session. More stringent reliability functionalities, such as
total ordering and fate sharing 2, if desired, are left to the application itself [3].

To avoid message implosion at the source in the error recovery process, SRM is
receiver-initiated [4] with each receiver being responsible for detecting data losses
and requesting retransmissions. SRM also adopts the approach of “multicasting
everything” to maximize the collaboration among members in the process of error
recovery. Requests and replies are multicast to all members in the session. Multi-
casting a request allows the nearest member with the requested data to send a reply
first; it also suppresses other members from sending duplicate requests for the same
data. Similarly, multicasting a reply suppresses duplicate replies and also delivers
the reply to all members who suffer the loss without requiring the replier to know
their individual identities or locations.

The SRM mechanisms can be decomposed into two parts: group state syn-
chronization and receiver-initiated error recovery. Members periodically exchange
session messages to report current group state (e.g., the highest received sequence
number from each source) and to determine the propagation delays between each
pair of members *. Members use group state information to detect data losses. This

!The recovery delay is measured in terms of the one-way propagation delay from the data
source. In other words, it is the interval between a member’s detection of a loss and reception of a
retransmission, divided by the one-way propagation delay from the data source to the member.

2Fate sharing is when a multicast session terminates if a single member, or a specific subset of
members in the session fail, depending on the semantics of the application.

#There is a semantic difference between the delay from a member and the delay to a member. We

is critical for the receiver-initiated error recovery approach because members do not
otherwise know what has been sent to the session group. Each member uses the
propagation delay information when scheduling its request or reply timers.

When a packet is lost, each member detecting the loss waits a random time period
before sending its retransmission request. The random timer is scheduled in the time
interval A-T ~ (A+ B)-T, where T is the propagation delay between the requester
and the data source, and A and B are constants *. When the timer expires, the
scheduled request is multicast to the session group. If a duplicate request is received
or the currently scheduled request is sent, the requester exponentially backs off its
request timer to ensure retransmission reliability. If a reply is received, the scheduled
request is canceled. A member with the requested data responds to the request by
scheduling a reply in the time interval a - ¢t ~ (a + b) - ¢, where ¢ is the propagation
delay between the replier and the requester, and a and b are constants. When the
timer expires, the scheduled reply is multicast to the session. The scheduled reply
is canceled if a duplicate reply is received while waiting.

The randomization of request and reply timers in SRM gives members an op-
portunity to suppress one another and thus avoid the request and reply message
implosion problem [5]. The period of the SRM request timer consists of both a
deterministic wait (i.e., no messages are sent before A -T) and a probabilistic wait
(the period between A -7 and (A + B) - T'). Both portions of the wait are propor-
tional to the propagation delay from a source. Thus, requesters far from a source
have longer deterministic waiting periods than requesters near to the source. We
call it deterministic suppression if a request sent at the maximal wait ((A+ B) - T)
by a close-to-the-source member arrives before the deterministic wait of a farther-
from-the-source member has expired; scheduled requests (for messages from this
particular source) at the distant requester will always be suppressed by requests
from the nearer requester.

Deterministic suppression can only occur if the difference between the deter-
ministic waiting periods of two members is large relative to the propagation delay
between them, and thus deterministic suppression is comparatively rare. Usually,
members have to rely on the randomization of their probabilistic waiting periods to
suppress one another. We call this probabilistic suppression.

The same concepts of deterministic and probabilistic suppression can be applied
to the reply timers. A reply from a replier far from the requester is deterministically
suppressed by a replier near the requester if the difference between their determin-
istic waiting periods is sufficiently large. Otherwise, they rely on the probabilistic
wait to suppress one another.

In this paper, we investigate the relationship between the timer setting parame-

will distinguish one from the other in our later discussion. However, in SRM, a member determines
its one-way propagation delay to another member by taking half of its measured round-trip delay.
Therefore, SRM assumes the paths between a pair of members are symmetric.

*In addition to the basic timer scheduling scheme, [1] also provides a probing mechanism for
random timer adaptation. We discuss it further in Section 7.

5SRM assumes all session members, not only the data source, may save all the application data.
If some members do not save the data requested, they simply do not participate in the error recovery
process.

Figure 1: Radix defining the boundary of deterministic suppression and probabilistic
suppression

Consider the scenario shown in Figure 1. A data packet sent by source s is lost
between member r and member p. Member p detects the loss at time 0 and schedules
a request before (A+ B)-t,, where t4, is the propagation delay from s to p. Member
q also detects the loss no later than time ¢,, and schedules a request after ¢,, + A -
tsq. For p’s request to deterministically suppress ¢’s request, the latest time of p’s
request arriving at g has to be sooner than ¢’s earliest request sending time; i.e.,

SMember p is a neighbor of member g if p competes with ¢ in sending requests or replies for a
loss.

Figure 2: Members rely on probabilistic suppression within their requester and
replier neighborhoods

In Figure 2, there are N members located within p’s requester neighborhood,
with respect to losses from source s. Their propagation delays from s are all equal to
ts and the propagation delays between each pair of them are roughly 5. Assuming a
uniformly distributed random function is used to schedule requests, the probability

that p’s request is not suppressed by any member within the neighborhood is

_ f(fN ldz + ft]'i'ts (Bl ttin)N =1y tn 1 tn

B
s — — (1=
B -t B-tS+N ((B-tS

t 1
N N

< _
))_B@+N

Since there are N members within p’s requester neighborhood, the expected number
of requests regarding a loss from source s is

N t

E=P-N<—. N +1
Bt
Similarly, for a replier neighborhood with n members whose propagation delays

from a requester p are t,, and the propagation delays between each pair of them
are roughly t,, the expected number of replies regarding a request from p is E' <
n t
.2 1.
b1,

3.3 Recovery Delay

Given A, B and the propagation delay from the source, if the number of requesters
in a neighborhood competing to request retransmission is large, the average delay of
the first expired request timer is shorter. For example, consider the case as shown
in Figure 2 where there are N requesters in a requester neighborhood and their
propagation delays from a source s are roughly ts. Assuming a uniformly distributed
random function is used to schedule requests, the expected waiting period of the
first expired request timer within the neighborhood is

. fB-tS - (B~tsfaz)N71d$

B
D=A-t 0 Bt =A-tyg+——— -t
s+ B -t S+N+1S

The same analysis can be applied to the delay of the reply timers. If there are
n members within a replier neighborhood and their delays from a requester p are
roughly ,,, the expected waiting period of the first expired reply timer within the
neighborhood is D' = a - t, + nLH -tp. The recovery delay is the sum of the request
delay, the reply delay and the round-trip propagation delay between the requester
and the replier. In the worst case where the source is the replier, an estimate of the

recovery delay is given by D + D' + 2 - t.

3.4 Discussion

In Section 3.3, we found that A contributes the majority of request delay when there
are many members. Thus, it is desirable to make A as small as possible. However,
a small A increases the radius of the requester neighborhood and thus decreases
the effectiveness of deterministic suppression. Fortunately, the number of duplicate
requests can still be reduced by probabilistic suppression. As we argue below, if
B is selected properly the number of duplicate requests and the recovery delay can
both be properly controlled.

Consequently, we choose A = ¢ = 0 to minimize the recovery delay and rely
on probabilistic suppression to minimize the number of duplicates. Since there is

no deterministic suppression, all members that share the same loss are all in the
requester neighborhood for that loss, i.e., they compete with one another to request
retransmission. The remaining group members are in the replier neighborhood to
compete for retransmission.

If A =0, the expected number of requests and the recovery delay for a loss from
a source s can be rewritten as,

N ty
E < —. 241 1
_Bt5+ (1)
B
D = — ¢ 2
N+1 ° 2)

Therefore, if we choose B as a linear function of the requester neighborhood size, i.e.,

B = C- N where C is a constant, the factor IV in both equations will be neutralized.

As a result, the expected number of duplicate requests is roughly proportional to tN

and the request delay is constant in terms of the one-way propagation delay from the

data source. In other words, the number of requests per loss and recovery delay are

constant as functions of the session size. Similarly, if we choose a =0 and b= ¢ n,
t

where ¢ is a constant and n is the size of the replier neighborhood, we get E' < -
D

and D' < ¢-t,. If the replier is the source in the worst case, the reply delay is c- t,.
Therefore, the recovery delay is equal to (C' 4+ ¢+ 2) - t5 on the average.

Generally speaking, the linear functions define the tradeoff between the num-
ber of duplicates per loss and recovery delay. Note that, C' and ¢ are universally
identical, i.e., all members use the same linear functions in a session. However, C
and ¢ can be different, i.e.,the linear function for the request parameter can be dif-
ferent from the linear function for the reply parameter. The neighborhood sizes of
members are different because they do not share exactly the same losses. Since the
timer parameters are functions of the neighborhood sizes, they are also different for
individual members.

4 A Revised SRM Timer Scheduling Scheme

Perfect request and reply suppression does not guarantee the absence of duplicate
requests and replies; other factors may cause duplicates. For example, a requester
may send a premature second request before the reply arrives. A premature request
is not only a duplicate request but also a trigger for duplicate replies. Furthermore,
if duplicate requests are sent, a replier may issue a duplicate reply if a second request
arrives after the first reply has been sent. In this section, based on the conclusion
in Section 3.4, we will discuss mechanisms that prevent premature requests and
ignore unsuppressed requests, and propose a revised version of SRM timer scheduling
scheme.

4.1 Preventing Premature Requests

After sending a request, the requester backs off its request timer and schedules a
second request to ensure retransmission reliability. If the backoff timer expires before

Figure 3: Scenario of premature requests

In Figure 3, requester p sends its first request at time 0. Replier ¢ receives the
first request at t,, and schedules a reply between t,, ~ t,q + b - t,4. If ¢’s reply
timer expires first, the waiting period of its scheduled reply is less than 3-c-t,, with
a probability of 95%. The arrival time of a reply at p should be smaller than the
earliest sending time of the second request. We assume p backs off it request timer
for a period of I -1,

2 tpg+3-ctpy<I-ty=(2+3-¢)- zLSI:>122—|—3-c
Note that pq < 1 because a lost packet is recovered by the source in the worst case.

Thus We " conclude that, after sending the first request, member p has to back
off its request timer at least for a period of (2 4 3 - ¢) - t5,, where c is the constant
parameter used in the linear function to determine the reply parameter (e.g., b) and

is universally identical for all members in a session.

4.2 Ignoring Unsuppressed Requests

Request suppression and premature request prevention reduce the chance of du-
plicate requests. However, the performance depends heavily on network topology,

Figure 4: Scenario of unsuppressed requests

Figure 4 shows the scenario of an unsuppressed request. Member p sends a
request asking for retransmission. The request does not suppress the scheduled
request in member g. Therefore, ¢ sends its own request for the same loss and this
request should be ignored by replier . The hold period of r’s scheduled replies
should not be greater than the second request from p because the previous reply
may be lost and the replier should be able to respond to the second request to ensure
transmission reliability. We assume the hold period for r is H - t,,, where t,, is the
propagation delay from source s to the requester p who sent the first request. If
p sent its first request at time 0, the earliest sending time of its second request is
I -tg,. Therefore,

tpr+ H gy < Tttty =>H<I=>H<2+3 ¢

After scheduling a reply triggered by the first request from p, r should ignore
further requests of the same loss for a period of (243 - ¢) - ts,. Member p should
include its propagation delay from source s, sy, in its request in order for r to
compute the proper hold period.

4.3 Revised Error Recovery Scheme

In this section, we will describe the revised timer scheduling scheme from SRM
based on the conclusion from the previous sections.

Before a session is activated, two linear functions are selected. These linear
functions are used to compute the timer setting parameters from the neighborhood

sizes. For example, the request timer parameter B is defined as B = C-N, where C'is
a constant and NV is the requester neighborhood size; And the reply timer parameter
b is defined as b = ¢-n, where ¢ is a constant and n is the replier neighborhood size.
Since members have different neighborhood sizes, in the following sections we will
use the notation of Ny " and Bj to refer to member p’s requester neighborhood size
and request timer parameter with respect to the losses from source s, respectively.
The notation of n} and b are used to refer to member ¢’s replier neighborhood size
and reply parameter with respect to the requests from requester p, respectively.

Members in a session exchange session messages to determine propagation delays
between each pair of members and to detect data losses. When member p detects a
loss from source s, it schedules a request timer between 0 ~ By - £, where #, is the
propagation delay from source s to p. When the timer expires, p multicasts it request
to the session group and schedules a backoff request between I -ty, ~ (I + B;) - t5p
to ensure retransmission reliability. If p receives a request of the same loss before
its own request timer expires, it backs off its timer by rescheduling a second request
between I - tg, ~ (I + B,) - tsp. From Section 4.1 we know I =2+ 3-c.

A member ¢ with the requested data responds to the request from p by schedul-
ing a reply between 0 ~ bl - 1,4, where ?,, is the propagation delay from p to q.
Furthermore, ¢ ignores further requests for the same loss for a period of H - t,.
From Section 4.2, we know H = 2+ 3-c. If g receives a reply of the same loss before
its reply timer expires, g simply cancels its reply. Otherwise, ¢ multicasts its reply
when its reply timer expires.

5 Dynamic Timer Adjustment

From the previous section we conclude that selecting timer parameters based on
the neighborhood size produces optimal results in terms of the recovery delay and
the number of duplicates. Unfortunately, members do not know their neighborhood
sizes beforehand. Furthermore, there are other dynamic factors which may affect the
error recovery performance. For example, network traffic load affects the propaga-
tion delay, dynamic membership change affects the neighborhood size, and network
topology change affects the loss-sharing characteristic among members. Members
need to adapt their requester and replier neighborhood sizes (i.e., the timer setting
parameters) to these dynamic factors by learning from network feedback.

Figure 5 shows the detailed control loop of our dynamic adjustment mecha-
nism. Each member’s feedback interpreter observes network feedback to estimate
neighborhood size. A parameter adjuster calculates the timer parameters from the
estimated neighborhood size; And a timer scheduler schedules requests and replies
with the new timer parameters. We already discussed the procedure to schedule
request and reply timers in Section 4.3. We will concentrate on the procedures of
feedback interpretation and parameter adjustment in the following sections.

" To be specific, the requester neighborhood sizes of member p are different for losses at individual
lossy links from a source. However, it is impossible for a member to identify the point of loss, we
use the location of the data source as an approximation.

10

Figure 5: Control loop of dynamic timer adjustment

5.1 Interpreting Neighborhood Size from Duplicates

A feedback interpreter observes network feedback to adjust the estimated neigh-
borhood sizes. There are two kinds of feedback that can be observed by members
for individual losses: the recovery delay and the number of requests and replies.
An interpreter can estimate the neighborhood sizes based on either of them. For
example, the requester neighborhood size can be interpreted based on the number
of requests per loss by the relationship illustrated in Equation 1 on Page 7.

From Equation 1 we know the average number of requests in a neighborhood
with N members is roughly E = NtN + 1. Therefore, each request with respect

to the same loss represents F nelghbors. That is, a request from a member that is

B-ts : :
Ot neighbors. For example, if requester ¢ sends a request

tn away represents

BS-ts .
q q
Tt Cn neighbors to member

p. Member ¢ should supply By and s, in its request for p fo calculate the proper
number of neighbors represented by the request. Note that, ¢’s request represents
Ny neighbors to itself since the delay from g to itself is 0.

Since we prefer a member near the source to send requests first, we want members
near the source to produce smaller neighborhood size estimates than members far
from the source. For example, if both member p and r receive a request from
q, we would like ¢’s request to represent more neighbors to r if r is farther from
the source than is p. One simple way to achieve this is to weight the number of
neighbors represented by ¢’s requests by the delays from source s. In other words,
the number of neighbors represented by ¢’s request is weighted by a factor of ts—f;

regarding a loss from source s, its request represents

at member p, and it is weighted by a factor of t” at member 7. As a result, p’s
estimated neighborhood size is smaller than ¢’s nelghborhood size by a factor of
isP. Note that, the estimated neighborhood size no longer represents the actual
number of neighbors. Instead, it combines both the number of members competing
to request retransmission in a requester neighborhood and their relative distance
from the source.

A member adds up all the numbers of neighbors represented by requests it re-

ceived for the same loss. The new requester neighborhood size is calculated by

11

using an exponential-weighted moving average with a weight w ® between the pre-
vious neighborhood size and the new estimation. The requester neighborhood size
is adjusted for individual sources °.

If members only receive one request for a loss, they achieve the perfect suppres-
sion result. This could result from the case in which members’ neighborhood sizes
are overestimated so they have a better chance to hear from one another, or from
one member sending its request fast enough to suppress others. For the former case,
members should reduce their estimated neighborhood sizes to probe for the mini-
mum recovery delay. However, for the later case, there is no connection with whether
the neighborhood size is overestimated. Therefore, in this second case, reducing the
estimated neighborhood size does not necessarily improve the performance. Unfor-
tunately, members can not distinguish one case from the other because of the lack of
feedback (e.g., duplicate requests). In our approach, we assume the neighborhood
size is overestimated if there is only one request per loss, and reduce a member’s
neighborhood size by a factor of 4. The value of ¢ determines the aggressiveness of
the probing process. If § is small, the accurate neighborhood size can be reached
quickly, however, it is also more likely to underestimate the neighborhood size and
cause duplicates. On the other hand, a ¢ close to one slows down the probing pro-
cess; during the probing period the neighborhood size is overestimated and results
in long recovery delay. In other words, d is a tuning knob of the tradeoff between
recovery delay and duplicates per loss.

Since the member who sent the only request for a loss is most likely the closest
member to the lossy link, one could reduce the neighborhood size of the member
who sent the request and keep other members’ neighborhood sizes unchanged. How-
ever, the hypothesis of adaptive adjustment is that the past experience is a good
prediction of the future. If there are multiple lossy links along a path, members
face different neighborhoods for losses at different lossy links and the adaptive ad-
justment mechanism should be less aggressive so the estimation from the past can
predict the average behavior of the future. For example, reducing p’s neighborhood
size by a factor of § increases the chance that p will suppress other requests for the
next loss. As a result, p will keep reducing its neighborhood size until duplicate
requests are observed. Reducing p’s neighborhood size aggressively based on the
losses at one lossy link may affect the error recovery performance of losses at an-
other lossy link. Therefore, we think it is prefered for all members who share the
same loss with p to decrease their neighborhood sizes by a factor of ¢ as well.

The following algorithm is developed to adapt the requester neighborhood size
to the dynamic changes in a multicast session. The neighborhood size is measured
for individual losses. A measurement period starts when a loss is detected and it
ends when a reply is received.

for each scheduled request in p for source s

fWe choose w = % in our simulations.

9 From Footnote 7, we know that the requester neighborhood size should be adjusted on a per
lossy link, per source basis. It is an approximation to adjust requester neighborhood size on a per
source basis. If there are multiple lossy links between source s and member p, N, is the average of

the neighborhood sizes of all lossy links.

12

o=10
for each request received from ¢ (including p itself)
B tSq ts
ot = tm“‘c lsq tsz
if p only receives one request then ¢ = o - ¢

Ny=(1-w) Ny +w-o

We can apply the same mechanism to estimate the size of a replier neighborhood.
The measurement period of the replier neighborhood size is equal to the hold time
of a scheduled reply, discussed in Section 4.2. It starts when a request is received
and it ends when the scheduled reply is cleared. Note that, if a replier receives
multiple requests for the same loss, the estimation is for the requester whose request
is received first.

for each scheduled reply in p for requester r

oc=0
for each reply received from ¢ (including p itself)
o+ = bz.trq . tT_P

tpgtctrg trg
if p only receives one reply then 0 = o - 9§

ny,=(1-w) - n,+w-o

5.2 Interpreting Neighborhood Size from Recovery Delay

The requester neighborhood size can also be interpreted from the recovery delay by
using Equation 2 on Page 7. The delay of the ﬁrst expired request timer that is
within a requester neighborhood of N members is N+1 -t on the average. If the first
expired request timer has the value 9 - B - t5, then we can treat this as an estimate
ofn: N=5 -1

Thus, a member can interpret its requester neighborhood size from recovery delay
if it identifies the first expired request and knows how long the first expired request
has been scheduled. To solve this problem, members put the original value of their
request timers in their outgoing requests, and a requester can simply collect these
values in the incoming requests and identify the smallest one as the first expired
request.

To be specific, member ¢ puts 9, in its outgoing request if ¢ schedules the
request regarding a loss from source s for a period of ¥, - By - t54. If member p
identifies 1, is the smallest one that has ever been observed, it uses 9, to estimate
its requester neighborhood size. Similarly, other members who share the same loss
would identify 9, as the smallest feedback. In order to facilitate members near the
source to request retransmission first, 19 is weighted by their delays from source s, for
example, p weights 1, by the ratio of ; Sq . The exponential-weighted moving average
is also adopted. Note that, since the feedback from the network is 4, a member
should perform the exponential-weighted moving average on 9 before converting ¢
to the estimated neighborhood size, N. Otherwise, if 4 is converted to N and then
the exponential-weighted moving average is performed, the result is divergent. The
algorithm is shown below.

13

for each scheduled request in p for source s
¥=1
for each request received from ¢ (including p itself)

¢ = min{d, Y, Lsq

-tsp
@;S:(%—w)-egw-ﬁ
Np:e—zfl

One advantage of interpreting neighborhood size from recovery delay is the abil-
ity to distinguish whether a member’s neighborhood size is overestimated or whether
it is sending requests fast enough to suppress others based on the feedback of its own
requests. If a member’s neighborhood size is overestimated, the new neighborhood
size interpreted from its own 9 should be smaller than its original estimated neigh-
borhood size on the average. Whereas, if a member sends its request fast enough to
suppress others, its new estimation should be greater than its original estimation.
For example, if member p is the only member behind a lossy link, 9, is equal to %
on the average and its new estimated neighborhood size is 1. Therefore, a member
can still estimate its requester neighborhood size correctly even if it only receives
the requests from itself.

The same mechanism discussed above can be applied to estimate the size of a
replier neighborhood, the algorithm is shown below.

for each scheduled reply in p for requester r
9=1
for each reply received from ¢ (including p itself)
9 = min{d, 9,7
=(1-w)-O)+w-9J
1

5.3 Comments

Above we have described two different methods for estimating the neighborhood
size. After making this estimation, a member adjusts its timer parameter using a
predefined linear function. For example, if the estimated requester neighborhood
size is IV, a member would adjust its request timer parameter as B = C' - N, where
C is the constant of the linear function. In the next section we compare these
two methods of estimation. One might consider combining both neighborhood size
interpretation mechanisms. For example, a member might take both estimates of
neighborhood size and then use the average as the new estimated neighborhood
size. However, since one interpreter does not reveal more information than the other,
combining these two interpretation mechanisms does not make the neighborhood size
estimation more accurate. Moreover, our results suggest that one need not resort to
the additional complexity of combining the estimation algorithms to achieve good
performance.

Before turning to the our simulation results, we wish to return to the issue
of setting A = 0 by reconsidering what happens with non-zero A. As we have

14

Figure 6: Local minimum solution for a non-zero A in dynamic timer parameter
adjustment

mentioned in Section 3.4, one major disadvantage with non-zero A is that it produces
longer recovery delay than with A = 0. For example, Figure 6a shows the recovery
delay on a tree topology with a single lossy link near the source. The deterministic
wait dominates the recovery delay.

Furthermore, from Section 3.1, the requester neighborhood is proportional to %,
so the effectiveness of deterministic suppression is proportional to % as well. On the
other hand, from Section 3.2, the number of duplicate requests within a requester
neighborhood is proportional to %, so the effectiveness of probabilistic suppression
is proportional to B. Therefore, the effectiveness of request suppression is not a
monotonic function of either A or B. In other words, increasing B to facilitate
request suppression may include more members within the requester neighborhood,
which could introduce more duplicates. For example, Figure 6b shows the the results
of the number of requests per loss on the same tree topology. For a non-zero A, the
performance in terms of the number of requests per loss could be suboptimal due
to the existence of local minima.

Since our revised timer scheduling scheme choose A = a = 0, the effectiveness of
request suppression is proportional to B. In other words, given the network topology
and membership distribution, the number of requests per loss is a monotonic func-
tion of B. Therefore, the complexity of the timer parameter adjustment is simplified
significantly.

6 Simulation Results and Discussion

As in [1], the behavior of our proposed mechanisms can be most easily understood
by first testing a variety of extreme scenarios before moving on to more complicated
scenarios. Consequently, we initially explored our revised timer scheduling scheme
and dynamic timer parameter adjustment in three extreme but simple topologies
star, string and binary tree each with a single data source. The star topology
represents a session where all members have equal distance to the source and are
siblings of one another. The string topology represents a session where all members
have upstream-downstream relationship and share the data delivery paths with their
upstream members. The binary tree topology represents a mixture of both.
Each topology is populated with five different session sizes 8, 16, 32, 64 and

15

128 - to examine scaling behavior. Three different linear functions for adjusting
the timer setting parameters (e.g., B and b) based on estimated neighborhood size
are tested, i.e., C = ¢ = %, 1, and 2. We simulate the performance of our revised
scheme with both neighborhood size interpretation mechanisms, i.e., the duplicate
interpreter and the delay interpreter. Simulations using the session size as an ap-
proximation of the the neighborhood size are also run for comparison. Each simu-
lation covers the error recovery activities of 2500 losses. The losses are generated
by assigning an error rate on each link of the simulated topologies, and these error
rates are fixed throughout a single simulation.

6.1 Topologies with a Single Lossy Link

The first set of simulations examines the performance of topologies with a single
lossy link near the data source. That is, all members, except the source, share
identical losses and compete to request retransmission. Therefore, the size of the
session is the actual requester neighborhood size. We did not plot the results of the
average number of replies per loss because the source is the only replier and the
average number of replies per loss is very close to one '°. Note that, the analysis in
the following sections from the single replier scenario can be applied to the single
requester scenario. That is, if only the leaf member loses packets, the average
behavior of the repliers is similar to the average behavior of the requesters in the
single replier scenario.

In the simulations, we choose I = H = 2+ 3-¢, w = %, and 0 = .90 for
the duplicate interpreter. The recovery delay is measured in terms of the one-way
propagation delay from the data source; more precisely, the recovery delay is the
interval between a member’s detection of a loss and reception of a retransmission
divided by the one-way propagation delay from the data source to the member.

6.1.1 Star Topology

Figure 7 shows the simulation results in the star topology. The dash curves rep-
resent the results from simulations of the duplicate interpreter, the solid curves
represent the results from simulations of the delay interpreter, and the gray curves
represent the results from simulations that use session size as an approximation of
the neighborhood size. The average number of requests per loss and the recovery
delay measured in simulations that use both feedback interpreters are very close to
the results from simulations that use the session size as an approximation which
suggests that the estimated neighborhood sizes from both interpreters are very sim-
ilar to the actual neighborhood size (i.e., the session size). Consequently, both the
average number of requests and recovery delay remain constant regardless of the
session size. Note that,the average requests per loss from simulations with small C
is greater than the average requests per loss from simulations with large C'. On the

"The mechanism to ignore unsuppressed requests reduces the chance of response to a replied
request. However, in some rare pathological cases, there are multiple replies sent by the source. As
we have discussed in Section 4.1, the probability of premature requests is below 5% by choosing
I =2+ 3¢, therefore, the chance of duplicate replies is also below 5%.

16

Figure 8: Neighborhood size distribution in the 8-node star topology : all members
share identical losses

17

Figure 9: Simulation results in the string topology : all members share identical
losses

Figure 9 shows the simulation results in the string topology. In Figure 9(a), the
number of requests per loss asymptotes to a constant ' except for the simulations of
the duplicate interpreter. As shown in Figure 10, the neighborhood sizes interpreted
from duplicates are distributed in a narrower range than the estimated neighborhood
sizes interpreted from delay. Hence, members are less likely to hear from one another,
and as a result they generate more duplicate requests.

Furthermore, since members weight their estimated neighborhood sizes by their
relative distance from the source, members near the source have smaller estimated
neighborhood sizes than members far from the source. The estimated neighborhood
sizes for the member closest to the source are plotted in block dot in Figure 10.

The recovery delay in Figure 9(b) decreases with the session size because the
recovery delay is measured in terms of the one-way propagation delay from the
source. Members far from the source rely on the requests from members near the
source for retransmission without sending their own requests. Consequently, the
average recovery delay is reduced when the length of the string topology increases.
If a feedback interpreter is adopted, the estimated requester neighborhood size is a

"'The number of requests is proportional to the ratio of the propagation delays among members
and the propagation delay from the source, ie., E < % : ttﬂ + 1. When the length of the string

topology increases, the ratio of propagation delays (i.e., tt—’;’) also increases. However, the increased

amount is negligible and the number of requests per loss still remains constant.

18

Figure 11: Simulation results in the tree topology : all members share identical
losses

Figure 11 shows the simulation results in the tree topology. Unlike the results in the
star and string topologies, the number of requests per loss increases with the session
size. As we have mentioned in Section 3.4, the expected number of requests per loss
is tt—’;’, where ¢ is the propagation delays among members and ¢ is the propagation
delay from the source to members. For the tree topology, ts is analogous to the

19

Figure 12: Neighborhood size distribution in the 8-node tree topology : all members
share identical losses

6.1.4 Comparison among Different Topologies

Figure 13 shows the request distribution among members in the 8-node topologies.
Data source is labeled as src and other members are labeled as m; through my
according to their distance from the source. Requests are evenly distributed among
members in the star topology because all members have equal distance from the
source. However, in the string and tree topologies, members near the source send
more requests than members far from the source. The difference is more obvious if
a feedback interpreter is adopted. Note that, my and mg3 in the tree topology have
similar distributions because their distances from src are identical.

Figure 14 shows the request and recovery delay distribution of individual losses

20

Figure 14: Distributions of the number of requests per loss and recovery delay in
8-node topologies : all members share identical losses

in the 8-node topologies. Since members have the same distance from the source in
the star topology, one member’s requests do not have a better chance to suppress
others. So the number of losses triggering one request is similar to the number of
losses triggering two requests. In other words, more duplicate requests are generated
in the star topology. On the other hand, in the string topology, the member closest
to the source has the best opportunity to request retransmission and other members
can take advantage in terms of the recovery delay. Therefore, most of the losses are
recovered within the round-trip time.

As we have mentioned in Section 5.1, ¢ is another parameter to control the
tradeoff between the number of requests per loss and the recovery delay. However,
the effectiveness of § is minor. We simulated our mechanism with four different
values of § .50, .67, .75 and .90 and the difference of their performance is not
significant. The simulation results are shown in Table 1.

21

Figure 15: Simulation results in the star topology : all links with uniformly-
distributed error rates

In the star topology, members have independent losses so the number of requests
per loss is close to one. The number of replies per loss and recovery delay are
constant regardless of the size of the session. In the string topology, since members’
estimated neighborhood sizes are more closely distributed in the simulations of the
duplicate interpreter, they send requests and replies more aggressively. As a result,
the number of request and replies per loss is higher, and the recovery delay is smaller
than the simulations of the delay interpreter.

In the tree topology, we notice that the number of requests decreases with the
session size and the the number of replies increases with the session size. Since
the width increases exponentially with depth in the tree topology, more losses are

22

Figure 17: Simulation results in the tree topology : all links with uniformly-
distributed error rates

distributed towards the leaf members when the session size increases. Therefore,
fewer losses are shared by a majority of the members and the number of requests
per loss decreases. On the other hand, since more losses are distributed towards the
leaf members, more requests can be replied by a majority of the members. Thus,
the behavior of the repliers is very similar to the behavior of the requesters in the
single lossy link case. We found Figure 17(b) is very similar to Figure 11(a).

It is the worst case scenario that all links in a topology are lossy. To understand
the average behavior of our dynamic timer scheduling mechanisms, we randomly
select % of the links in a topology to be with uniformly-distributed error rates. In
other words, there one lossy link in the 8-node topologies, two lossy links in the
16-node topologies, and so on. The simulation results are shown in Table 2 2, and
they are consistent with the results and analysis from topologies that all links are
lossy.

'2The number of requests per loss in the topologies with one lossy link is less than one, because
some of the requests are queued in the network when the simulation terminates.

23

Table 2: Simulation results : % of the randomly-selected links are with uniformly-
distributed error rate

6.3 Discussion

Based on the simulation results, the delay interpreter appears to be a better choice
for our dynamic timer adjustment mechanism than the duplicate interpreter. First
of all, the duplicate interpreter probes for the optimal neighborhood size if there is
no duplicate. Reducing the estimated neighborhood size by a factor of § may not be
the right decision in some cases. As we have seen in the simulations, reducing the
estimated neighborhood size causes aggressive action in sending the requests and
replies. Secondly, with the duplicate interpreter, the tradeoff between the number
of duplicates per loss and the recovery delay is defined by the linear functions (pa-
rameter C' and ¢) and the value of §, which makes the tuning more complicated and
the performance less predictable.

Finally, as we have identified in Equation 1, the number of duplicates per loss is
affected by not only the neighborhood size (N), but also the neighborhood radius
(tn); In other words, the distribution of neighbors. Our revised timer scheduling
mechanism can eliminate the influence of the neighborhood size, but it is unable to
control for the neighborhood radius. One could propose the use of a non-zero A (and
a) to control the neighborhood radius. For example, from Section 3.1, the ratio of
% has to be fixed in order to control the requester neighborhood radius. However,
it is impractical to adjust A and B at the same pace in terms of the recovery delay.
We think the best solution to control for the neighborhood radius is to localize the
error recovery scope [6, 7]. Thus, the neighborhood radius is constrained by the
scope of requests or replies. More research is required.

7 Related Work

Most of the error recovery mechanisms in the proposed reliable multicast protocols
focus on the avoidance of message implosion. Generally speaking, they can be cate-
gorized into structure-based and timer-based approaches [8]. In the structure-based
approach, a subset of members are selected either to organize the error recovery
activities or to process error recovery messages. In the timer-based approach, all
members sun the error recovery algorithm and they rely on the randomization of

24

timers to suppress duplicate error recovery messages. A few examples are discussed
below.

7.1 Structure-Based Approaches

RBP [9] is a token-based reliable multicast protocol. A token circulates among mem-
bers in a round-robin fashion to distribute the workload. The member possessing
the token becomes the current token site. RBP adopts a sender-based error control
mechanism between senders and token sites, and a receiver-initiated error recovery
mechanism between token sites and receivers. The current token site is responsible
for acknowledging each data reception. It is also responsible for recovering losses
for other members and replies to the retransmission requests.

In MTP [10], time is divided into slots, called heartbeats, for data transmission.
A fixed number of messages are sent in each time slot, including both the new
data and the replies. A master is elected from among all sources for the purpose
of granting tokens. A member must obtain the token to become the sender of
the current slot. At any point in time, only one data source can send data. The
retransmission requests are unicast to sources and the replies are multicast to the
whole group.

Holbrook et al. [11] suggested a hierarchic logging server structure to distribute
the error recovery workload. Logging servers acknowledge each data reception from
the source and they are responsible for recovering losses for other receivers. Receivers
contact their local secondary server for retransmission instead of the remote primary
servers to avoid NAK implosion, and to minimize recovery latency and bandwidth.
A server either unicasts or multicasts a reply based on the number of requests it
receives.

In RMTP [12, 13], data are explicitly acknowledged by the receivers. To avoid
ACK implosion, members are grouped into local regions and local regions are con-
structed into a tree hierarchy. A designated receiver (DR) is selected in each region,
it is responsible for processing ACKs from its local region and acknowledging the
data reception to its parent DR. DRs cache received data and respond to retrans-
mission requests in their local regions. A reply is either unicast or multicast based
on the number of requests per loss.

TMTP [14] has a similar flavor to RMTP in terms of the hierarchic error recovery
structure. It groups members into domains and organizes domains into a hierarchic
control tree. Members in a domain request the domain manager for retransmission.
A domain manager is also responsible for error recovery of its children managers in
the control tree. The scope of retransmission is restricted by limiting the TTL.

7.2 Timer-Based Approaches

Grossglauser presents DTRM [15] to compute deterministic timer values based on
the multicast tree topology and source-to-receiver propagation delays. For a single
loss, the deterministic timers ensure that one member sends a request fast enough so
the reply triggered by the request will arrive at other members before their request
timers expire.

25

Floyd et al. [1] proposed an adaptive adjustment mechanism of the random
timer. A threshold of the number of duplicates per loss and a threshold of the re-
covery delay are predefined. Timer parameters are increased if the average number
of duplicates per loss is greater than the duplicate threshold. Otherwise, the param-
eters are decreased if the average recovery delay is greater than the delay threshold.
Therefore, the mechanism satisfies the duplicate threshold first and then the delay
threshold.

8 Conclusion

We investigated the relationship between the timer setting parameters and error
recovery performance in SRM. Both analysis and simulations suggest that the de-
terministic wait from the random timer can be removed to reduce the recovery delay
and the probabilistic waiting period should be proportional to the member’s neigh-
borhood size to facilitate duplicate suppression. In fact, by computing the timer
parameters using linear functions from the neighborhood sizes, the number of re-
quests (and replies) per loss and the recovery delay are not significantly affected by
the session size.

We revised the current timer scheduling scheme in SRM which eliminates the de-
terministic waiting periods of the request and reply timers, minimizes the overhead
of premature requests and prevents duplicate replies in response to unsuppressed
requests. We also compared two feedback interpretation mechanisms in our dy-
namic timer parameter adjustment. Members estimate their requester and replier
neighborhood sizes from the network feedback independently to adjust their timer
parameters. From the simulation results, we found that the mechanism of interpret-
ing neighborhood size from recovery delay performs better than the mechanism of
interpreting neighborhood size from duplicates.

References

[1] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steve McCanne and Lixia Zhang.
“A Reliable Multicast Framework for Lightweight Session and Application
Layer Framing”. IEEE/ACM Transactions on Networking. 1997.

[2] Sridhar Pingali, Don Towsley and James Kurose. “A Comparison of sender-
initiated and Receiver-Initiated Reliable Multicast Protocols. Proceedings of
ACM SIGMETRICS 94, Pages 221-230. 1994.

[3] D. Clark and D.Tennenhouse. “Architectural Considerations for a New Gen-
eration of Protocols”. Proceedings of ACM SIGCOMM ’90, Pages 201-208.
September 1990.

[4] D. Clark, M. Lambert and L. Zhang. “NETBLT: A High Throughput Transport
Protocol”. Proceedings of ACM SIGCOMM ’87, Pages 353-359. August 1987.

26

[5]

[10]

[11]

[14]

[15]

S. Deering. “Host extensions for IP multicasting”. Internet Draft, RFC1112.
August 1989.

Ching-Gung Liu. “A Scalable Reliable Multicast Protocol”. Ph.D. Dissertation
Proposal, University of Southern California. November 1995.

Ching-Gung Liu, Deborah Estrin, Scott Shenker and Lixia Zhang. “Local Error
Recovery in SRM : Comparison of Two Approaches”. Technical report USC 97-
648, University of Southern California. February 1997.

Brian Neil Levine and J.J. Garcia-Luna-Aceves. “ A Comparison of Known
Classes of Reliable Multicast Protocols”. Proceedings of International Confer-
ence on Network Protocols (ICNP-96). October 1996.

J. Chang and N. F. Maxemchuk. “Reliable Broadcast Protocols”. IEEE/ACM
Transactions on Computer Systems, Vol.2, No. 3, pp. 251-275. August 1984.

S. Armstrong, A. Freier and K. Marzullo. “Multicast Transport Protocol”. In-
ternet Draft, RFC1301. February 1992.

Hugh W. Holbrook, Sandeep K. Singhal and David R. Cheriton. “Log-Based
Receiver-Reliable Multicast for Distributed Interactive Simulation”. Proceed-
ings of ACM SIGCOMM °95. August 1995.

John C. Lin and Sanjoy Paul. “RMTP: A Reliable Multicast Transport Proto-
col”. Proceedings of IEEE INFOCOM 96, Pages 1414-1424. April 1996.

S. Paul, K. K. Sabnani, J. C. Lin and S. Bhattacharyya. “Reliable Multicast
Transport Protocol (RMTP)”. To appear in IEEE Journal on Selected Areas
i Communications, special issue on Network Support for Multipoint Commu-
nication.

R. Yavatkar, J. Griffioen and M. Sudan. “A Reliable Dissemination Protocol
for Interactive Collaborative Applications”. Proceedings of ACM Multimedia
95. 1995.

M. Grossglauser. “ Optimal Deterministic Timeouts for Reliable Scalable Mul-
ticast”. Proceedings of IEEE INFOCOM 1996, pp. 1425-1432. April 1996.

27

