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Abstract

Face tracking in an unconstrained environment must
contend with images that vary with viewpoint, illumina-
tion, expression, identity, and other causal factors. In
a statistical approach, the multifactor nature of the im-
age data makes the aforementioned problem amenable to
analysis in a multilinear framework. In this paper, we
propose Multilinear (Tensor) Active Appearance Models
(MAAMs). The MAAM is a multilinear statistical model of
facial appearance and shape that generalizes the linear Ac-
tive Appearnce Model (AAM). As models of data variabil-
ity, the latter fail to distinguish and account for the different
sources of variabilty. On the other hand, our MAAMs ex-
plicitly represent the underlying processes of image forma-
tion, thus preserving attributes that are relevant to the task
of tracking the human face.

1. Introduction
Statistical models of shape and texture have been suc-

cesfully employed to recognize, track, and synthesize fa-
cial images. In the literature, one commonly encounters
linear models, among them the standard Principal Compo-
nents Analysis (PCA) model known as Eigenfaces [15, 7],
which assume fixed or nearly fixed illumination and view-
point (such as near fronto-parallel images) [2, 4, 6]. When
facial image variablity departs from the linear model as-
sumption, researchers have attempted to accommodate the
observed variation by a set of locally linear models [12, 14].
Active Appearance Models (AAMs) [2] and View-Based
Active Appearance Models [1] are one of the leading lin-
ear and locally linear statistical models of facial shape and
texture. However, all of these models represent data vari-
ability without attempting to distinguish between the dif-
ferent sources of variability. Performing dimensionality re-

duction and computing a subspace without discriminating
among the different modes of variability implicitly assumes
that the same subspace is appropriate for all applications.

Face tracking in an unconstrained environment must
contend with images that vary with viewpoint, illumination,
expression, identity, and other causal factors. The multifac-
tor nature of the image data makes the aforementioned prob-
lem amenable to statistical analysis in a multilinear frame-
work, using multilinear (or tensor) algebra [18, 19, 17].
Multilinear algebra generalizes linear algebra, the algebra
of vectors and matrices. It yields nonlinear statistical mod-
els that are computed through tensor decomposition using
a multimodal generalizaton of the SVD and dimensionality
reduction.

In this paper, we propose Multilinear (Tensor) Active
Appearance Models (MAAMs). These models naturally
generalize the conventional, linear AAMs, which fail to dis-
tinguish between and account for the different sources of
variabilty. The MAAM is a multilinear statistical model of
facial appearance and shape that explicitly represents the
underlying causal processes of image formation, thus pre-
serving attributes that are relevant to the task of tracking the
human face.

The remainder of this paper is organized as follows: Sec-
tion 2 frames our effort in the context of the relevant prior
work. Section 3 reviews conventional Active Appearance
Models. Section 4 develops our Multilinar Active Appear-
ance Models. Section 5 presents our experimental results in
applying MAAMs to face tracking. Finally, Section 6 con-
cludes the paper and discusses promising avenues for future
work.

2. Related Work
Vasilescu and Terzopoulos [18, 19, 17] generalized the

unifactor PCA approach to multifactor analysis using mul-
tilinear algebra and tensor decomposition. Multilinear anal-
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ysis was also applied to gait recognition by Vasilescu [16]
and Lee and Elgammal [9]. In work by Vlasic et al. [20],
a multilinear model where 3D shape data is represented by
tensors is used to transfer a face in a scene. The multilinear
approach was also pursued in shape analysis by Sugano and
Sato [13], where the multilinear model is used to decouple
inter-personal and intra-personal variation.

AAMs have been extensively studied because of their
ability to statistically model both shape and texture infor-
mation simultaneously through PCA [2, 3, 11]. The draw-
back of PCA in this context, however, is that it is a unifac-
tor model that cannot seperately capture the variation due to
more than a single factor, such as variation in facial images
due to pose, illumination, and expression (PIE). several at-
tempts have been made to extend AAMs through multilin-
ear analysis. Gonzalez et al. [5] introduce bilinear AAMs.
The bilinear model is a two-factor special case of the mul-
tilinear model. Although it is consistent with our more
general framework, their bilinear formulation uses matrices
rather than tensors to formulate the model and there is no
straightforward extension to the multifactor case.

Macedo et al. [10] proposed a hybrid of multilinear
analysis and AAMs for facial expression transfer in pho-
tographs. Although their motivation to apply multilinear
analysis is similar to ours, rather than directly integrating
the multilinear model into AAMs, they use it only indi-
rectly to factorize the parametric representation obtained
via the standard AAMs. Although this is one possible way
to apply multilinear analysis, important information about
the observed variability in the training data can easily be
lost through the linear projection in PCA. The focus of our
work in this paper is the direct integration of tensors into
the core of active appearance models. Unlike previous at-
tempts to extend AAMs using multilinear analysis, we will
reformulate AAMs with the use of multilinear PCA rather
than conventional linear PCA.

3. Multilinear PCA
Multilinear analysis extends a conventional linear analy-

sis using tensors. Appendix A reviews some relevant tensor
fundamentals.

Let D be a <Id×IP×IV×IL data tensor. Here, d denotes
the observation mode, and P, V, and L denote the person,
view, and illumination modes, respectively. Then, D can be
decomposed in the following form [18, 8]:

D = Z ×d Ud ×P UP ×V UV ×L UL (1)
= T ×P UP ×V UV ×L UL, (2)

where T = Z ×d Ud is the basis tensor, which is efficiently
computed as

T = D ×P U
T
P ×V U

T
V ×L U

T
L . (3)

One can model arbitrary many factors by adding modes
to the model in (1) as necessary. For example, we can add
an expression mode for face images. When we have two
factors, (2) reduces to a bilinear model and for only a single
factor, (2) reduces to the standard, linear PCA model. With
respect to the latter, note that the data tensor decomposition
(1) can be rewritten in matrix form as

D[d]︸︷︷︸
Image Data D

= Ud︸︷︷︸
Basis Vectors B

Z[d](UL ⊗UV ⊗UP)
T︸ ︷︷ ︸

Coefficients C

, (4)

where the subscript [d] denotes the tensor matrixizing (flat-
tening) operation with respect to the observation mode,
which is the conventional PCA form D = BC. The key
difference compared to the unimodal analysis of linear PCA
is that multilinear PCA further factorizes C to represent the
additional modes of variation in the data tensor D.

Analogous to dimensionality reduction in PCA, we can
apply dimensionality reduction separately to the resulting
mode matrices UP, UV, and UL in (5) to represent the data
in lower-dimensional subspaces with with fewer parame-
ters. Since the multilinear model is fundamentally non-
linear, however, simple truncation does not suffice and we
can adopt an alternating least squares iterative procedure to
compute a (locally) optimal dimensionality reduction [19].

Finally, the representation of a data vector d is given by
{p,v}, as follows:

d = T ×P p
T ×V v

T, (5)

where p and v are vectors which represent a probe of d for
each mode. This multilinear equation is analogous to the
standard linear PCA form

d = Bc, (6)

where c is a parametric representation of d using the sub-
space matrix B. Note that the tensor formulation in (5) has
multiple decoupled parameter vectors, whereas the standard
PCA has just a single parameter in (6).

4. Multilinear AAMs
In this section, we will derive the tensor formulation of

Multilinear AAMs and develop an associated model fitting
algorithm. We assume that the reader is familiar with the
formulation and application of AAMs, as described in [3,
2].

4.1. Building MAAMs

Our training set is made up of labeled facial images in
which important facial features are marked. Since the in-
tensity data set and the shape data set were generated by the
same facial geometry and imaging system, the data sets are



highly correlated and can be analyzed in an unified man-
ner. We concatenate the shape and texture data tensors and
model the underlying processes by analyzing the concate-
nated tensor in a multilinear framework.

4.1.1 Preprocessing

Before applying Multilinear-PCA, we usually need to nor-
malize the training dataset to correctly extract their statis-
tics. With regard to the shape data, we first apply Pro-
crustes analysis to cancel out the influence of global sim-
ilarity transformations, thus obtaining a normalized set of
2D points s = (x1, y1, x2, y2, . . . , xn, yn)T and similarity
transformation parameters q = (sx, sy, tx, ty) that map the
normalized coordinates to the original image coordinates of
each data sample. After Procrustes analysis, the data points
s have zero mean and unit variance. Finally, we arrange
each training sample s into a tensor S whose modes are
shape data, people, and views.

For the texture data, we warp all the images into a uni-
form texture frame, extract the region of interest (the face)
as a vector of pixels, and normalize these texture vectors.
There are several methods to warp an image into a common
coordinate system, but here we just do it by a piecewise lin-
ear transformation using the corresponding shape data and
the mean shape obtained in the previous shape normaliza-
tion. Once images are warped, pixels on region of interest
are extracted and packed as a vector. Next, we normalize
the extracted vector to have uniform variance and to com-
pensate the influence of global illumination change across
the images. That is, the resulting texture vector g will sat-
isfy gT1 = 0 and gTg = 1. Finally, the normalized tex-
ture vector g is arranged to construct a texture data tensor G
along with different modes as we do in shape preprocessing.

Given the pre-processed shape data tensor S and texture
data tensor G, we concatenate them along the observation
mode to form a combined data tensorD = Id×dD[d], where
Id is the observation mode unit tensor and

D[d] =

[
αS[d] + β1T1

G[d]

]
, (7)

wherein the shape and texture data tensors are concatenated
in the observation mode and where α and β are scalars that
scale the units between shape and texture. Because shape
is defined in a coordinate space while texture is defined as
pixel intensity, we set α and β to simply match the range of
shape values to that of texture.

To construct a multiresolution model, we create different
levels of the texture tensor G1,G2, . . . ,GN from a pyramid
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Figure 1. The MAAM decomposition

of training images. The matrixized data tensor

D[d] =


αS[d] + β1T1

G1[d]

...
Gn[d]

 (8)

is the concatenation in the observation mode of the shape
tensor and the multiresolution texture tensors.

4.1.2 Computing the Basis Tensor

Once the zero-mean data tensor D is constructed, we apply
theN -mode SVD algorithm [18] to decompose it according
to (1) as

D = Z ×d Ud ×P UP×V (9)

and obtain the mode matrices UP and UV associated with
the people and view modes. This is illustrated in Figure 1.
We then compute the basis tensor

T = D ×P U
T
P ×V U

T
V . (10)

4.1.3 Representing Appearance

With the basis tensor T and coefficients for each factors p
and v, we can synthesize an appearance

d =

[
αs + β1

g

]
= d̄ + T ×P p

T ×V v
T, (11)

where d̄ is a mean vector of all the data in D. The result-
ing data vector d includes all the necessary information to
construct an appearance.



To obtain a more convenient representation of equation
(11), we split d̄ and T in the data mode with the correspond-
ing length of shape and texture, as follows:

d̄ ≡
[

s̄′

ḡ

]
≡
[
αs̄ + β1

ḡ

]
, (12)

T[d] ≡
[

T′S[d]

TG[d]

]
≡
[
αTS[d]

TG[d]

]
. (13)

Then, rewriting (11) in terms of shape and texture vectors
yields

s = s̄ + TS ×P p
T ×V v

T, (14)
g = ḡ + TG ×P p

T ×V v
T. (15)

Equations (14) and (15) show the direct multilinear rela-
tionship between parametric representation {p,v} and the
corresponding shape s and texture g. Note that for the mul-
tiresolution approach g will be replaced with the multireso-
lution texture vectors g1,g2, . . . ,gN .

4.2. Fitting MAAMs

We need to have a fitting algorithm to obtain a paramet-
ric representation of a new appearance using a built model.
Now, let’s set the purpose of model fitting to obtain shape
data given a new image.

Given an new image i, the objective of Multilinear AAM
fitting is to minimize

min
p,v,q

||gi(i, N(sm(p,v),q)− gm(p,v)||, (16)

where gi is the texture vector obtained from image i, and gm

is a texture vector given by the reprojection of parameters p
and v from the model. Also, sm is a shape data given by the
reprojection of parameters p and v. It is used to obtain gi

from i together with parameters of similarity transform q.
The evaluation of the error is done in texture space because
we usually do not know the shape data for a new image.

Unfortunately, the equation (16) is not easy to solve be-
cause it is a nonlinear optimization. One approach is to use
a generic nonlinear optimization algorithm such as Gauss-
Newton or Levenberg-Marquardt method. But, the draw-
back of this approach is that the computation is quite ex-
pensive.

In this paper, we adopt a simple iterative approach by
introducing an approximation that the residual of textures at
the current estimate includes all the necessary information
to refine the estimate.

4.2.1 Parameter Update

The strategy is to iteratively refine the parameters p, v, and
q by small updates δp, δv, and δq; i.e., p ← p + δp,
v ← v + δv, and q ← q + δq. The most straightforward

way to compute these updates is to compute the derivatives
of δg = gi−gm with respect to δp, δv, and δq. We express
the derivative in the following multilinear form:

δg(δp,v,q) = JP ×P δp
T ×V v

T ×Q q
T (17)

δg(p, δv,q) = JV ×P p
T ×V δv

T ×Q q
T (18)

δg(p,v, δq) = JQ ×P p
T ×V v

T ×Q δq
T, (19)

where JP, JV, and JQ are “Jacobian tensors” that relate the
residual δg computed at the current estimates {p,v,q} to
the updates {δp, δv, δq}.

4.2.2 Learning Jacobian Tensors

We can compute the Jacobian tensors from the training data.
Since we already know how to reproject data using (14)
and (15), we can compute δg for parameters slightly dis-
placed from those of each training set, p − δp, v − δv,
and q − δq. We first compute diagonal matrices MδP =
[δp1, δp2, . . . , δpNp ]T, MδV = [δv1, δv2, . . . , δvNv ]T,
and MδQ = [δq1, δq2, . . . , δqNq ]

T, where δpi, δvi, and
δqi are vectors whose elements are zeros except for the ith

element, which is set to the displacement δpi, δvi, and δqi
to be applied for the ith element in p, v, and q, respec-
tively. Also we compute residual tensors δGP, δGV, and δGQ,
where we arrange δg computed in accordance with the com-
bination of parameters {p,v,q} systematically displaced
by δpi, δvi, or δqi, respectively. Then, we will have equa-
tions,

δGP = JP ×P MδP ×V UV ×Q UQ, (20)
δGV = JV ×P UP ×V MδV ×Q UQ, (21)
δGQ = JQ ×P UP ×V UV ×Q MδQ. (22)

Once we get (20)–(22), we can compute the Jacobian ten-
sors

JP = δGP ×P M
+
δP ×V U

T
V ×Q U

T
Q (23)

JV = δGV ×P U
T
P ×V M

+
δV ×Q U

T
Q (24)

JQ = δGQ ×P U
T
P ×V U

T
V ×Q M

+
δQ, (25)

where + superscripts denote the pseudo-inverse. Since we
have different combination of {p,v,q} from training data,
we can use them to compute Jacobian tensors by linear re-
gression; we can arrange MδP, MδV, and MδQ as vertically
repeated diagonal matrices in accordance with the number
of combination {p,v,q}, with δG arranged in the same
manner.

The amount of displacement is determined experimen-
tally. For δp and δv, we use 50% of the standard devia-
tion for each element in p and v. For the parameters of the
similarity transform q, we use 10% of the displacement for
scaling and 3 to 5 pixels for translation.



(a) Initial estimates (b) 1st mode converged

(c) 1st resolution converged (d) Final result

Figure 2. Iterative fitting results

4.2.3 Iterative Model Refinement

Using the Jacobian tensors, we iteratively refine the current
estimate of parameters p, v, and q. The update is given by

δpT = δgT(JP ×V v
T ×Q q

T)
+

[P ]
(26)

δvT = δgT(JV ×P p
T ×Q q

T)
+

[V ]
(27)

δqT = δgT(JQ ×P p
T ×V v

T)
+

[Q]
(28)

Note that we need to take into account the uncertainty
of the sign in the parametric representation of the mul-
tilinear projection. Since either one of the combinations
{p,v} or {−p,−v} gives the identical data representation
for the current estimate, we need to choose c ← c + δc or
c ← c − δc in updating mode c of the multilinear model.
The selection is simply done by choosing the one that most
reduces the norm of residual of texture, and it improves the
stability of numerical computation.

The iterative fitting algorithm is specified in Figure 3:
Unfortunately, different order of mode-n refinement

yields different fitting results due to local minima. Our rec-
ommendation is to update modes in the order of the most
influential modes that will have the largest effect. This in
our case, this ordering is q, v, p—the similarity transform
parameters, followed by the viewpoint parameters, followed
by the people parameters.

Convergence is determined by how the Jacobian tensors
are learned. It is possible to control the convergence of our
refinement algorithm by introducing a damping parameter,
for example k = {1.0, 0.5}, and by updating c by c ←

MAAM Fitting Algorithm:

Iterative Model Refinement

1. Prepare initial parameter estimate {p,v,q}.

2. Apply mode-n refinement described below to all of
current estimates {p,v,q} in turn .

3. Return to step 2 until no update is made to either one
of parameters or it reaches the maximum number of
iteration.

Mode-n Refinement

1. Prepare the initial parameter estimate c for mode n and
fix the parameters for the other modes.

2. Compute the residual of appearance δg for the current
estimate.

3. Compute the update of parameter δc using (26)–(28).

4. Compute δg′, the residual evaluated at c± δc.

5. Update c by c ← c + δc or c ← c − δc if either one
of them reduces the norm of δg′ from that of δg.

6. Repeat from step 2 until convergence or reaching a
maximum number of iterations.

Figure 3. The iterative MAAM fitting algorithm

c ± kδc, we can control the convergence to obtain a better
parameter fit.

We can incorporate a coarse-to-fine fitting approach in
this iterative fitting with the use of the multiresolution
model and multiresolution input image. To implement mul-
tiresolution fitting, we need to compute Jacobian tensors for
each texture resolution. We start the iterative model refine-
ment from the coarsest resolution and proceed to the finest
resolution using the parameter estimates obtained from the
coarser resolution level as an initial estimate for the next
finer level. Figure 2 shows the example of multiresolution
fitting of a two-resolution model applied to a face image.

5. Experimental Results
In this section, we present the experimental result of our

tensor AAMs applied to face tracking. For training data,
we prepared a set of grayscale images of size 320 × 240
pixels with hand-labeled 2D feature points on them. The
training set has data for 50 different people and 25 different
viewpoints ranging from -60 to +60 degree from the frontal
(0 degree) view. We used only one illumination for training
data in this experiment. Figure 4 shows the data used to



Figure 4. Training data

train the multilinear model. All the experiments are done
offline.

Figure 5 shows the result of face tracking. Figure 6 de-
picts the 1st three components of the estimated viewing pa-
rameters v during the sequence, relative to viewing param-
eters associated with the training data. Although there is
some tracking noise, the overall trajectory of the viewpoint
parameters follows the plot of the viewpoint parameters of
training data. However, the person parameters tend to move
independently with the entire plots of training data. This in-
dicates that p and v are decoupled in each subspace. Note
that we would be able to recognize the angle of the face by
classifying the viewpoint parameters using the training data.

Although tracking was successful, we encountered sev-
eral issues in this experiment. First, the fitting algorithm be-
come trapped in local minima.Since it optimizes each mode
in turn, we can select the order of the modes to optimize.
We can select the maximum number of iteration allowed
for each mode, or the amount of displacement chosen in the
learning process of the Jacobian tensor. Tracking through
an extreme pose can also lead to a local minimum due to
the lack of texture information during occlusion, and the
static relationship between the residual and the update of
the parameters. These are also a common problems when
applying conventional AAMs.

6. Conclusion

We have proposed multilinear analysis to explic-
itly parameterize different modes of variation in
appearance/shape-based models. In particular, we
have developed a generalized multilinear formulation of
AAMs using tensors. In addition, we have proposed an
iterative fitting algorithm to fit parametric MAAM models
to images. The fitting algorithm exploits the multilinear
relationship between the residual of the texture and itera-
tively updates the individual parameters. Our experimental

results with face tracking have demonstrated that the fitting
algorithm successfully extracts viewpoint parameters for
the motion of the face in a video sequence.

Although we have formulated a general multilinear (ten-
sor) of AAMs that is capable of dealing with an arbitrary
number of causal factors, we have initially demonstrated
our framework on a third-order tensor and performed a bili-
nar (two-mode) decomposition involving people and views
modes. In future work, we will evaluate the model with
additional causal factors including changes in illumination
and expression. In addition, we will improve the efficiency
of the fitting process for use in real-time applications.

A. Some Tensor Fundamentals
A tensor is a higher order generalization of a vector (first-

order tensor) and a matrix (second-order tensor). Tensors
represent multilinear mappings from a set of domain vector
spaces to a range vector space.

An N th order tensor A ∈ RI1×I2×···×IN has elements
denoted by ai1...in...iN , where 1 ≤ in ≤ In. The mode-
n vectors of an N th order tensor A are the In-dimensional
vectors obtained from A by varying index in while keeping
the other indices fixed. In other words, the mode-n vectors
are the columns of matrix A[i] ∈ RIn×(In+1...INI1I2...In−1),
where the subscript [n] denotes mode-nmatrixizing of a ten-
sor.

Mode-n Product The mode-n product A ×n M, where
A ∈ RI1×I2×···×In×···×IN and M ∈ RJn×In , is the I1 ×
· · · × In−1 × Jn × In+1 × · · · × IN tensor

(A×n M)i1...in−1jnin+1...iN =∑
in

ai1...in−1inin+1...iNmjnin . (29)

The mode-n product can be expressed in terms of matrix-
ized tensors as B[n] = MA[n].

N -Mode SVD The tensor decomposition, which is anal-
ogous to singular value decomposition of a matrix, is de-
scribed as follows: Let A be a I1 × I2 · · · × In · · · × IN
tensor for 1 ≤ n ≤ N . Every such tensor can be decom-
posed as follows:

A = Z ×1 U1 ×2 U2 · · · ×n Un · · · ×N UN

=

R1∑
i1=1

R2∑
i2=1

· · ·
Rn∑
in=1

· · ·
RN∑
iN=1

σi1i2...iN

u
(i1)
1 ◦ u(i2)

2 · · · ◦ u(in)
n · · · ◦ u(iN )

N , (30)

where Un = [u
(1)
n u

(2)
n . . .u

(in)
n . . .u

(Rn)
n ] are orthonormal

mode-n matrices of dimensionality In ×Rn for 1 ≤ Rn ≤



Figure 5. Result of face tracking. The initial frame (frame 1) is at the upper left, and the final frame (frame 68) is at the lower right.
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Figure 6. 1st to 3rd components of the normalized parameters during face tracking. The ‘+’ points plot the coefficients of the training data
which include 50 people and 25 viewpoints ranging from 30 to 150 degrees.

In for 1 ≤ n ≤ N and Z ∈ RR1×R2···×Rn···×RN . The
subtensors Zin=a and Zin=b obtained by fixing the nth in-
dex to a and b are orthogonal for all values of n, a, and b
when a 6= b. The ‖Zin=a‖ = σ

(n)
a is the ath mode-n singu-

lar value of A and the ath column vector of Un, such that
‖Zin=1‖ ≥ ‖Zin=2‖ ≥ . . . ‖Zin=Rn‖ ≥ 0.
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