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Abstract—By adhering to the dictum, “No causation without
manipulation (treatment, intervention)”, cause and effect data
analysis represents changes in observed data in terms of changes
in the causal factors. When causal factors are not amenable for
active manipulation in the real world due to current technological
limitations or ethical considerations, a counterfactual approach
performs an intervention on the model of data formation. In the
case of object representation or activity (temporal object) rep-
resentation, varying object parts is generally unfeasible whether
they be spatial and/or temporal. Multilinear algebra, the algebra
of higher order tensors, is a suitable and transparent framework
for disentangling the causal factors of data formation. Learning a
part-based intrinsic causal factor representations in a multilinear
framework requires applying a set of interventions on a part-
based multilinear model. We propose a unified multilinear model
of wholes and parts. We derive a hierarchical block multilinear
factorization, the M -mode Block SVD, that computes a disentan-
gled representation of the causal factors by optimizing simulta-
neously across the entire object hierarchy. Given computational
efficiency considerations, we introduce an incremental bottom-up
computational alternative, the Incremental M -mode Block SVD,
that employs the lower level abstractions, the part representations,
to represent the higher level of abstractions, the parent wholes.
This incremental computational approach may also be employed
to update the causal model parameters when data becomes
available incrementally. The resulting object representation is
an interpretable combinatorial choice of intrinsic causal factor
representations related to an objects recursive hierarchy of wholes
and parts that renders object recognition robust to occlusion and
reduces training data requirements.

Index Terms—causality, counterfactuals, explanatory variables,
latent representation, factor analysis, multilinear algebra, M-mode
SVD, block tensor factorization, hieararchical tensor hierarchical
representation, object recognition, image analysis

I. INTRODUCTION: PROBLEM DEFINITION
Developing causal explanations for correct results or for failures
from mathematical equations and data is important in developing
a trustworthy artificial intelligence, and retaining public trust.
Causal explanations are germane to the “right to an explanation”
statute [15], [13] i.e., to data driven decisions, such as those
that rely on images. Computer graphics and computer vision
problems, also known as forward and inverse imaging problems,
have been cast as causal inference questions [40], [42] consistent
with Donald Rubin’s quantitative definition of causality, where
“A causes B” means “the effect of A is B”, a measurable
and experimentally repeatable quantity [14], [17]. Computer
graphics may be viewed as addressing analogous questions to
forward causal inferencing that addresses the “what if” question,
and estimates the change in effects given a delta change in a
causal factor. Computer vision may be viewed as addressing
analogous questions to inverse causal inferencing that addresses
the “why” question [12]. We define inverse causal inference
as the estimation of causes given an estimated forward causal
model and a set of observations that constrain the solution set.

Natural images are the composite consequence of multiple
factors related to scene structure, illumination conditions,
and imaging conditions. Multilinear algebra, the algebra of
higher-order tensors, offers a potent mathematical framework
for analyzing the multifactor structure of image ensembles
and for addressing the difficult problem of disentangling
the constituent factors, Fig. 2. (Vasilescu and Terzopoulos:
TensorFaces 2002 [43], [44], MPCA and MICA 2005 [46],
kernel variants [40], Multilinear Projection 2007/2011[47],
[41])

Fig. 1: Data tensor, D, expressed in terms of a hierarchical data tensor, DH, a mathematical instantiation of a tree data structure
where D = DH ×1 I1x · · · ×c Icx . . . ICx, versus an independent bag of parts/sub-parts, or a data tensor with a reparameterized
measurement mode in terms of regions and sub-regions. An object hierarchy may be based on adaptive quad/triangle based
subdivision of various depths [38], or a set of perceptual parts of arbitrary shape, size and location. Images of non-articulated
objects are best expressed with hierarchical data tensors that have a partially compositional form, where all the parts share the
same extrinsic causal factor representations, Fig. 3b. Images of objects with articulated parts are best expressed in terms of
hierarchical data tensors that are fully compositional in the causal factors, Fig. 3c. Images of non-articulated objects may also be
represented by a fully compositional hierarchical data tensor, as depicted by the TensorTrinity example above.
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Scene structure is composed from a set of objects that appear
to be formed from a recursive hierarchy of perceptual wholes
and parts whose properties, such as shape, reflectance, and
color, constitute a hierarchy of intrinsic causal factors of
object appearance. Object appearance is the compositional
consequence of both an object’s intrinsic causal factors, and
extrinsic causal factors with the latter related to illumination
(i.e. the location and types of light sources), and imaging (i.e.
viewing direction, camera lens, rendering style etc.). Intrinsic
and extrinsic causal factors confound each other’s contributions
hindering recognition [42].

“Intrinsic properties are by virtue of the thing itself and nothing
else” (David Lewis, 1983 [22]); whereas extrinsic properties are
not entirely about that thing, but as a result of the way the thing
interacts with the world. Unlike global intrinsic properties, local
intrinsic properties are intrinsic to a part of the thing, and it may
be said that a local intrinsic property is in an “intrinsic fashion”,
or “intrinsically” about the thing, rather than “is intrinsic” to
the thing [19].

Cause and effect analysis models the mechanisms of data
formation, unlike conventional statistical analysis and conven-
tional machine learning that model the distribution of the
data [29]. Causal modeling from observational studies are
suspect of bias and confounding with some exceptions [8],
[34], unlike experimental studies [31], [32] in which a set of
active interventions are applied, and their effect on response
variables are measured and modeled. The differences between
experimental studies, denoted symbolically with Judea Pearl’s
do-operator [29], and observational studies are best exemplified
by the following expectation and probability expressions

E(d|c) 6= E(d|do(c))
P (d|c)︸ ︷︷ ︸ 6= P (d|do(c))︸ ︷︷ ︸,

From Observational Studies: From Experimental Studies:
Association, Correlation, Prediction Causation

where d is a multivariate observation, and c is a hypothesized
or actual causal factor. Pearl and Bareinboim [30], [2] have
delineated the challenges of generalizing results from experi-
mental studies to observational studies by parameterizing the
error based on the possible error inducing sources.

The multilinear (tensor) structural equation approach is a suitable
and transparent framework for disentangling the factors of
data formation that has been employed in psychometrics [37],
[16], [6], [3] econometrics [26],chemometrics [5], [1], signal
processing [9], [10], [24], [27] computer vision [44], [11], [49],
[50], computer graphics [39], [45], [48], [18], [25], [28], and
machine learning [40], [46], [7], [36].

Adhering to the dictum, “No causation without manipulation
(treatment, intervention)” [32], [20] each causal factor is varied
one at a time while holding the rest fixed, and their effects on
the response variables are measured and modeled by a data
tensor model. The best evidence comes from randomized com-
parative studies. However, when causal factors are not amenable
for manipulation due to current technological limitations or
ethical considerations, a counterfactual approach is required.
Rather than performing a manipulation in the real world, a
counterfactual approach performs an intervention on the model.

In the case of object representation or activity (temporal object)
representation, varying object parts is generally unfeasible

whether they be spatial or temporal. Learning a hierarchy of
intrinsic causal factor representations requires applying a set
of interventions on the structural model, hence it requires a
part-based multilinear model, Fig 1.

This paper proposes a unified multilinear model of wholes
and parts that defines a data tensor in terms of a hierarchical
data tensor, DH, a mathematical instantiation of a tree data
structure. Our hierarchical data tensor is a mathematical con-
ceptual device that enables us to derive a hierarchical block
multilinear factorization, an M -mode Block SVD, that optimizes
simultaneously across the entire object hierarchy and allows
for different tree parametrizations for the intrinsic versus the
extrinsic causal factors. Given computational considerations, we
develop an incremental computational alternative that employs
the lower level abstractions, the part representations, to represent
the higher level of abstractions, the parent wholes.

Our hierarchical block multilinear factorization, M -mode Block
SVD, disentangles the causal structure by computing statistically
invariant intrinsic and extrinsic representations. The factorization
learns a hierarchy of low-level, mid-level and high-level features.
Our hybrid approach mitigates the shortcomings of local features
that are sensitive to local deformations and noise, and the
shortcomings of global features that are sensitive to occlusions.
The resulting object representation is a combinatorial choice
of part representations, that renders object recognition robust
to occlusion and reduces large training data requirements. This
approach was employed for face verification by computing a
set of causal explanations (causalX) [42].

II. RELEVANT TENSOR ALGEBRA

We will use standard textbook notation, denoting scalars by
lower case italic letters (a, b, ...), vectors by bold lower case
letters (a,b, ...), matrices by bold uppercase letters (A,B, ...),
and higher-order tensors by bold uppercase calligraphic letters
(A,B, ...). Index upper bounds are denoted by italic uppercase
(i.e., 1 ≤ i ≤ I). The zero matrix is denoted by 0, and the
identity matrix is denoted by I. References [21], [33] provide
a quick tutorial, but references [40], [46], [41] are an indepth
treatment of tensor based factor analysis.

Briefly, the natural generalization of matrices (i.e., linear
operators defined over a vector space), tensors define multilinear
operators over a set of vector spaces. A “data tensor” denotes
an M -way data array.

Definition 1 (Tensor): Tensors are multilinear mappings over a
set of vector spaces, RIc , 1 ≤ c ≤ C, to a range vector space
RI0 :

A :
{
RI1 × RI2 × · · · × RIC

}
7→ RI0 . (1)

The order of tensor A ∈ RI0×I1×···×IC is M = C + 1. An
element of A is denoted as Ai0i1...ic...iC or ai0i1...ic...iC , where
1 ≤ i0 ≤ I0, and 1 ≤ ic ≤ Ic.

The mode-m vectors of an M -order tensor A ∈ RI1×I2×···×IM

are the Im-dimensional vectors obtained from A by varying
index im while keeping the other indices fixed. In tensor
terminology, column vectors are the mode-1 vectors and row
vectors as mode-2 vectors. The mode-m vectors of a tensor are
also known as fibers. The mode-m vectors are the column
vectors of matrix A[m] that results from matrixizing (a.k.a.
flattening) the tensor A.
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(a) (b)
Fig. 2: (a) Forward Causal Inference: A vectorized image, d, is represented by a set of coefficient vectors, one for the illumination,
the viewing conditions, and the person (l,v,p) and expressed mathematically by d = T ×L l

T ×V v
T ×P p

T. The TensorFaces
basis, T , governs the interaction between the causal factors of data formation [46]. (For display only, the mean was added back.)
(b) Inverse Causal Inference: While TensorFaces (Multilinear-PCA or Multilinear-ICA [46]) learns the interaction between the causal
factors from training data, it does not prescribe an approach for estimating the causal factors from one or more unlabeled test images
that need to be enrolled or recognized. For an unlabeled vectorized test image dnew, the causal factor labels are estimated through
a multilinear projection algorithm [47], [41] that is succinctly expressed as the M-mode SVD/CP

(
T +x ×T

x dnew

)
≈ rL ◦ rV ◦ rP

where rL, rV, and rP, are the estimated latent representations from which the view, illumination and person label may be inferred.

Definition 2 (Mode-m Matrixizing): The mode-m matrixiz-
ing of tensor A ∈ RI1×I2×...IM is defined as the matrix
A[m] ∈ RIm×(I1...Im−1Im+1...IM ). As the parenthetical ordering
indicates, the mode-m column vectors are arranged by sweeping
all the other mode indices through their ranges, with smaller
mode indexes varying more rapidly than larger ones; thus,

[A[m]]jk= ai1...im...iM , where (2)

j = im and k = 1 +

M∑
n=0
n 6=m

(in − 1)

n−1∏
l=0
l 6=m

Il.

A generalization of the product of two matrices is the product
of a tensor and a matrix [9].

Definition 3 (Mode-m Product, ×m): The mode-m product
of a tensor A ∈ RI1×I2×···×Im×···×IM and a matrix B ∈
RJm×Im , denoted by A ×m B, is a tensor of dimensionality
RI1×···×Im−1×Jm×Im+1×···×IM whose entries are computed by

[A×m B]i1...im−1jmim+1...iM=
∑
im

ai1...im−1imim+1...iM bjmim ,

C = A×m B.
matrixize

tensorize
C[m] = BA[m].

The M -mode SVD (aka. the Tucker decomposition) is a
“generalization” of the conventional matrix (i.e., 2-mode) SVD
which may be written in tensor notation as

D = U1SU
T
2 ⇔ D = S×1 U1 ×2 U2. (3)

The M -mode SVD orthogonalizes the M spaces and decom-
poses the tensor as the mode-m product, denoted ×m , of
M -orthonormal mode matrices, and a core tensor Z

D = Z ×1 U1 ×2 U2 · · · ×m Um · · · ×M UM . (4)

III. HIERARCHICAL BLOCK TENSOR FACTORIZATIONS OF D
Within the tensor mathematical framework, a M -way array or
“data-tensor”, D ∈ RI0×I1···×Ic···×IC contains a collection of

vectorized and centered observations,1 di1...ic...iC ∈ RI0 that are
the result of C causal factors. The c causal factor (1 ≤ c ≤ C)
takes one of Ic values that are indexed by ic, 1 ≤ ic ≤ Ic. An
observation that is result of the confluence C causal factors is
modeled by a multilinear structural equation with multimode
latent variables, rc, that represent the causal factors

di1,...,ic,...,iC = T ×1 r1
T · · ·×c rc

T · · ·×C rC
T + εi1,...,ic,...,iC , (5)

where T = Z ×0 U0 is the extended core which modulates
the interaction between the latent variables, rc, that represent
the causal factors and εi1,...,ic,...,iC ∈ N (0,Σ) is an additive
identically and independently distributed (IID) Gaussian noise,
Fig. 2.

A. Hierarchical Data Tensor, DH

We identify a general base case object and two special cases.
A base case object may be composed of (i) two partially
overlapping children-parts and parent-whole that has data not
contained in any of the children-parts, (ii) a set of non-
overlapping parts, or (iii) a set of fully overlapping parts. The
tensor representation of an object with fully overlapping parts,
Fig. 3(e), resembles the rank-(L,M,N) or a rank-(L,M, ·)
block tensor decomposition [10].2

The data wholes and parts are extracted by employing a filter
bank {Hs ∈ RI0×I0 |

∑S
s=1 Hs = I, and 1 ≤ s ≤ S} where

a 1D (2D or 3D) convolutional filter, hs, is written as a
circulant matrix (doubly or triply circulant matrix), Hs, and s is
a segment index. The convolution may be written as a matrix-
vector multiplication or the mode-m product, ×m, between a
circulant matrix, Hs and a vectorized observation. For example,
if an observation is returned by the capture device as a 2-way

1Reference [40, Appendix A] evaluates some of the arguments found in
highly cited publications in favor of treating an image as a matrix rather than
vectorizing it. While technically speaking it is not incorrect to treat an image
as a matrix, the evaluation concludes that most arguments do not stand up to
analytical scrutiny, and it is preferable to vectorize images.

2The block tensor decomposition [10] goal is to find the best fitting K fully
overlaping tensor blocks that are all multilinearly decomposable into the same
multilinear rank-(R1, R2, R3). This is analogous to finding the best fitting K
rank-1 terms (also known as rank-(1, 1, 1)) computed by the CP-algorithm.
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(a) (b)

(c)

(d) (e)
Fig. 3: The data tensor, D, written in terms of a hierarchical data tensor, DH. (a) When DH contains the data tensor segments,Ds,
along its super-diagonal then DH has a fully compositional form, and every mode matrix has a compositional representation. (b)
A general base case object written in a partially compositional form with a compositional representation for only one mode
matrix (causal factor). (c) A general base case object where all the causal factors have a compositional representation. The tensor
DH is fully compositional in the causal factors.(d) A base case object with non-overlapping parts. All the causal factors have a
compositional representations. Multilinear factorizations are block independent. (e) Base case object with completely overlapping
parts where all the causal factors have compositional representation. Objects with non-overlapping or completely overlapping
parts may also be written using a partially compositional form analogously to (b).

multivariate array, D ∈ RIxr×Ixc , with Ixr rows and Ixc columns,
the convolution is written as

Ds = D ∗ hs(x, y)
vectorize

matrixize
ds = Hs d = d×0 Hs (6)

where the measurement mode is mode 0. In practice, a
convolution is efficiently implemented using a DFFT. The
segment data tensor, Ds = D×0 Hs, is the result of multiplying
(convolving) every observation, d, with the block circulant
matrix (filter), Hs (hs). A filter Hs may be of any type, and
have any spatial scope. When a filter matrix is a block identity
matrix, Hs = Is, the filter matrix multiplication with a vectorized
observation has the effect of segmenting a portion of the data.
Measurements associated with perceptual parts may not be
tightly packed into a block apriori, as in the case of vectorized
images, but chunking is achieved by a trivial permutation.
A data tensor is expressed as a recursive hierarchy of wholes
and parts by defining and employing a hierarchical data tensor,
DH.When a data tensor contains along its super-diagonal the
data tensor segments, Ds, then DH has a fully compositional
form, and all the data tensor modes have a compositional
representation, Fig. 3(a). The data tensor segments, Ds, may be

sparse and represent local parts, or may be full and correspond
to a filtered version of a parent-whole, as in the case of a
Laplacian pyramid. Mathematically writing D in terms of DH

is expressed with

D =

S∑
s=1

D ×0 Hs (7)

= D1 · · ·+Ds · · ·+DS (8)
= DH ×0 IOx ×1 I1x · · · ×c Icx · · · ×C ICx, (9)

where Icx = [Ic,1...Ic,s...Ic,S] ∈ RIc×SIc is a concatenation of S
identity matrices, one for each data segment. In practice, the
measurement mode will not be written in compositional form,
ie. the multipication with I0x would have been carried out. The
resulting DH is fully compositional in the causal factors, where
every causal factor has a compositional representation rather than
every mode Fig. 3(c). Articulated-objects have parts with their
own extrinsic causal factors and benefit from a compositional
representation of every causal factor. A non-articulated object
where the wholes, and parts share the same extrinsic causal
factor representations (same illumination/viewing conditions)
benefit from being written in terms of a partially compositional
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data tensor, where a single factor has a compositional form,
the intrinsic object representation, Fig. 3(b). Thus, the DH is
multiplied through by all the Icx except one. Each multiplied
Icx is replaced by a single place holder identity matrix in the
model.

The three different ways of rewriting D in terms of a hierarchy
of wholes and parts, eq. 7-9, results in three mathematically
equivalent representations 3 based on factorizing D, Ds and DH:

D =

S∑
s=1

(Z ×0 U0 ×1 U1 · · · ×c Uc · · · ×C UC)︸ ︷︷ ︸
D

×0Hs (10)

=

S∑
s=1

(Zs ×0 U0,s ×1 U1,s · · · ×c Uc,s · · · ×C UC,s)︸ ︷︷ ︸
Ds

(11)

= (ZH ×0 U0H ×1 U1H · · · ×c UcH · · · ×C UCH)︸ ︷︷ ︸
DH

×0I0x ×1 I1x · · · ×c Icx · · · ×C ICx (12)

Despite the prior mathematical equivalence, equations 7,10, and
equations 8,12 are not flexible enough to explicitly indicate if
the parts are organized in a partially compositional form, or a
fully compositional form.

The expression of D in terms of a hierarchical data tensor
is a mathematical conceptual device, that enables a unified
mathematical model of wholes and parts that can be expressed
completely as a mode-m product (tensor-matrix multiplication)
and whose factorization can be optimized in a principled manner.

Dimensionality reduction of the compositional representation is
performed by optimizing
e == ‖D−( Z̄H ×0 Ū0H ×1 Ū1H...×C ŪCH)×0 I0x...×C ICx‖2

+

C∑
c=0

λc‖Ūc
T
HŪcH − I‖2 (13)

where ŪcH is the composite representation of the cth mode,
and ZH governs the interaction between causal factors.Our
optimization may be initialized by setting ZH and UcH to
the M-mode SVD of DH,4 5 and performing dimensionality
reduction through truncation, where ŪcH ∈ RSIc×J̄c , Z̄H ∈
RJ̄0···×J̄c···×J̄C and J̄c ≤ SIc.

B. Derivation
For notational simplicity, we re-write the loss function as,

e := ‖D − Z̃H ×0 Ũ0x...×c Ũcx...×C ŨCx‖2

+

C∑
c=0

S∑
s=1

λc,s‖ŨT
c,sŨc,s − I‖ (14)

where Ũcx = IcxŪcHG̃c = [Ũc,1| . . . |Ũc,s| . . . |Ũc,S] and G̃c ∈
RJ̄c×SIc is permutation matrix that groups the columns of UcH

based on the segment, s, to which they belong, and the inverse

3Equivalent representations can be transformed into one another by post-
multiplying mode matrices with nonsingular matrices, Gc,
D = (ZH ×0 G

−1
0 · · · ×c G

−1
c · · · ×C G

−1
C ) ×1 I1xU1HG1 · · · ×c

IcxUcHGc · · · ×C ICxUCHGC.
4Note that eq.(13) does not reduce to a multilinear subspace decomposition

of DH since D ×0 I
+
Ox ×1 I

+
1x · · · ×c I

+
cx · · · ×C I

+
Cx 6= DH.

5For computational efficiency, we may perform M-mode SVD on each data
tensor segment Ds and concatenate terms along the diagonal of ZH and UcH.

permutation matrices have been multiplied3 into Z̃H resulting
into a core that has also been grouped based on segments and
sorted based on variance. The data tensor, D, may be expressed
in matrix form as in eq. 16 and reduces to the more efficiently
block structure as in eq. 17

D = ZH ×0 U0x ×1 U1x · · · ×c Ucx · · · ×C UCx (15)
D[c] = UcxZH [c] (UCx ⊗ · · · ⊗U(c+1)x ⊗U(c-1)x ⊗ · · · ⊗U0x)

T(16)
= [Uc,1 . . .Uc,s . . .Uc,S ] (17)

Z
+
0[c] 0 · · · 0

0
. . . 0

...
... 0 Z

+
s[c] 0

0
. . . 0

0 · · · 0 Z
+
S[c]




(UC,1...⊗U(c+1),1 ⊗U(c-1),1...⊗U0,1)

T

...
(UC,s...⊗U(c+1),s ⊗U(c-1),s...⊗U0,s)

T

...
(UC,S...⊗U(c+1),S ⊗U(c-1),S...⊗U0,S)

T


︸ ︷︷ ︸
(UCx · · · �U(c+1)x �U(c-1)x · · · �U0x)

T

= UcxW
T
c , (18)

where ⊗ is the Kronecker product6, and � is the block-matrix
Kahtri-Rao product.7

The matrixized block diagonal form of ZH in eq. 17 becomes
evident when employing our modified data centric matrixizing
operator based on the defintion 2, where the initial mode is the
measurement mode.

The hierarchical block multilinear factorization, the M -mode
Block SVD algorithm computes the mode matrix, Ucx, by
computing the minimum of e = ‖D − Z̃H ×0 Ũ0x · · · ×C ŨCx‖2
by cycling through the modes, solving for Ũcx in the equation
∂e/∂Ucx = 0 while holding the core tensor ZH and all the
other mode matrices constant, and repeating until convergence.
Note that
∂e

∂Ucx

=
∂

∂Ucx

‖D[c] −UcxW
T
c ‖2 = −D[c]Wc +UcxW

T
c Wc.

Thus, ∂e/∂Ucx = 0 implies that

Ucx = D[c]Wc

(
WT

c Wc

)−1
=D[c]W

T
c
+

=D[c]

(
ZH [c](UCx⊗...U(c+1)x⊗U(c-1)x⊗...U0x)

T
)+

=D[c](UCx� ...U(c+1)x�U(c-1)x� ...U0x)
T+



Z
+
0[c] 0 · · · 0

0
. . . 0

...
... 0 Z

+
s[c] 0

0
. . . 0

0 · · · 0 Z
+
S[c]


whose Uc,s sub-matrices are then subject to orthonormality
constraints.
Solving for the optimal core tensor, ZH, the data tensor, D,

approximation is expressed in vector form as,

e = ‖vec(D)− (ŨCx ⊗ · · · ⊗ Ũcx ⊗ · · · ⊗ Ũ0x)vec(Z̃H)‖. (19)

6 The Kronecker product of U ∈ RI×J and V ∈ RK×L is the IK × JL
matrix defined as [U⊗V]ik,jl = uijvkl.

7The Khatri-Rao product of [U1 . . .Un . . .UN]� [V1 . . .Vn . . .VN] with
Ul ∈ RI×Nl and Vl ∈ RK×Nl is a block-matrix Kronecker product; therefore,
it can be expressed as U�V = [(U1⊗V1) . . . (U(l)⊗V(l)) . . . (U(L)⊗V(L))].
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Solve for the non-zero(nz) terms of ZH in the equation
∂e/∂(ZH) = 0, by removing the corresponding zero columns of
the first matrix on right side of the equation below, performing
the pseudo-inverse, and setting

vec(ZH)nz = (UCx ⊗ · · · ⊗Ucx ⊗ · · · ⊗U0x)
+
nzvec(D). (20)

Repeat all steps until convergence.This optimization is the basis
of the M -mode Block SVD Algorithm 1.

When the data tensor is a collection of observations made up of
non-overlapping parts, Fig. 3d, the data tensor decomposition
reduces to the concatenation of an M-mode SVD of individual
parts and when the data tensor is a collection of overlapping
parts that have the same multilinear-rank reduction, Fig.3e,
see[42] for additional specific optimizations.

IV. REPRESENTING LEVELS OF ABSTRACTION BOTTOM-UP

An incremental hierarchical block multilinear factorization
that represents levels of abstractions bottom-up is developed
analogously to the incremental SVD for matrices [4]. The
precomputed multilinear factorizations of the children parts are
employed to determine the parent whole multilinear factorization.
The derived algorithm may also be employed to update the
overall model when the data becomes available sequentially [23].
We first address the computation of the mode matrices and the
extended core of the parent whole when the children parts are
non-overlapping. Next, we consider the overlapping children
case, and the case where the parent-wholes and children-parts
contain differently filtered data.
Computing parent causal mode matrices, Uc,w: Note that the
parent whole, Dw, is a concatenation of the data contained in
its K ′ children segments that are part of the hierarchy, Dk,
where 1 ≤ k ≤ K ′. New data that is not contained by any of
the children is denoted as the K = K ′ + 1 child,DK, eq. 21 .
We initialize the hierarchical block multilinear factorization by
performing an M -mode SVD on each leaf.

The c mode matrix, Uc,w of the w parent whole, Dw, is the
left singular matrix of [ Uc,1Σc,1 ... Uc,kΣc,k ... Uc,KΣc,K ]

which is based on the following derivation, that writes SVD of
the flattened parent whole in terms of the SVDs of its flattened
children parts, followed by a collection terms such that Vc,all is
a block diagonal matrix of Vc,k:

Dw[c] = [ D1[c] · · · Dk[c] · · · DK[c] ] (21)
=

[
Uc,1Σc,1V

T
c,1 · · · Uc,kΣc,kV

T
c,k · · · Uc,KΣc,KV

T
c,K

]
= [Uc,1Σc,1 . . . Uc,kΣc,k . . . Uc,KΣc,K ]︸ ︷︷ ︸

QR + SVD of R

VT
c,all (22)

= Uc,wΣc,w

[
VT

c,w1 . . . VT
c,wk . . . VT

c,wK

]
VT

c,all︸ ︷︷ ︸
VT

c,w

, (23)

Computing the parent extended core, Tw: Computation of the
extended core associated with the parent whole, Tw, is performed
by considering the following derivation

(24)Dw[c] = [D1[c] . . . Dk[c] . . . DK[c] ]

=
[
Uc,1Σc,1T̂1[c](U1,1 ⊗ ...Uc-1,1 ⊗Uc+1,1 ⊗ ...UC,1 )

T · · · Uc,kΣc,kT̂k[c](Uc-1,0 ⊗ ...Uc-1,k ⊗Uc+1,k ⊗ ...UC,k)
T · · ·

]
=[Uc,1Σc,1 ... Uc,kΣc,k ... Uc,KΣc,K]︸ ︷︷ ︸

QR + SVD of R


T̂1[c](U1,1 ⊗ ...Uc-1,1 ⊗Uc+1,1 ⊗ ...UC,1)

T 0 . . ....

0
. . . 0

... . . . 0 T̂K[c](U1,K ⊗ ...Uc-1,K ⊗Uc+1,K ⊗ ...UC,K)
T



=Uc,wΣc,w

[
VT

c,1 . . . VT
c,k . . . VT

c,K

]︸ ︷︷ ︸
VT

c


T̂1[c](U1,1 ⊗ ...Uc-1,1 ⊗Uc+1,1 ⊗ ...UC,1)

T 0 . . . ...

0
. . . 0

... . . . 0 T̂K[c](U1,K ⊗ ...Uc-1,K ⊗Uc+1,K ⊗ ...UC,K)
T

 .
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where T̂k[c] = Σ
−1
c,k Tk[c]. Let T̂k = Tk×1Σ

−1
1,k · · ·×cΣ

−1
c,k · · ·×CΣ

−1
C,k

is the normalized extended core of the kth child, and T̂Kall

contains along the diagonal the children normalized extended
cores T̂k. Thus, the extended core of the parent whole is

Tw = T̂Kall ×1 Σ1,wV
T
1 · · · ×c Σc,wV

T
c · · · ×C ΣC,wV

T
C,w. (25)

Overlapping children: This case may be reduced to the non-
overlapping case by introducing another level in the hierarchy.
Overlapping children are now treated as parents with one non-
overlaping child sub-part and child sub-parts that correspond
to every possible combination of overlaps that are shared by
siblings. The original parent whole representation is computed
in terms of the grandchildren representations.
Parent-whole and children-parts with differently filtered
data: This is the case when a parent-whole and the children
parts contain differently filtered information, as in the case
when a parent-whole and the children parts sample information
from different layers of a Laplacian pyramid. This case may be
reduced to a non-overlapping case by writing the filters as the
product between a segmentation filter, S, i.e., an identity matrix
with limited spatial scope, and general filter that post multiplies
the segmentation filter, Hs = FsSs and Ds = (D×0Ss)×0Fs. The
general filters, Fs may be applied after the cores are computed.
Computational Cost Analysis: Let an M -order data tensor,
D ∈ RI0×I1···×Ic×···×IC , where M = C + 1, be recursively
subdivided into K = 2M children of the same order, but
with each mode half in size. There are a total of logKN + 1
levels, where N =

∏C
i=0 Ii. Recursive subdivision results in

S = N log2M N + 1 segments. The total computational cost is
the amortized M-mode SVD cost per data tensor segment, T ,
times the number of segments, O(TN logK N). Since siblings
at each level can be computed independently, on a distributed
system the cost is O(T logKN).

V. CAUSALX EXPERIMENTS
CausalX visual recognition system computes a set of causal
explanations based on a counterfactual causal model that takes
advantage of the assets of multilinear (tensor) algebra. The
M -mode Block SVD and the Incremental M -mode Block SVD
algorithms estimate the model parameters. In the context of face
image verification, we compute a compositional hierarchical
person representation [42]. Our system is trained on a set of
observations that are the result of combinatorially manipulating
the scene structure, the viewing and illumination conditions.

We rendered in Maya images of 100 people from 15 different
viewpoints with 15 different illuminations. The collection of
vectorized images with 10, 414 pixels is organized in a data
tensor, D ∈ R10,414×15×15×100. The counterfactual model is
estimated by employing DH, a hierarchical tensor of part-based
Laplacian pyramids. We report encouraging face verification
results on two test data sets the Freiburg, and the Labeled
Faces in the Wild (LFW) datasets. We have currently achieved
verification rates just shy of 80% on LFW [42], by employing
less than one percent (1%) of the total images employed by
DeepFace [35]. When data is limited, convolutional neural
networks (CNNs) do not convergence or generalize. More
importantly, CNNs are predictive rather than causal models.

CONCLUSION
This paper deepens the definition of causality in a multilinear
(tensor) framework by addressing the distinctions between
intrinsic versus extrinsic causality, and local versus global
causality. It proposes a unified multilinear model of wholes
and parts that reconceptualizes a data tensor in terms of a
hierarchical data tensor. Our hierarchical data tensor is a
mathematical instantiation of a tree data structure that enables a
single elegant model of wholes and parts and allows for different
tree parameterizations for the intrinsic versus extrinsic causal
factors. The derived tensor factorization is a hierarchical block
multilinear factorization that disentangles the causal structure
of data formation. Given computational efficiency consider-
ations, we present an incremental computational alternative
that employs the part representations from the lower levels of
abstraction to compute the parent whole representations from
the higher levels of abstraction in an iterative bottom-up way.
This computational approach may be employed to update causal
representations in scenarios when data is available incrementally.
The resulting object representation is a combinatorial choice
of part representations, that renders object recognition robust
to occlusion and reduces large training data requirements. We
have demonstrated our work in the context of face verification
by extending the TensorFaces method with promising results.
TensorFaces is a component of CausalX, a counterfactual causal
based visual recognition system, and an explainable AI.
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