NDN Technical Report NDN-0076. http://named-data.net/techreports.html
Revision 1: April 2022 (to be published)

The Evolution of Distributed Dataset Synchronization
Solutions in NDN

Abstract

Distributed dataset synchronization, or Sync in short, plays
the role of a transport service in the Named Data Networking
(NDN) architecture. In this paper, we conduct a systematic ex-
amination of NDN Sync protocol designs, identify common
design patterns, reveal the insights behind different design
approaches, and collect lessons learned over the years. We
show that (i) each Sync protocol can be characterized by its
design decisions on three basic components — dataset names-
pace representation, namespace encoding for sharing, and
change notification mechanism, and (ii) two or three types
of choices have been observed for each design component.
Through analysis and experimental evaluation, we reveal
how different design choices influence the latency, reliabil-
ity, overhead, and security of dataset synchronization. In
addition, we discuss the relationship between transport and
application naming, the implications of namespace encoding
for Sync group scalability, and support for Interest multicast.

CCS Concepts

+ Networks — Network protocol design; Transport pro-
tocols; Network design principles.

Keywords

Named Data Networking, Distributed Dataset Synchroniza-
tion, Sync Protocols, NDN Transport

1 Introduction

Most people in the ICN community are familiar with NDN’s
basic network communication model of Interest-Data ex-
changes, which has been documented in numerous publica-
tions. However, it is hard to find a comprehensive overview
of NDN transport services. This paper aims to fill that void.

The transport services in the NDN architecture differ from
that in the TCP/IP architecture in fundamental ways due to
two reasons. First, as we explain in §2, NDN moves the three
basic functions provided by the transport layer in today’s IP
network, namely demultiplexing, reliable data delivery, and
congestion control, out of transport and into proper places in
the NDN protocol stack. Second, different from today’s prac-
tice where distributed applications rendezvous at centralized
servers through point-to-point transport service, NDN aims
to leverage its data-centric nature with semantic naming at

Conference’17, July 2017, Washington, DC, USA
2022. ACM ISBN 978-x-xxxx-xxxX-X/YY/MM... $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the network layer to enable distributed entities to communi-
cate directly, without relying on centralized servers. That is,
NDN needs a new type of multiparty transport service that
can enable a group of distributed entities to communicate in
a secure, reliable, and resilient way:.

The new NDN transport service that emerged from the last
ten years of NDN research is the namespace synchronization
of shared datasets among a group of distributed entities. A
variety of NDN Sync protocols have been developed [33],
and the designs have evolved over the years. This SoK paper
aims to provide a systematic examination of all the existing
NDN Sync protocol designs and the lessons learned from
different design choices, and to identify remaining issues
and future directions. We start with a clarification on the
role of Sync in the NDN protocol stack (§2), then proceed
with identifying the major components in a Sync protocol
(§3). We exemplify the impact of different design choices
through case studies of representative Sync protocol designs
(§4), and then step up a level to compare and contrast the
different design decisions of different protocols and validate
our analysis with comparative evaluation results (§5).

From the above exercise we learn that each Sync protocol
faces three major design decisions: how to represent the data-
set namespace containing data produced by all participants,
how to encode the dataset namespace in communication!,
and how to disseminate dataset state changes effectively
and efficiently. We discover that a few design patterns are
shared among the Sync protocols (see §4) and reveal the need
for multicasting Sync Interests and the limitation in its use.
Using both analysis and experimental evaluation, we show
how different design choices influence the latency, reliability,
overhead, and security in dataset synchronization. We wrap
up the paper with discussions on the relationship between
transport and application naming, the implications of names-
pace encoding for Sync protocol scalability (§6), and a few
related research areas (§7), followed by the conclusion (§8).

2 The Role of Sync in NDN

Generally speaking, transport services bridge the gap be-
tween the services that applications desire and the services
the network layer provides. Today’s transport protocols, as
exemplified by TCP, convert IP’s point-to-point datagram
service to reliable data delivery between two application

IThroughout this paper we treat dataset namespace, dataset namespace state,
and dataset state as exchangeable terms.

Conference’17, July 2017, Washington, DC, USA

processes, which are identified by a pair of IP addresses and

transport port numbers. TCP provides three basic functions:

(1) demultiplexing incoming packets from IP to different
application processes;

(2) providing reliable byte stream delivery; and

(3) performing network congestion control?.

Applications running over TCP avoid the burden of support-

ing reliable data delivery on their own. However, building

multiparty distributed applications using TCP’s point-to-
point connections requires setting up n X n TCP connections
which is complex and inefficient. While a few reliable UDP
multicast protocols such as NORM [3] have been developed,
we note here that support for IP multicast is generally limited.

Futher, the nature of host-to-group nature of IP multicast re-

quries necessarily distributing the entire dataset to all group

participants, which can be inefficient in scenarios where cer-
tain subsets of group members only require certain subsets
of the dataset.

In Named Data Networking (NDN) [53], the network layer
fetches named content chunks. These data chunks carry se-
mantic names that uniquely identify their content, as well as
cryptographic signatures that bind the names to the content.
From NDN'’s perspective,

(1) NDN uses names for demultiplexing across all protocol
layers, thus it does not require a transport header to carry
information for demultiplexing;

(2) NDN allows different applications to pick and choose
different reliability definitions; and

(3) NDN moves network congestion control to the network
layer where it belongs [47, 52].

NDN'’s data-centric model facilitates multiparty communi-

cation by letting applications directly request the desired

data using data names, but it remains difficult for application
developers to build distributed applications directly using

Interest-Data exchange provided by the network layer. For

example, a participant in a multiparty application needs to

know what data is produced by others as soon as possible,
in order to retrieve it promptly as needed by the application.

The examination of several pilot NDN applications, such
as tools for multiparty file sharing [4], audio and video con-
ferencing [18, 57], and group messaging [56] showed one
commonality of all these distributed applications — partici-
pants share and collect distributed datasets. Hence, all those
applications share the need for a simple, flexible, and resilient
synchronization service. Distributed dataset synchronization,
or Sync provides such a service, acting as a transport layer
abstraction on top of NDN Interest-Data exchange.

2Congestion control was not part of the TCP’s functions when published in
1981 [45], but added later to mitigate the Internet congestion meltdown [23].

3 The Design of NDN Sync Protocol

This section first presents our view on the Sync protocol
design goals and non-goals, and then identifies the major
components that make up a Sync protocol.

3.1 Sync Protocol Design Goals

Sync is NDN’s transport to serve applications. One com-
mon need for distributed applications is group membership
management, which we believe is best handled by applica-
tions, as only applications have the necessary knowledge to
determine whether a specific user should/not be accepted
into a group. Assuming all group members possess proper
identities and certificates, Sync provides the means for them
to participate in group communication effectively and effi-
ciently. The design goals below reflect general observations
on applications needs that Sync should meet.

Supporting diverse data reliability requirements: Anim-
portant lesson learned from TCP is that, although all appli-
cations desire reliable data delivery, the definition can vary.
Based on this lesson, the role of NDN Sync is to synchronize
the dataset namespace (the collection of data item names in
the dataset) among all participants of a Sync group. Having
learned the published data names, each participant may
decide whether and when to retrieve all or some of the data
items based on the application’s need.

Reliable dataset namespace Sync: This requirement de-
notes the protocol’s ability to deliver every dataset names-
pace update to all Sync participants. In the absence of per-
manent network partition, all participants should eventu-
ally learn all the data names in the shared dataset.

Low synchronization latency: To make distributed appli-
cations perform well, Sync must inform all participants
promptly of the shared dataset changes to meet the low-
latency requirement of applications such as online games.

Resilient performance: Networking environment may range

from stable infrastructure networks with a low loss rate
to ad-hoc wireless networks with intermittent connectiv-
ity. To provide a general transport service, a Sync protocol
should work well in both stable infrastructure networks
and mobile ad-hoc networks.

3.2 Components in Sync Protocol Design

Sync protocol development efforts identified three design
components early on. First, one needs to define a representa-
tion of the shared dataset’s namespace (dataset namespace
representation). Second, one needs an efficient way to encode
the dataset namespace in a defined data structure that allows
transmission over the network (namespace encoding). Third,
each participant needs to notify the others of any changes it
makes to the shared dataset (state change notification). We
illustrate each design component below.

The Evolution of Distributed Dataset Synchronization Solutions in NDN

Namespace Representation: Each participant maintains
the dataset namespace locally, i.e., the participant’s local
view of all data items generated so far. The design of the
namespace representation starts with considering the names-
pace for application-produced data items. We observe two
approaches to the dataset namespace representation. The
first one uses the application data names directly. Thus the
Sync namespace representation is simply a collection of
all the names in the shared dataset. The second approach
assumes that data by each producer P can be named se-
quentially. Thus all the data items produced by P can be
represented by a pair of [producer name, seq#], and the
namespace of the entire shared dataset is simply a list of
[producer name, seq#]-pairs, one for each participant. We
discuss the implications of both approaches in §6.1.

State Encoding: The goal of state encoding is to convert
the shared dataset namespace representation into a com-
pact form for transmission over potentially lossy networks.
One design requirement is an efficient encoding of the en-
tire shared dataset namespace. As we discuss in §6.1, state
encoding solutions are directly tied to the dataset names-
pace representation, and different solutions lead to different
design tradeoffs.

State Change Notification: With the data-centric NDN pro-

tocol, participants fetch Data by names. It is Sync’s respon-
sibility to inform all paricipants in a Sync group of data
production as soon as possible. For Sync to work, however,
participants in a group cannot fetch each other’s namespace
updates without naming individual participants. Therefore,
the dataset state updates exchange need to be carried using
multicast Sync Interest packets to the Sync group.
Up to now, we have observed two approaches. The first one
lets every participant pull new namespace changes by mul-
ticasting a Sync Interest and receiving new changes in reply
Data packets (Sync Replies). The second approach lets data
producers notify all others about changes by multicasting
a Sync Interest.

The use of Sync Interest multicast deserves a further clar-

ification: NDN is designed with built-in multicast delivery

of Data packets by forwarding Interest packets, guided by
router FIBs, towards the desired Data direction and merging

Interests carrying the same request. Note that Interest multi-

cast is different from Data multicast. While Data multicast is

inherently supported, Interest multicast requires multicast

routing support to forward Interests to all participant of a

Sync group. We further discuss this issue in §6.3,

4 Sync Protocol Design: Case Studies

Over ten different NDN Sync protocol designs have been
developed over the years [33], with later designs making
improvements based on lessons learned from previous ones.

Conference’17, July 2017, Washington, DC, USA

In this section, we examine the design choices of five repre-
sentative Sync protocols (ChronoSync, iSync, PSync, syncps,
and SVS), and validate our analysis with evaluation results.
We make the comparison in the context of a general use case,
looking at metrics such as the synchronization latency and
network traffic overhead.

We choose Mini-NDN [30] as our evaluation environ-
ment and emulate the topology of the GEANT research net-
work [19] with 45 nodes; each link has unlimited bandwidth
and a 10msec propagation delay. In each experiment run, we
randomly select 20 nodes (excluding 4 central nodes) to be
participants in a Sync group®. To observe each Sync proto-
col’s performance in stable and unstable environments, we
vary the loss rate of each link from zero to 20%. We vary the
publishing rate of each Sync participant from 1 data item
every 15 seconds to 2 data items per second (in evaluation
plots, the X-axis indicates the data publication rate of the
whole group). We experimented with setting the Sync Inter-
est lifetime of ChronoSync, PSync, and syncps to 1sec, 4sec
and 10sec; the results reported in this paper use 1sec as Sync
Interest Lifetime. Default settings are used for other Sync
protocol parameters. Error bars in the figures denote the 95%
confidence interval from 10 runs for every emulation setting.
The presented results include i) Sync latency: the time pe-
riod between a data item’s generation time and the time its
notification reaches another member; percentiles for indi-
vidual values are calculated and reported, ii) Sync protocol
overhead: for each published data item, the summation of
the number of Sync Interest and reply Data packets received
at every NDN forwarder including all end nodes, and iii)
reliability: the percentage of new publication notifications
received by all participants.

4.1 Encoding Dataset Namespace by Digest

The first Sync protocol, CCNx Sync [46] assumes that the
dataset namespace forms a hierarchical name-tree. It com-
putes a digest at each node on the tree from the bottom layer
up, and uses the root digest to represent the entire dataset
state. ChronoSync [56], as the second NDN Sync protocol,
takes the same approach of using a digest to to represent the
dataset state. However ChronoSync follows the sequential
naming convention described in §3.2, thus its dataset names-
pace is a list of [producer name, seq#] instead of a name-tree.
ChronoSync encodes the state by computing a cryptographic
hash over the list to create the state digest. Each participant
P then multicasts a Sync Interest I carrying its state digest
to inform others in the same Sync group of its own dataset
state. Under stable conditions where all participants have

3This study reports the evaluation of Sync protocols’ performance with a
specific number of Sync nodes; experimentation with different numbers are
ongoing, with initial results conforming to that reported in this paper.

Conference’17, July 2017, Washington, DC, USA

@ Sync Reply
Update of Node 3

< | <
@ Sync Interest

Query o Update > 7~~~
R2

@ Sync Interest

N

® Sync Reply
< Update of Node 5 !
- >

eb&‘%):il

&
o« @ Sync Interest

Update of Node 5

(a) Long-Lived Sync Interest (b) Notification Sync Interest

Figure 1: A simple scenario to demonstrate simultane-
ous publication issues.

., 80000 4 &= 50%tile; No Loss -&- 90%tile; No Loss ‘,.-I
g 30000 4 <&~ 50%tile; 20% Loss & - 90%tile; 20% Loss “‘_‘_..y“
>, 12000 o
g 5000 7 el e ok
8 20004 & * o—2 i———ﬁ
S 1000 4
%) 500 3
S 200
@100 4
50 44 T T T T T T T T
0 5 10 15 20 25 30 35 40

Data items published per second

Figure 2: Sync latency of ChronoSync.

synchronized dataset state, they issue identical Sync inter-
ests which are aggregated at routers. The example in Fig.1
shows that the Sync interests from participants P3 and P5
are aggregated at router R2 and only one is forwarded to P1.
In the absence of replies, each P sends Sync Interests period-
ically (ie., Sync period) before the previous one expires, with
a random delay jitter between 100-500msec.

In Fig. 1a, participant P1 multicasts a Sync Interest Ip;
carrying its state digest. Each receiver of Ip; compares the
state digest in Ip; with its local value. If the two are identical,
the receiver and P1 have the same dataset state, and the
receiver will keep Ip; pending locally. When P3 produces
a new data item, it recomputes the state digest and sends
an NDN Data packet in reply to the pending Ip;, and also
immediately sends a new Sync interest Ip; containing its
new state digest. In the absence of packet losses, P3’s reply
reaches all others in the Sync group. If P5 publishes new data
after both P3’s reply to Ip; and its new Sync interest have
been received by everyone in the group, P5’s new data will
also be successfully received by the whole group.

When an incoming state digest differs from the local value,
the receiver is informed of being out of sync with someone,
but cannot identify the exact namespace differences from the
digest. ChronoSync lets each participant P maintain a log
of recent digests, when a received state digest D, differs,
P checks D, against it digest log to see if D,..’s sender
lags behind. If P finds D, in the log, it sends a reply with
it current dataset state; if not, it waits for a random time
(delay jitter) for potential incoming Sync replies that may
resolve its puzzle. If no reply is received in time, P multicasts
a recovery Interest carrying Dy, hoping the sender of D,
or whoever has D,.., can reply.

One cause for unrecognized state digests is simultaneous
data publishing. NDN’s flow balance principle states that one
Interest retrieves one Data packet. Fig. 1a shows that, if P3
and P5 in the same Sync group produce new data and respond
to the same Sync Interest simultaneously, R2 forwards the
reply from P3 (due to a shorter path), and drops the one from
P5. Worse yet, if P3’s reply is lost between P1 and R2, P1
will be unaware of the new publications until it sends the
next Sync Interest, or receives a Sync Interest with updated
state digest. In either case, the Sync latency is increased
proportionally to the Sync period length.

Fig. 2 shows ChronoSync’s performance. In the absence
of packet losses, ChronoSync performs well at low publi-
cation rate; when publishing rate increases, simultaneous
publications become more likely which lead to unrecogniz-
able state digests, hence additional latency in resolution.
Compounding simultaneous publications with packet losses
further deteriorates performance. Under the condition of
40 data items published per second and 20% loss rate, the
90-percentile Sync latency is around 80sec. When the Sync
period is varied between 1 and 10sec, no significant impact
on Sync latency or overhead is observed.

4.2 Encoding Dataset Namespace by IBF

The lessons learned from ChronoSync suggest that, to quickly
reconcile dataset namespace differences, each Sync Interest
should carry information to help infer the exact differences. A
few followup protocols explored the use of Invertible Bloom
Filter (IBF) [13] for this purpose. IBF is a probabilistic and
space-efficient encoding for datasets that allows membership
queries and set difference calculation. Encoding a dataset
namespace in IBF and carrying it in a Sync Interest I enables
each recipient R of I to calculate the state difference between
itself and I’s sender. More specifically, when R receives an
IBF (f;) that differs from its local IBF (f2), R can extract the
elements corresponding to f -fi, i.e., elements encoded in f,
but not in f;. Note that a data name needs to first be hashed
into a number and inserted into the IBF. Since this hashing
is one-way, R can only infer the names it has that I’s sender
does not, but R cannot infer what name(s) are missing in R’s
local dataset namespace. Below we examine three IBF-based
Sync protocols: iSync, syncps, and PSync.

4.2.1 Supporting Application Names by Hierarchical IBF The
iSync protocol [15] was the first to use IBF. Its dataset names-
pace is a collection of general application data names. To
accommodate large datasets, iSync uses a 2-level structure
to encode the dataset namespace as shown in Fig. 3. iSync
first divides the whole dataset’s publications into multiple
collections, with each collection encoding its publication
names in a Collection IBF. The individual collection IBFs are
then grouped together to be encoded in a top level Sync IBF.

The Evolution of Distributed Dataset Synchronization Solutions in NDN

Sync IBF Digest |:|
A

eF Co,

cotectory Sync IBF Dlon g

)V Y| W
Collection IBF Collection IBF

“Rame A \ . N

e A e e R S

Data Collection

Figure 3: iSync’s Multi-Level IBF Structure

Alice Bob Cathy

L I: Sync IBF Di
igest .
F |- sync 1BE Digest >
ice" \B|
| Request Alice's Sync -
: - €quest Cathy:
s Sync IgF

D: Alice's g nc IBF

\: Request Collection \BE

D: Collection IBF

D: Cathy's SYRC B¢

I:
Request Collection IBF

D: Collection \BE
blication Name
\: Request PU I: Request Publicar:
W

D:

: Publication
: .
N} ¢ D; Publication Name
Updates Reconciled Q

Figure 4: Simultaneous publishing in iSync

iSync then computes the digest of the Sync IBF to be carried
in multicast Sync Interests.

iSync’s use of Sync Interests to multicast the digest of
the dataset state resembles the ChronoSync design, however
there is a fundamental difference between the two: iSync uses

Sync Interests do not solicit reply; they serve the purpose

of dataset state notification only. Assuming a Sync group of

three members, Alice, Bob, and Cathy. When Alice multicasts

a Sync Interests I4 as shown in Fig.4,

(1) If Bob detects a difference between the received digest
in I4 and its local digest, Bob fetches the Sync IBF from
Alice.

(2) When Bob receives the returned data packet containing
Alice’s Sync IBF, from which Bob can identify which
Collection IBF(s) that differs from its own, and retrieves
the corresponding Collection IBF Cyepmore from its owner
to compute the set differences between retrieved Cremote
and its local one.

(3) Bob then sends an Interest carrying the set difference
computed from the last step to retrieve the missing data
names.

Note that in all the above three steps, Bob retrieves informa-

tion from a specific node. Therefore if Cathy sends a Sync

interest around the same time as Alice, Bob can carry out the
dataset reconciliation with Cathy in parallel, enabling iSync
to support simultaneous publications as shown in Fig. 4. This
ability is based on the assumption that every IBF is main-
tained by a specific publisher.

iSync’s original implementation on CCNx no longer work-
ing, we are unable to run evaluation as we do with other

Conference’17, July 2017, Washington, DC, USA

£ ChronoSync; 90%tile
No Loss; No Jitter

Sync Latency [ms]
w
o
o
1

—4— 50%tile; No Loss & 90%tile; No Loss

—&— 50%tile; 20% Loss - @& 90%tile; 20% Loss
8§ 100 4 —4— Noloss —&— 20% Loss
>0 4
8 80
Y ©
22 60 -

n Y

§5 40
2o

©= i
2 20
[alP 0

0 5 10 15 20 25 30 35 40
Data items published per second

Figure 5: Sync latency and reliability using syncps.

Sync protocols. We view iSync’s support of general applica-
tion data names as a plus, however, this design choice also
implies that a growing dataset requires an increasing IBF
size. iSync’s 2-level IBF hierarchy could be extended to more
levels to handle larger dataset namespace, which would also
add more complexity and round trip delays to the dataset
reconciliation process. Two other protocols based on IBF,
syncps and PSync, address the dataset namespace scalability
in different ways as we explain below.

4.2.2 Circumventing Namespace Scalability Issues by Limit-
ing Synchronization Time Similar to iSync, syncps [39] sup-
ports application data names and encodes the dataset names-
pace in an IBF. To keep the IBF size under control, syncps
removes data names from the dataset after a predefined life-
time. Different from iSync which retrieves IBF in data packets,
syncps appends the IBF to the end of each Sync Interest’s
name and multicasts the Interest to the group. A participant
P receiving a Sync Interest computes the dataset difference
between the local and received IBFs. If the Interest sender
misses any data, P sends a reply that contains the missing
data. Different from other Sync protocols which synchronize
dataset namespace, syncps synchronizes the dataset directly
— this approach can work well for scenarios where all Sync
participants need all the produced data.

Like ChronoSync, syncps multicasts Sync Interests to so-
licit dataset changes, thus it shares similar issues in handling
simultaneous publications and packet losses (Section 4.1).
Moreover, if the recovery from simultaneous publications
or packet losses takes longer than the predefined data item
lifetime, some data items may be removed from the dataset
before being synchronized. As a result, syncps only provides
a weak consistency model in contrast with the other Sync
protocols, all of which are eventually consistent. This is con-
firmed by our evaluation results shown in Fig. 5, where a
data item’s lifetime is set to syncps’s default value of 2sec. In

Conference’17, July 2017, Washington, DC, USA

the absence of losses, the percentage of data items received
by all the participants drops from 100% to below 20% as the
publishing rate increases; with packet losses, the reliability
gets even worse. These losses may be mitigated by increasing
the data lifetime; this may however lead to an increase in
the size of the IBF, or an increased rate of false positives as
the degree of filling increases, due to the probabilistic nature
of the IBF.

However, thanks to its use of IBF in namespace encoding,
syncps significantly improves the Sync latency as compared
to ChronoSync: with 7 data items per sec (where syncps still
maintains a high delivery percentage) and without losses,
syncps’ 90-percentile Sync latency is around 0.1sec while
the same measure for ChronoSync? is almost 1sec.

4.2.3 Encoding Sequential Names in IBF The PSync [54] pro-
tocol supports two modes of operation: partial sync and full
sync. Here we focus on the latter which supports the same
dataset namespace synchronization in a group as the other
Sync protocols do.

To address the dataset namespace scalability issue, PSync
adopts the sequential naming convention. It encodes the
list of data names, i.e., /producer-name/latest-seq, in an IBF
and carries the IBF in a Sync Interest name as syncps does.
Encoding dataset state in IBF allows a PSync participant P
to identify the data names it has but the sender of a received
Sync Interest I does not. In this case, P sends a Sync Reply
to I containing those data names.

The high level operations in PSync are similar to those in
ChronoSync as shown in Fig. 1a, including the delay jittering
in sending periodic Sync interests. Because PSync also mul-
ticasts Sync Interests to solicit state changes from anyone
in the group, its performance is also affected by simultane-
ous publishing and packet losses as shown in Fig. 6. PSync
reliably synchronizes the dataset state under all evaluated
conditions; its adoption of the sequential naming convention
enables it to encode the entire dataset namespace in an IBF,
avoiding the namespace scaling issue faced by iSync (see
discussions in §6.2 regarding the upper bound on feasible
namespace size).

4.3 Using Dataset State Representation
Directly

Carrying IBF in a Sync protocol message M allow senders
and receivers of M to identify and reconcile differences be-
tween them as long as the differences are within the IBF’s
encoding limit; otherwise multiple exchanges are needed to
resolve the difference. In dynamic mobile environments, the

4syncps’s design does not include a delay jitter; to allow for a direct com-
parison of the protocols, we disabled ChronoSync’s delay jitter in Fig. 5.

2000 A
1000
500

200 1

100 o &= 50%tile; No Loss
E & 50%tile; 20% Loss

-&- 90%tile; No Loss
@+ 90%tile; 20% Loss

Sync Latency [ms]

50 A

T
0 5 10 15 20 25 30 35 40
Data items published per second

Figure 6: Sync latency of PSync.

dataset among participants can diverge significantly, mul-
tiple exchanges may also be infeasible during ad hoc en-
counters. Adopting the sequential data naming convention,
State Vector Sync (SVS) [31] takes a different state encoding
approach — directly carrying the entire dataset namespace
representation, encoded as [producer name, seq#]-pairs, in
each multicast Sync Interest, which was initially proposed in
VectorSync [48] and DSSN [51] (not discussed in this paper).

Similar to iSync, SVS treats Sync Interests as notifications,
without soliciting reply. Each participant sends Sync Interests
under two conditions: i) event-driven, to notify others about a
recent change, and ii) periodic, to mitigate potential losses of
event-driven messages. Fig. 1b shows two SVS participants
P3 and P5 using event-driven Sync Interests, Ips and Ips
respectively, to notify the group of their dataset updates due
to a new data item by each. Since Ips; and Ips carry different
dataset state, they are not merged by R2 and will both reach
P1. After P1 processes the state vectors carried in Ip3 and
Ips, its local dataset namespace is updated to the latest state,
demonstrating a solution to simultaneous publication. The
evaluation results in Fig. 7 show that the publishing rate has
no impact on Sync latency, and packet losses only make a low
impact. A higher publishing rate leads to higher number of
event-driven Sync Interests which compensate packet losses,
therefore the Sync latency drops with the publishing rate. We
also note that our evaluation confirms that all examined Sync
protocols can reliably synchronize the dataset namespace in
all tested settings, with syncps as exception.

SVS’s design decision to encode the raw dataset names-
pace state in each Sync Interest brings the advantage that
each receiver R of a Sync Interest fully understands the car-
ried dataset namespace, independent from R’s own state or
the number of previously missed messages. However, NDN
Interests are not secured by default; allowing a received In-
terest to change one’s state opens the door for abuses. SVS
prevents such abuse by signing all Sync Interests, as we
discuss in §5.3. Also, given Interest packet size limitations,
carrying the raw dataset namespace in Sync Interests may
become infeasible with increasing group size. We discuss
potential scaling solutions in §6.2.

The Evolution of Distributed Dataset Synchronization Solutions in NDN

_. 500 7] —4— 50%tile; No Loss &+ 90%tile; No Loss

g 1) —&— 50%tile; 20% Loss -:&- 90%tile; 20% Loss

g200 F

g Y

B 100 o ALY ETITTPY. X rETEEERFRC X EEE R PR PP P o

(%)]

g 50 _— o R RN N NP, e <TRRRLETT T COR R R P PP &=

7T E3 C S— =
T T T T T T T T T
0 5 10 15 20 25 30 35 40

Data items published per second

Figure 7: Sync latency of State Vector Sync (SVS).

The Sync protocols PLI-Sync [22] and ICT-Sync [2] were
developed in parallel with SVS. Both adopt the sequential
data naming convention and use Sync Interests to carry state-
vector as notifications only, with each differs in its unique
ways. PLI-Sync’s unique feature is in taking advantage of
sequential naming to optimistically prefetch the next data
item by long-lived data Interests, before being notified of the
data item. When a participant successfully fetches a new
data item, it informs the Sync protocol of the new name,
allowing Sync to set a longer Sync period. ICT-Sync utilizes
intermediate nodes deployed in the network to aggregate
Sync Interests from different participants carrying different
state vectors, which can help reduce both Sync latency and
overhead. To minimize the state vector size, ICT-Sync uses
numeric producer IDs instead of semantic names, which
requires Sync entities to maintain a mapping between the
numeric IDs and actual producer names.

5 Sync Protocol Design Space

The previous section described various Sync protocol designs.
We now reflect on their design choices to gain a better under-
standing of the design space. In §5.1 and §5.2, we summarize
the existing Sync protocols’ design choices with respect to
the basic design components identified in §3.2 and evaluate
their pros and cons. We then review the security implications
from certain design choices in §5.3.

5.1 State Representation and Encoding

Because a major goal of Sync protocols is to reliably syn-
chronize the shared dataset namespace among participants
in distributed applications, the first design decision is how to
represent the shared dataset namespace. We have identified
two design choices: (i) using application data names and
(ii) using sequential naming. For the time being, we assume
protocols may use either approach and defer a discussion on
the implications of sequential naming to §6.1.

The next design decision is how to encode the shared
namespace state. We have observed four design choices for
state encoding: (i) digest-based, as used by ChronoSync; (ii)
IBFs, as used by syncps and PSync; (iii) combination of IBF

Conference’17, July 2017, Washington, DC, USA

and digest, as used by iSync; and (iv) directly using the names-
pace representation, as used by SVS.

With digest-based encoding, a single digest or a digest
hierarchy is computed from the dataset namespace. While
ChronoSync chooses sequential data naming, one could also
compute a digest over an application name-tree as CCNx
does [46]. However, as we show in §4, a digest alone cannot
directly identify namespace differences.

iSync chooses application data names as the namespace
representation and is the first to use IBFs for state encoding.
As the dataset grows in size, iSync faces an IBF scalabil-
ity issue. It mitigates this issue by using an IBF hierarchy,
which adds protocol complexity, synchronization overhead,
and Sync latency. syncps circumvents the above scalability
problem by specifying a time limit on how long data items
are synchronized. Unfortunately doing so leads to unreli-
able synchronization (cf. Fig. 5). PSync eliminates the above
scalability problem by adopting sequential data naming as
the namespace representation, which reduces the number of
items encoded in IBFs from the number of data items to the
number of producers.

IBF identifies state differences by comparing a received
IBF with the local one. However, since an IBF can only en-
code numbers (not names directly), a node cannot directly
infer what names another node has but it is missing. This
leads to more message exchanges and longer Sync latency.
In contrast, by directly carrying the dataset namespace in
Sync Interests, SVS enables anyone receiving a Sync Interest
to interpret the carried namespace, independent from the
local dataset state. However, the dataset namespace can be
larger in size compared to using IBF encoding, thus carrying
the full dataset namespace has an impact on SVS’s scalability.
We discuss this issue with potential solutions in §6.2.

5.2 State Change Notification

With iSync as an exception,® all the other NDN Sync proto-
cols (including those not described in this paper) share two
design features. First, their Sync Interests carry an encod-
ing of the dataset namespace. Second, every participant in
a Sync group multicasts its Sync Interests to the group. A
multicast Sync Interest in this set of protocols has one of the
two semantics: (i) it pulls updates from the group; or (ii) it
notifies others about the sender’s dataset state.

As an example, Fig. 8 illustrates how the pull semantic
is handled in a network. Let us assume that 4 nodes are
participants of the same Sync group. When the group is in a
steady state, i.e. all participants have identical dataset state,

5As described in §4.2.1, iSync puts the Sync IBF digest in each Sync inter-
ests and multicast it to the group as one-way notifications; when dataset
state difference is detected, an iSync node performs a few rounds node-to-
node communication to reconcile the difference (Fig.4), assuming that each
Collection IBF is managed by a specific node.

Conference’17, July 2017, Washington, DC, USA

Sync Interest ——>
Node 5 Data I >
Node 6 Data p----- >

Figure 8: Participants Ps and P satisfy the same Sync
Interest, leading to a state divergence.

the multicast Sync Interests from different participants are
aggregated at routers, form 4 overlapping multicast Data
delivery trees, with each tree rooted at one Sync participant
and stretching its branches to all the others. The tree is
maintained by pending Sync Interests in the PIT of each
router on the tree. We make the following observations:

(1) Given the next namespace update time is unpredictable,
Sync Interests may stay in the PIT of each router along
the multicast tree, with the PIT entries being refreshed
by periodic Sync Interests before they expire.

(2) When a participant P produces new data Dp, P immedi-
ately send a Sync Reply as the response to the pending
Sync Interest, which is multicast-delivered to the group.
However, if a Sync Interest from any participant P1 is
lost, P1 will not receive the update about Dp; if another
member P2 receives the update, P2’s next Sync Interest
can inform P1 of the dataset state change but not the
information of Dp if IBF encoding is used.

(3) A multicast Sync Interest I,,, pulls for potential replies
from all the members in the group, but when multiple
recipients reply, at most one reply can reach I,,’s sender.
Different participants likely receives different updates
based on their distances to data sources, leading to dataset
state divergence. The example in Fig. 8 shows that P5
and P6 each send a reply to the pending multicast Sync
Interest; Routers R3 and R4 receive both replies and drop
the second one, thus P1 and P2 receive different replies.
Recovering from this divergence takes additional Sync
Interest-Reply exchanges.

Using multicast Sync Interests for notify semantics, as done

by SVS, removes the above-identified issues. As one-way

notifications, SVS Sync Interests can have short lifetime as
they do not pull replies and do not need to stay pending at
forwarders. If a Sync Interest I with the latest dataset state
is delivered to all participants, the group is synchronized
immediately; if I fails to reach some participants, a future
Sync Interest can compensate for all previously losses.
However, we note that Sync protocols using IBF encoding

cannot use Sync Interests for dataset state notification: a

participant P can tell what the sender of a Sync Interest has

missed, but cannot tell what itself is missing. Therefore, Sync

% 5000 :ihb**—*—é

E_ 2000 f 3

2@ 1000 v_.,*/‘—"'
§8 s00

88& 200 &

v

e i

(%

T
20 30 40

o 4
n
o
N
o
w
o
N
o
o
—
o

No Loss 20% Loss
Data items published per second
—— ChronoSync PSync —§— syncps —#— SVS

Figure 9: Sync latency across different protocols.

protocols using IBF encoding must rely on the pull semantic
of Sync Interests, which leads to above-identified issues.

Fig. 9 shows the Sync latency results of the evaluated
protocols. Without packet loss, protocols using pull seman-
tics (syncps, PSync, ChronoSync) exhibit a low latency at
low publishing rates®. With an increasing publishing rate,
simultaneous publishing becomes more frequent. For proto-
cols with pull semantics, simultaneous publications result in
multiple participants generating replies for the same Sync In-
terest, leading to Sync replies getting dropped and requiring
follow-up Sync Interests to retrieve all dataset updates (cf.
Fig. 1a). Hence, the Sync latency increases for those protocols,
while it stays constant for SVS with notify semantics.

5.3 Securing Sync Interests

In NDN, Interests retrieve a named piece of Data without
causing a state change of the producer. In SVS, Sync Interests
notify the latest dataset state and can thereby change re-
ceivers’ dataset state. To counteract malicious state changes,
Sync Interests must be authenticated in this case.

Sync Interests can be signed using either the sender’s key
or a secret group key. The first approach makes Sync Interests
no longer aggregatable. The second approach can keep Sync
Interests aggregatable but requires additional mechanisms
for maintaining the shared group key; moreover, if a rogue
participant in the group injects bogus Sync Interests, they
cannot be distinguished from other participants’ messages.
The current SVS design takes the first approach. SVS tries
to keep the number of Sync Interests low via Interest sup-
pression (see §4.3), Sync Interest aggregation may only bring
a minor gain, while using sender signatures keeps the de-
sign simple and improves security aspects. Fig. 10 shows the
protocol overhead comparison and suggests that the SVS’s
overhead with unaggregatable Sync interest remains low’.

It is also worth noting that Sync Interests in syncps and
PSync do not change the recipient’s dataset namespace (only

%ChronoSync and PSync’s Sync latency include delay jitter (see §4.1). Eval-
uations with lower delay jitter show Sync latency lowered proportionally.
7ChronoSync’s overhead drops below that of SVS at high publication rate,
because its delay jittering between 100-500msec damps Sync interest gener-
ation, while SVS multicast a Sync interest for every new publication.

The Evolution of Distributed Dataset Synchronization Solutions in NDN

?

Received packets
per Data item
=

Nw v O
1 L 1

0 10 20 30 40 0 10 20 30 40
No Loss 20% Loss
Data items published per second
—§— ChronoSync PSync == syncps —#— SVS

Figure 10: Average number of Sync Interest and reply
packets received by NDN forwarders including end
nodes in relation to each published data item.

replies to Sync Interests do), therefore, according to their
designs, are not secured.

6 Discussions

In this section we discuss two identified issues in Sync proto-
col designs: data naming and Sync protocol scalability, and
briefly touch on a related topic of multicast routing support.

6.1 Data Naming

To achieve reliable namespace synchronization, the data-
set state encoded in Sync Interests must be able to reliably
convey the dataset state of their senders to the receivers
over unreliable networks. This requirement cannot be met
without converting a collection of general application data
names into transport identifiers that are resilient to losses.
Although the three state encoding approaches, digest, IBF,
and direct use of the dataset namespace with sequential nam-
ing, all qualify as transport identifiers, digest lacks adequate
information to assist the namespace synchronization, and
using IBF to encode application names does not scale. This
leaving dataset namespace using sequential naming, either
encoded in IBF or directly carried in Sync interests, as the
viable choice at this time. However, applications in general
assign semantic, instead of sequential, names to data.

The above conflict reflects the different requirements in
data naming between applications and transport service. Un-
less/until new solutions are discovered, we observe that Sync
deems sequential data naming essential to meet the goals
defined in §3.1. This observation leads to two new issues.
First, a Sync protocol should provide a mapping between its
sequential naming and original application data names to
hide the former from applications. We note that sequential
naming retains the semantic data name prefix of a producer
and only abbreviates the lower part by a unique number. We
also point out that, different from application data names,
transport data identifiers, even by using sequence numbers,
are not permanent: it is infeasible for Sync to maintain an
ever increasing mapping table between application names

Conference’17, July 2017, Washington, DC, USA

and corresponding sequential names, and a sequence number
will eventually wrapping around, losing its uniqueness.

Second, and related, when a producer application passes
down a signed NDN data packet D, with its original names
to Sync, a remote consumer learns, and requests, the new
data item by its sequence number. This requires Sync to
encapsulate Dy, with its sequential name and securely bind
that name to the content (Dy.,). As an example, syncps
performs this encapsulation, albeit using IBF as the transport
identifier, in the following way: when a producer P1 receives
a Sync interest Ip; from P2, P1 encapsulate all the application
data packets that P2 misses in a reply Dp.,,. Once receiving
Dyew, P2 extracts the encapsulated application Data packets
and passes them to the application process for standard NDN
Data verification. Since the application Data packets carry
their own signatures, syncps fills the signature field of D¢,
with an integrity checksum by default, with an option of
using different signing policies defined in an encapsulation
security manager.

In summary, our analysis suggests that mapping appli-
cation data names to sequential naming for transport is a
viable direction and that more research is needed to examine
the name mapping and data encapsulation security designs.
An initial design including such mappings is discussed for a
publish-subscribe overlay on top of SVS [32]. In this design,
data with application names is encapsulated in data packets
named by SVS. Participants publish and retrieve the map-
ping data using so-called Mapping Interests. While SVS uses
sequence numbers as transport identifiers, these sequence
numbers are transparent to applications, which handle a

publish-subscribe APL
6.2 Scaling to Large Sync Groups

We now examine the impact of state encoding on scaling
to large groups, focusing on Sync protocols that adopt the
sequential naming convention. PSync encodes the dataset
namespace using IBFs. Normally, an IBF with d cells can
store d/1.5 elements with a low decoding failure probabil-
ity [13]. However, since PSync decodes the differences be-
tween two IBFs rather than decoding each IBF directly, its
IBF size should instead be proportional to the number of pro-
ducers with new data items since the last synchronization
between a node pair. When the network is stable and the
publishing rate is low, the number of differences should be 1;
when there are high losses or network partitions, the number
of differences can be as large as the number of producers.
Since the IBF size is limited by the Interest packet size, this
leads to an upper bound on the number of producers PSync
can support effectively in a highly dynamic environment.
SVS carries the dataset namespace directly in Sync In-
terests, making the size of Sync Interests likely to exceed
network’s MTU limit when a Sync group becomes large in

Conference’17, July 2017, Washington, DC, USA

size. A promising direction to scale SVS is utilizing SVS’s
unique feature: every entry in the state vector is indepen-
dent of others, making it possible for a Sync Interest to carry
as many, or as few, [producer-name, seq#]-pairs as needed.
This removes any specific limit on the group size that SVS
can support, and turns the question to which entries to put
into state vectors in each Sync Interest. Example choices for
selecting partial state vectors include n randomly selected
entries, with n being the number that fits network MTU
limit, or combining random selection with those of the most
recent data production. In a highly dynamic environment,
in order to avoid a latecomer needing to collect multiple
Sync Interests to learn the full dataset state, one could also
provide “bootstrapping” support: a latecomer may pick one
participant P listed in the first Sync interest it receives and
fetch the entire namespace from P.

6.3 Multicast Routing Support

As we reasoned in §5.2, a Sync protocol needs to multicast
Sync Interests to the group members. One perceived hur-
dle in rolling out IP multicast is the concern regarding its
scalability, a similar concern might arise for NDN Interest
multicast, challenging the viability of NDN Sync protocols
in general. We believe that multicast routing scalability is
beyond the scope of this SoK paper, and that the main hurdle
impeding IP multicast rollout is not the scalability barrier, as
evidenced by the relevant literature, standards, and vendor
implementations [5, 7, 8, 21, 25, 55].

6.4 Use of the NDN Protocol

All Sync protocols discussed in this work comply with the
NDN protocol specification and do not require protocol mod-
ifications. At first sight, however, some Sync protocol’s use
of NDN seems to not follow the original CCN/NDN proposal,
as presented in 2009 [24]. In the following, we discuss two
sync protocol design choices that might lead to confusion:

Interests do not solicit replies: NDN’s well-known com-
munication model is retrieving named content chunks using
Interest-Data exchange. Some Sync protocols use Sync In-
terests that do not retrieve Data replies. These Sync Inter-
ests’ carry the name of the dataset to synchronize and are
forwarded using the multicast strategy to all participants
interested in the dataset. When using replies, participants
having different dataset states, might reply the same Interest
with different state updates, as visualized in Fig. 1a. This
behavior interferes with NDN’s protocol design principles in
two ways: i) multiple response Data packets with the same
name carry different dataset state updates, resulting in non-
unique data names; ii) multiple Data items sent in response
to a single Interest interfere with flow balance. As a result,
some Data packets get dropped as unsolicited. Considering

these potential conflicts of multicast Sync Interest replies,
not soliciting Sync Interest replies seems appropriate.
Signed Interests: The idea of Interest packets is to request
a named content chunk, which by design should not disclose
the Interest sender’s identity. Some use-cases, e.g., the NFD
forwarder configuration [36] require interest sender authen-
tication. To allow for the authentication of Interest senders,
the Signed Interest format [37] was introduced. We want to
highlight that using interest signatures does not have to dis-
close the signer’s identity to third parties. The signature’s
key locator field identifies the used signing key; necessary in-
formation when verifying the signature. When carrying the
signing key name, the key locator disclosed the signers iden-
tity and thereby removes the Interest sender’s anonymity.
Following the example of [38], carrying the public key fin-
gerprint [16] as key locator enables signature verification
for those entities that already know the signers key, while
not disclosing the signer’s identity to others.

6.5 ALF, NDN Sync, and Message Queues

The concept of Application-Level Framing (ALF) [9] allows
applications to define semantically meaningful Application
Data Units (ADU). These self-contained ADUs may become
fragmented for delivery over the network by lower proto-
col layers, but need to be reassembled and kept intact for
being processed by applications. Both, NDN Sync protocols
and TCP/IP-based message queueing frameworks operate
based on the concept of ADU. Although having this com-
monality, the two protocol families are entirely different.
NDN Sync protocols synchronize a dataset’s state among
distributed applications. Each dataset entry corresponds to
an ADU. Thereby, NDN Sync is taking the role of signaling
the existence of ADUs.

In distributed applications, requirements for data delivery
vary in different aspects. Among them, different data con-
sumption patterns, latency, and reliability requirements. A
Sync protocol can not fulfill all application demands for data
retrieval, which is why higher-layer protocols build on top
of NDN Sync, as proposed in [43], realize data delivery. Simi-
larly are TCP/IP-based message queuing frameworks, such as
MQTT, ZeroMQ, RabbitMQ, or Kafka [20, 34, 35, 50], build
on top of TCP/IP transport protocols. TCP/IP’s transport
protocols transport bitstreams between two endpoints, and
hence, are not directly suited for the exchange of ADUs in
distributed applications. Message queuing frameworks patch
application semantics in terms of ADUs on communication
channels. This enables the use of high-level communica-
tion patterns, such as publish-subscribe, request-reply, or
communication pipelines over host-centric TCP/IP transport
protocols.

To summarize: while both NDN Sync and TCP/IP-based
message queuing frameworks have ADUs as the granularity

The Evolution of Distributed Dataset Synchronization Solutions in NDN

of data, their position in the protocol stack differs. NDN Sync
operates on the transport layer; since TCP/IP lacks seman-
tic application information in the protocol header, message
queuing frameworks need to operate on the application layer.
Due to the use of semantic names in NDN throughout the
entire protocol stack, higher-layer protocols built on top of
Sync may benefit from network-level features, such as data
multicast, in-network caching, and name-based forwarding.
Frameworks build on top of a TCP/IP transport, however,
suffer from TCP’s endpoint-oriented packet header and have
to deploy additional components, such as MQTT’s broker
nodes, in the network when requiring network support.

7 Related Work

This section briefly surveys the research areas of file syn-
chronization, distributed consensus protocols, and reliable
multicast, which are closely related to distributed dataset
synchronization.

File and Folder Synchronization: This area of research
has a long history. The rsync algorithm [1] synchronizes
files and folders between two nodes. Setting up a central
server extends file sharing to multiple participants, as pro-
vided by public cloud providers [12, 17] as well as private
clouds [41, 49]. Peer-to-peer protocols [10, 26] move file
sharing towards decentralized architectures by creating ap-
plication layer overlays. All the above mentioned systems
synchronize files via pairwise host-to-host communication;
multicast, if used at all, is implemented at application layer.
NDN Sync moves the synchronization process among multi-
ple parties down to transport layer and increases network
efficiency by fully utilizing NDN’s built-in multicast data
delivery and in-network caching. NDN’s security support
further provides integrity and authenticity of files even when
not retrieved from origin publishers or trusted servers.
Distributed Consensus Protocols: One of the most well-
known consensus algorithms is Paxos [27] which performs
a two-phase commit process among the participants of dis-
tributed systems to achieve consistency. A centralized con-
troller can orchestrate all participants in the process to allow
everyone to propose, accept, and learn accepted values. In
the absence of a controller, Paxos participants communicate
with each other to reaching consensus. This process requires
reliable n X n communications, with n = number of partici-
pants, and can be achieved by setting up nxn TLS channels, a
costly solution. The fundamental issue is that the application
layer’s focus on data cannot be effectively mapped to the
network level service of connecting nodes. While implemen-
tations of Paxos such as Multi-Ring Paxos [29] can leverage
IP multicast [11], achieving multicast in today’s Internet is
an inherently challenging exercise as explained next.

Conference’17, July 2017, Washington, DC, USA

Reliable Multicast: The concept of IP multicast [11] was
introduced around the same time as Stonebraker predicted
the need for distributed DB systems [42]. Different from
the latter, however, issues including multicast congestion
control and reliable multicast delivery hampered its wide
deployment [44]. Many reliable multicast solutions [40], in-
cluding SRM [14], are based on the concept of Application
Level Framing (ALF) [9], which suggests that network trans-
port should preserve self-contained Application Data Units
(ADUs) that are suitable for cross-layer processing. How-
ever, there is a fundamental mismatch between ADUs and
multicast groups: the former focuses on data items, while
the latter on groups of nodes. As a result, data may be multi-
cast only to predefined groups of nodes, and this constraint
makes achieving effecient disemmination of data to only
the processes that require it very difficult. This mismatch
also makes efficient loss recovery difficult, as reliable multi-
cast desires retransmissions of specific missing ADUs from
nearby members[28], while multicast-capable routers have
no concept of ADUs and deliver all packets to the whole
group.

The ALF concept and receiver-driven multicast ADU deliv-
ery provide two basic ingredients in the NDN design: NDN
data packets represent ADUs identified by application-level
names, and NDN lets consumers fetch desired data items.
Doing so removes the above-mentioned mismatch between
network and upper layers. Sync allows organizing data trans-
port according to application needs, which renders Sync as a
framework for efficient reliable multicast solutions via NDN.
Moreover, this leads to the potential of using Sync to address
other distributed system synchronization problems, such as
those faced by distributed databases and Paxos.

8 Conclusion

This paper reports a number of identified design patterns
shared by NDN Sync protocol designs and their impact on the
latency, reliability, overhead, and security in dataset synchro-
nization. In particular we notice the adoption of sequential
data naming convention and its implication for a Sync proto-
col’s scalability, the use of IBF in encoding the dataset state
and the implication on dataset state exchanges, and the use
of multicast Sync interests to either pull latest dataset state
changes or to notify the group about dataset state changes,
and the associated impact on protocol performance.

We believe we are still in an early stage in the Sync pro-
tocol development, but we are confident in the important
role a well-designed Sync protocol will play in future dis-
tributed applications developed over NDN. By summarizing
the lessons learned and identifying the remaining issues, we
hope that this work provides a cornerstone for future Sync
protocol development efforts.

Conference’17, July 2017, Washington, DC, USA

To foster reproducibility in research, source code resulting
from this work is available under open-source licensing [6].

References

(1]
(2]

—
=)
—

(10]

(11]

[12

—

(13

=

(14

=

(15

=

16]
(17]

(18]

(19]

1998. The rsync algorithm. Technical Report.

Hila Ben Abraham, Jyoti Parwatikar, John DeHart, Adam Drescher,
and Patrick Crowley. 2018. Decoupling information and connectivity
via information-centric transport. In ICN 2018 - Proceedings of the 5th
ACM Conference on Information-Centric Networking. 54—66. https:
//doi.org/10.1145/3267955.3267963

B. Adamson, C. Bormann, M. Handley, and J. Macker. 2009. NACK-
Oriented Reliable Multicast (NORM) Transport Protocol. RFC 5740.
Alexander Afanasyev, Zhenkai Zhu, Yingdi Yu, Lijing Wang, and Lixia
Zhang. 2015. The Story of ChronoShare, or How NDN Brought Dis-
tributed Secure File Sharing Back. In Proc. of IEEE MASS Workshop on
Content-Centric Networks.

Rahul Aggarwal and Eric C. Rosen. 2012. Multicast in MPLS/BGP IP
VPNs. RFC 6513. https://doi.org/10.17487/RFC6513

Anonymous ICN Authors. 2021. Repoducibility Set for "The Evolution
of Distributed Dataset Synchronization Solutions in NDN". https:
//link-added-in-cam.ready

T. Bates, R. Chandra, D. Katz, and Y. Rekhter. 2007. RFC4760: Multipro-
tocol Extensions for BGP-4. Technical Report.

Cisco Systems. 2004. Cisco I0S IPv4 Multicast Technologies.
https://www.cisco.com/c/dam/en/us/products/collateral/ios-nx-os-
software/ip-multicast/product_data_sheet0900aecd8031080b.pdf
accessed: 2021-05-17.

David D. Clark and David L. Tennenhouse. 1990. Architectural consid-
erations for a new generation of protocols. ACM SIGCOMM Computer
Communication Review (1990), 200-208. https://doi.org/10.1145/99508.
99553

Bram Cohen. 2008. The BitTorrent Protocol Specifica-
tion. https://web.archive.org/web/20140208002821/http:
//bittorrent.org/beps/bep_0003.html accessed: 2021-05-17.

Steve Deering. 1989. RFC1112: Host extensions for IP multicasting.
Technical Report.

Dropbox, Inc. 2021. Dropbox Homepage. https://www.dropbox.com/
accessed: 2021-05-17.

David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Vargh-
ese. 2011. What'’s the difference?: efficient set reconciliation without
prior context. In SIGCOMM.

Sally Floyd, Van Jacobson, Ching Gung Liu, Steven McCanne, and Lixia
Zhang. 1997. A reliable multicast framework for light-weight sessions
and application level framing. IEEE/ACM Transactions on Networking
5,6 (1997), 784-803. https://doi.org/10.1109/90.650139

Wenliang Fu, Hila Ben Abraham, and Patrick Crowley. 2015. Synchro-
nizing namespaces with invertible bloom filters. In 2015 ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS). 123-134.

J. Galbraith and R. Thayer. 2006. RFC4716: The Secure Shell (SSH) Public
Key File Format. Technical Report.

Google LLC. 2021. Cloud Storage for Work and Home — Google Drive.
https://drive.google.com/ accessed: 2021-05-17.

Peter Gusev and Jeff Burke. 2015. NDN-RTC: Real-Time Videocon-
ferencing over Named Data Networking. In Proceedings of the 2Nd
International Conference on Information-Centric Networking (ICN ’15).
ACM, New York, NY, USA.

GEANT project. 2018. GEANT topology map.
//www.geant.org/Networks/Pan-European_network/Pages/
GEANT _topology_map.aspx accessed: 2021-05-10.

https:

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

Pieter Hintjens. 2013.
O’Reilly Media, Inc.
Hugh Holbrook and Storigen Systems. 2006. Source-Specific Multicast
for IP. RFC 4607. https://doi.org/10.17487/RFC4607

Yi Hu, Constantin Serban, Lan Wan, Alex Afanasyev, and Lixia Zhang.
2020. PLI-Sync: Prefetch Loss-Insensitive Sync for NDN Group Stream-
ing. (2020). https://www.nist.gov/news-events/events/2020/09/ndn-
community-meeting Named Data Networking Community Meeting
2020 (NDNComm’20).

V. Jacobson. 1988. Congestion Avoidance and Control. In Symposium
Proceedings on Communications Architectures and Protocols (SSIGCOMM
’88). ACM, New York, NY, USA. https://doi.org/10.1145/52324.52356
Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass,
Nicholas H. Briggs, and Rebecca L. Braynard. 2009. Networking Named
Content. In CONEXT ’09: Proceedings of the 5th International Conference
on Emerging Networking Experiments and Technologies. ACM, New
York, NY, USA, 1-12. https://doi.org/10.1145/1658939.1658941
Juniper Networks, Inc. 2021. Multicast Protocols User Guide.
https://www.juniper.net/documentation/us/en/software/junos/
multicast/index.html accessed: 2021-05-17.

Patrick Kirk. 2003. Gnutella — A Protocol for a Revolution. http://rfc-
gnutella.sourceforge.net/

Leslie Lamport. 1998. The Part-Time Parliament. ACM Transactions
on Computer Systems 16, 2 (May 1998), 133-169. https://doi.org/10.
1145/279227.279229

Ching-Gung Liu, Deborah Estrin, Scott Shenker, and Lixia Zhang.
1998. Local Error Recovery in SRM: Comparison of Two Approaches.
IEEE/ACM Trans. Netw. 6, 6 (Dec. 1998), 686—699. https://doi.org/10.
1109/90.748082

Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. 2012. Multi-
Ring Paxos. In IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN 2012). 1-12. https://doi.org/10.1109/DSN.
2012.6263916

Mini-NDN Authors. 2021. Mini-NDN: A Mininet-based NDN emulator.
minindn.memphis.edu/ accessed: 2021-05-10.

Philipp Moll, Varun Patil, Nishant Sabharwal, and Lixia Zhang. 2021.
A Brief Introduction to State Vector Sync. Technical Report NDN-0073.
NDN.

Philipp Moll, Varun Patil, and Lixia Zhang. 2021. Resilient Brokerless
Publish-Subscribe over NDN. In Under review for: Military Communi-
cations Conference. IEEE.

Philipp Moll, Wentao Shang, Yingdi Yu, Alexander Afanasyev, and
Lixia Zhang. 2021. A Survey of Distributed Dataset Synchronization
in Named Data Networking. Technical Report NDN-0053, Revision 2.
Named Data Networking. 1-18 pages.

mgqtt.org. 2020. MQTT: The Standard for IoT Messaging.
//mqtt.org/ accessed: 2021-07-19.

Neha Narkhede, Gwen Shapira, and Todd Palino. 2017. Kafka: The
Definitive Guide: Real-Time Data and Stream Processing at Scale (1 ed.).
O’Reilly Media, Inc.

NDN Project team. 2018. NFD Management protocol. (2018). https:
//redmine.named-data.net/projects/nfd/wiki/Management accessed:
2021-07-29.

NDN Project team. 2021. NDN Packet Format Specification version
0.3: Signed Interest. (2021). https://named-data.net/doc/NDN-packet-
spec/current/signed-interest.html accessed: 2021-07-29.

Kathleen Nichols. 20121. Trust Schemas and ICN: Key to Secure IoT.
In Proceedings of the 8th ACM Conference on Information-Centric Net-
working (ICN °21). Association for Computing Machinery, New York,
NY, USA.

Kathleen Nichols. 2019. Lessons Learned Building a Secure Network
Measurement Framework Using Basic NDN. In Proceedings of the

ZeroMQ: messaging for many applications.

https:

The Evolution of Distributed Dataset Synchronization Solutions in NDN

(44

(45

(46

(47

[48

[49

(50

[51

[52

[53

(54

(55

[56

[57

=

=

= =

—

[t

—

]

—

—

[t

=

=

=

—

6th ACM Conference on Information-Centric Networking (ICN °19). As-
sociation for Computing Machinery, New York, NY, USA, 112-122.
https://doi.org/10.1145/3357150.3357397

Katia Obraczka. 1998. Multicast transport protocols: a survey and
taxonomy. IEEE Communications Magazine 36, January (1998), 94—
102.

ownCloud GmbH. 2021. ownCloud - share files and folders, easy and
secure. https://owncloud.com/ accessed: 2021-05-17.

M. Tamer Ozsu and P. Valduriez. 1991. Distributed database systems:
where are we now? Computer 24, 8 (1991), 68-78. https://doi.org/10.
1109/2.84879

Varun Patil, Philipp Moll, and Lixia Zhang. 2021. Higher-level transport
APIs on top of NDN Sync. In Under review for: 8th ACM Conference on
Information-Centric Networking. ACM.

Adrian Popescu, Doru Constantinescu, David Erman, and Dragos Ilie.
2007. A survey of reliable multicast communication. NGI 2007: 2007
Next Generation Internet Networks - 3rd EuroNGI Conference on Next
Generation Internet Networks: Design and Engineering for Heterogeneity
(2007), 111-118. https://doi.org/10.1109/NGI.2007.371205

Jon Postel. 1981. RFC793: Transmission Control Protocol. Technical
Report.

ProjectCCNx. 2012. CCNx Synchronization Protocol. CCNx 0.8.2
documentation. https://github.com/ProjectCCNx/ccnx/blob/master/
doc/technical/SynchronizationProtocol.txt

Klaus Schneider, Cheng Yi, Beichuan Zhang, and Lixia Zhang. 2016. A
Practical Congestion Control Scheme for Named Data Networking. In
Proc. of ACM ICN.

Wentao Shang, Alexander Afanasyev, and Lixia Zhang. 2018. Vec-
torSync: Distributed Dataset Synchronization over Named Data Net-
working. Technical Report NDN-0056. NDN.

Synology Inc. 2021. Synology Drive | Your private cloud for file
access and sharing anywhere. https://www.synology.com/en-
us/dsm/feature/drive accessed: 2021-05-17.

VMware Inc. 2021. Messaging that just works — RabbitMQ. https:
//www.rabbitmg.com/ accessed: 2021-07-19.

X. Xu, H. Zhang, T. Li, and L. Zhang. 2018. Achieving Resilient Data
Availability in Wireless Sensor Networks. In 2018 IEEE International
Conference on Communications Workshops (ICC Workshops).

Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan Wang, Beichuan
Zhang, and Lixia Zhang. 2013. A Case for Stateful Forwarding Plane.
Computer Communications: ICN Special Issue 36, 7 (April 2013), 779—
791.

Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc
claffy, Patric Crowley, Christos Papadopoulos, Lan Wang, and Be-
ichuan Zhang. 2014. Named Data Networking. ACM Computer Com-
munication Reviews (June 2014). http://dx.doi.org/10.1145/2656877.
2656887

Minsheng Zhang, Vince Lehman, and Lan Wang. 2017. Scalable Name-
based Data Synchronization for Named Data Networking. In Proceed-
ings of the IEEE Conference on Computer Communications (INFOCOM).

Zhaohui Zhang, Lenny Giuliano, Eric C. Rosen, Karthik Subramanian,
and Dante J. Pacella. 2015. Global Table Multicast with BGP Multicast
VPN (BGP-MVPN) Procedures. RFC 7716 (2015), 1-22. https://doi.org/
10.17487/RFC7716

Zhenkai Zhu and Alexander Afanasyev. 2013. Let’s ChronoSync: De-
centralized Dataset State Synchronization in Named Data Networking.
In Proceedings of the 21st IEEE International Conference on Network Pro-
tocols (ICNP 2013). Goettingen, Germany. http://icnp13.informatik.uni-
goettingen.de/index html

Zhenkai Zhu, Sen Wang, Xu Yang, Van Jacobson, and Lixia Zhang.
2011. ACT: audio conference tool over named data networking. In
Proceedings of the ACM SIGCOMM workshop on Information-centric

networking.

Conference’17, July 2017, Washington, DC, USA

