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APPENDIX
A. Image as a Vector, Matrix, or Tensor?

Raw observational data usually comprise sets of random vari-
ables. Historically, multivariate data analysis has been performed
on observations organized both as a “data matrix” [1] and as a
vector [21], [24].

In statistical analysis, organizing a multivariate observation as a
data matrix gave way to organizing a multivariate observation
as a vector of measurement variables. In recent years, once
again, several authors have advocated leaving the data elements
associated with a single observation organized in the manner that
the acquisition device provides them; in particular, organizing
a CCD image as a matrix of pixel variables, rather than
“vectorizing” it. In this context, linear and multilinear tensor
models for vision, graphics, and learning fall under four different
categories:

1) Multilinear, or rank-(Ri, Ra,..., Ry), decomposition
and different generalizations for higher-order data tensors
that contain vectorized measurement data, as in our
work [25], [27] and the work of other authors [33], [29],
[7].

2) Like Category 1 above, but with rank-R decomposition.

3) Multilinear, or rank-(Ry, R, ..., Rys), decomposition of
higher-order data tensors where each observation is a
matrix or higher-order tensor; e.g., an image is treated as
a matrix and a unimodal image ensemble is a third-order
tensor [30], [22], [34], [31], [32], [9]."

4) Like Category 3 above, but with rank-R decomposition

(191, [31, [30], [18].

CNN tensor factorization methods employ a image as matrix/ten-
sor approach to reducing the number of parameters [13], [15],

(110, 51, [4), 1], 171

Several of the above papers have asserted:

e “An image (video) is intrinsically a matrix (tensor).”

o “Images, for example, are naturally represented as third
order tensors, where the modes correspond to height, width,
and channels,”

ISome authors [36], [31] claim that they perform a generalized rank-R
approximation of tensors; however, according to the standard definition of the
rank-R and rank-(R1, Ra, ..., Rys) decompositions, they actually perform a
multilinear decomposition of a third-order tensor with dimensionality reduction
in only two of the modes—the image row/column modes. This multilinear
decomposition is also known as a Tucker2 decomposition or a (M — 1)-mode
SVD.

Technically, a matrix corresponds to a transformation from one
vector space to another (a multilinear transform is a mapping
from a set of vector spaces to a vector space), SO a more
appropriate statement would be that an image (video) is a 2D
(3D) array of numbers. The photoreceptors in biological eyes
are by no means organized as regular matrices or tensors. This
statement merely presupposes a CCD imaging sensor with a
rectangular array of receptors. Yet one can readily treat both
cases in a uniform manner by vectorizing the collection of
receptor responses, thus treating the entire image as a point in
a high-dimensional image space.

o “ An inherent problem of the image-as-a-vector representa-
tion is that the spatial redundancy within each image matrix
is not fully utilized, and some local spatial relationships
are lost.”

On the contrary, the subdivision of the image into rows and
columns, suffers from the very problem incorrectly attributed
to the conventional, vectorized-image representation. When an
image is treated as a matrix, from a statistical perspective it
becomes an ensemble of row/column measurement variables
which results in computing a subset of all possible variable
combinations, Figure 1. Most arguments in favor of the latter
approach that are found in the literature are provably false.

There are two major drawbacks with the treatment of image-
as-a-matrix. Performing dimensionality reduction in the row
or column space can result in throwing out relevant object
identity information. Second, one of the major limitation of
treating an image-as-a matrix instead of computing one object
representation regardless of other extrinsic causal factors, there
are as many representations as there are images for an individual
in the database. The number of images per person in a database
may grow combinatorially with the number of causal factors that
could form an image. In order to overcome this type of growth
additional mathematical machinery is needed to minimize intra-
class representation scatter [23].

o “We overcome the curse of dimensionality by treating
images as matrices” (i.e., as a set of separate column
measurements rather than a single measurement vector).

o “First, in real applications such as face recognition,
a very limited number of sample images are typically
available for each subject, resulting in the well-known
small-sample-size problem. In such contexts, an image-
as-matrix representation is more appropriate, since the



smaller number of data entries along each data dimension
facilitates subspace learning from little training data.”

Treating an image as matrix does not resolve or directly deal with
the curse-of-dimensionality and/or small-sample-size problems.
Consider the extreme case where the sample size is a single
image. Clearly, one image provides no statistically significant
information about the facial image space, and treating an image
as a matrix—i.e. the image as a set of observations, where each
row/column is a measurement—will not provide any further
information about the facial image space. It simply computes a
set of statistics associated with the rows/columns of that single
image. In the scenario where an image is treated as a matrix,
as in the case of the 2DPCA paper[35], the columns are being
treated as if they are independent and interchangeable parts for
which the average column statistics are being computed. Hence,
the resulting generative model might result in an image with the
same set of columns repeated, i.e., a facial image with multiple
eyes Oor noses.

o “Treating an image as a matrix, results in a model that
uses less storage.”

The storage requirements of both PCA and 2DPCA [35] grow
linearly with the number of images, while the amount of storage
needed to store the basis vectors is constant. This statement
applies both to 2DPCA which performs a 1-mode SVD of a
third-order tensor, and to 2DSVD [36], which performs a 2-
mode SVD of a third-order tensor; in both instances, the tensor
is an ensemble of 2D images. The upper bound on the PCA
basis storage requirements (corresponding to no dimensionality
reduction) is the number of pixels squared, while that of the
2DPCA is the number of rows squared plus the number of
columns squared. While the basis vector storage requirements
for 2DPCA is less than that of PCA, the dominant factor is the
amount of storage needed to represent the images in the database.
By contrast, the storage requirements of MPCA and MICA grow
linearly with the number of people, which is usually only a
fraction of the number of images which grow combinatorially
with the number of causal factors of data formation.

o “Computing PCA on a dataset that treats an image as a
matrix is computationally more efficient.”

The PCA of a data matrix of vectorized N; x N» images
computes the SVD of the pixel covariance matrix whose
dimensionality is (N1 N2)2. When treating images as “matrices”
and an image ensemble as a third-order tensor, one obtains
a column-pixel covariance matrix and a row-pixel covariance
matrix, of dimensionality N7 and N2, respectively. Computing
the SVDs of two smaller covariance matrices for 2DSVD is
less expensive than performing an SVD on a large covariance
matrix for PCA, but one should bear in mind that this is an
offline computational task. Our MPCA/MICA algorithms treat
images as vectors, but they compute SVDs not of the pixel
covariance matrix, but of the covariance matrices associated
with each causal factor. Although this can be more expensive
than PCA or 2DSVD, depending on the size of the causal factor
matrices, it is an offline computational cost that is offset by a
less expensive online recognition computation. Several papers
in the literature advocate the computation of the MPCA by
treating images as matrices (e.g., [31], [32]), which additionally
necessitates computing SVDs of the row-pixel covariance and
column-pixel covariance matrices.

Mathematical analysis: We examine the mathematical re-
lationship between image-as-a-vector and image-as-a-matrix
representations in more detail. A data matrix D € R&*/ whose
columns are vectorized images (Figure 1(a)) can be decomposed
using standard matrix SVD.

PCA, which employs the matrix SVD, applied to an ensemble
of vectorized images encodes the pixel covariances or second-
order statistics of the ensemble. In other words, treating an
I.. x I, image as a vector leads to the computation for each
pixel of all its pairwise covariances with every other pixel in
the image (there are If = (IXCIX,)2 such covariances for each
pixel) (Figure 1(a)). By contrast, when one regards an image as
a matrix, it becomes a collection of row (column) observations
and PCA explicitly computes how pixels co-vary with other
pixels within the same row (column).

The SVD is expressed in terms of the mode-m product and
matrix multiplication as follows:

D = Sx, U x/ U Tensor Notation (1)

D, = DLF] = U, Su/, Matrix Notation (2)
T
R

where U, contains the PCA basis vectors. These basis vectors
are computed from the pixel covariance matrix, which contains
all possible pairwise pixel covariances (Figure 1(a)). Matrix R
is the response/coefficient matrix, where the ¢ column in RT is
the coefficient representation relative to the PCA basis of d;,
which is the ¢ observation/column in D.

When an I, x I, image is organized as a data matrix D; and
an ensemble of such images is organized into a third order data
tensor D € RI*LexIi (Figure 1(d)), the data tensor can be
decomposed using the M-mode SVD as follows:

D = Zx.U.x,U,x U
= R XXC UXC XX\' U)(l'7

3
“

where U, is computed by matrixizing the data tensor along the
row (Figure 1(b)) and computing the basis vectors associated
with the covariance matrix between pixels within image columns,
where each column is considered a single measurement. Matrix
U, contains the basis vectors associated with the covariance
matrix between pixels within image rows, where each row is
considered a single measurement (Figure 1(c)). The product
R = Z x; U, contains the response for each image when
projected onto U, and U,,. R; is the ¢ slice of tensor R and it
contains the response or coefficients associated with image D,.

Matrixizing the data tensor along the image mode results in a
data matrix D, whose transpose is the same matrix used by
PCA in Equation (2), thus giving us an opportunity to compare
terms: From Equations (3) and (2), we have

D; = USsUf
= (U.eoU)Z, Uf
N———

&)
(6)

Normalized

Upnormalized PCA Coefficient Matrix

PCA Basis Matrix

Essentially, M-mode SVD has decomposed the unnormalized
PCA basis (U,S) into two basis matrices, U,, and U,,, whose
columns span column/row pixel covariances. By contrast, when
images are vectorized and organized into a multifactor tensor
(akin to the TensorFaces approach), M-mode SVD further
decomposes the PCA coefficient matrix.
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Fig. 1: (a) When the pixels associated with an image are organized into a 1-way array, PCA computes all possible pairwise pixel
covariances. (b) The data tensor is matrixized in the first mode and pixel covariances are computed between pixels within a
column. (c) The data tensor is matrixized in the second mode and pixel covariances are computed between pixels within a row.
(d) Matrixizing a data tensor and covariance computation. (c) Image-as-a-matrix decomposition tensor decomposition. Images are
projected into column space, U, and row space, U,.. Diagonal covariances are not computed. In the image-as-matrix scenario, a
multilinear (Tucker, MICA etc.) tensor factorization computes one (1) representation per image, and thus, multiple representations
per person, R = Z x,; U;, where R is the collection of image representations. Thus, in the image-as-matrix case, a Tucker or
MICA tensor factorization does not result in a discriminant object representation, and additional mathematical machinery is
needed to perform object recognition. Representations of the causal factors of data formation are not computed.

Tensor Z contains normalizing parameters associated with U,
U, and U_. It may be tempting to think of ZE] as a matrix
that spans cross-diagonal pixel covariance from most important
to least important; however, cross-diagonal pixel covariance is
not computed, and the M-mode SVD can only model the data
with respect to U, and U,. Thus, dimensionality reduction
cannot discard the least important redundancies between cross-
diagonal pixels. Note that there is an exact relationship only if
no dimensionality reduction is performed.

The same counterargument holds true for organizing a sensory
input data into a higher-order tensor.

Summary: The benefits of viewing an image as a data tensor

(or, as it is sometimes called, a “tensor object’ / "ND-object””)
have been very much overstated in well-known papers in the
literature.We have argued that, instead, it is preferable to treat
images as vectors and an ensemble of vectorized images as a
M-way array, a “data-tensor”.

B. Compositional Hierarchical Block TensorFaces

Training Data: In our experiments, we employed gray-level
facial training images rendered from 3D scans of 100 subjects.
The scans were recorded using a CyberwareTM 3030PS laser
scanner and are part of the 3D morphable faces database

There exists a recent trend to refer to 3-way or N-way array as a 3D or
N D object has overloaded the meaning of the word dimension. For example,
a vectorized image is a point in high dimensional space with dimensionality
I N X 1.
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Fig. 2: (a) compositional hierarchical Block TensorFaces learns a hierarchy of features, and reesents each person as a part-based
compositional representation. Figure depicts the training data factorization, D = T, x, U, X, Uy %, U,, where an observation is
represented as d(p,v,1) = T, x, 1T x, vT x, pT and T, spans the hierarchical causal factor variance. (b) ROC curves for the
University of Freiburg 3D Morphable Faces dataset. (c¢) ROC curves for the LFW dataset. The average accuracies are listed next
to each method, along with the area under the curve (AUC). Parts refers to using compositional hierarchical Block TensorFaces
models to separately analyze facial parts. Gaussian, Laplacian refers to using compositional hierarchical Block TensorFaces on a
Gaussian/Laplacian data pyramid.

Test PCA TensorFaces compositional hierarchical Block TensorFaces
Dataset . Weighted . Weighted
. Gaussian : Laplacian .
Pixels Pyramid Gaussian Pyramid Laplacian
y Pyramid ¥ Pyramid
Freiburg | 65.23% 71.64% 90.50% | 88.17% 94.17% 90.96% 93.98%

LFW 69.23% 66.25% 72.72% | 76.72% 77.85% 77.58% 78.93%
+1.51 +1.60 +2.14 +1.65 +1.83 +1.45 +1.77

TABLE I: Empirical results reported for LFW : PCA, TensorFaces and compositional hierarchical Block TensorFaces. Pixels
denotes independent facial part analysis Gaussian/Laplacian use a multi resolution pyramid to analyze facial features at different
scales. Weighted denotes a weighted composite signature.

Freiburg Experiment:

Train on Freiburg: 6 views (£60°,£30°,£5°); 6 illuminations (+60°,£30°,£5°), 45 people

Test on Freiburg: 9 views (£50°, £40°, £20°, £10°, 0°), 9 illums (£50°, £40°, £20°, £10°, 0°), 45 different people

LFW Experiment: Models were trained on approximately half of one percent (0.5% < 1%) of the 4.4M images used to train
DeepFace.

Train on Freiburg:

15 views (£60°,+50°, £40°,+30°, £20°, £10°,£5°, 0°), 15 illuminations (+60°,+50°, +40°,+30°, +20°, £10°,+5°, 0°), 100
people

Test on LFW: We report the mean accuracy and standard deviation across standard literature partitions [8], following the
Unrestricted, labeled outside data supervised protocol.




created at the University of Freiburg [2]. Each subject was
combinatoriall y imaged in Maya from 15 different viewpoints
(0 = —60° to +60° in 10° steps on the horizontal plane,
¢ = 0°) with 15 different illuminations ( § = —35° to +35°
in 5° increments on a plane inclined at ¢ = 45°).

Data Preprocessing: Facial images were warped to an average
face template by a piecewise affine transformation given a set
of facial landmarks obtained by employing Dlib software [12],
[10], [20], [14], [6]. Hlumination was normalized with an
adaptive contrast histogram equalization algorithm, but rather
than performing contrast correction on the entire image, subtiles
of the image were contrast normalized, and tiling artifacts
were eliminated through interpolation. Histogram clipping was
employed to avoid over-saturated regions.

Experiments: Each image, d € R0*!, was convolved with five
filters banks {H,||s = 1...S}. The filtered images, d x, H,,
resulted in five facial part hierarchies composed of (i) indepen-
dent pixel parts (ii) parts segmented from different layers of a
Gaussian pyramid that were equally or (iii) unequally weighed,
(iv) parts were segmented from a Laplacian pyramid that were
equally or (v) unequally weighed. We ran five experiments with
five facial part hierarchies from which a person representation
was computed, Fig. 2. The composite person signature was
computed for every test image by employing the multilinear
projection algorithm[26], [28], and signatures were compared
with a nearest neighbor classifier.

To validate the effectiveness of our system on real-world images,
we report results on “LFW” dataset (LFW) [&]. This dataset
contains 13,233 facial images of 5,749 people. The photos are
unconstrained (i.e., “in the wild”), and include variation due
to pose, illumination, expression, and occlusion. The dataset
consists of 10 train/test splits of the data. We report the mean
accuracy and standard deviation across all splits in Table I.
Fig. 2(b-c) depicts the experimental ROC curves. We follow
the supervised “Unrestricted, labeled outside data” paradigm.

Results: While we cannot celebrate closing the gap on human
performance, our results are promising. DeepFace, a CNN model,
improved the prior art verification rates on LFW from 70% to
97.35%, by training on 4.4M images of 200 x 200 pixels from
4,030 people, the same order of magnitude as the number of
people in the LFW database.

We trained on less than one percent (1%) of the 4.4M total
images used to train DeepFace. Images were rendered from
3D scans of 100 subjects with an the intraocular distance of
approximately 20 pixels and with a facial region captured
by 10,414 pixels (image size ~ 100 x 100 pixels). We have
currently achieved verification rates just shy of 80% on LFW.
When data is limited, CNN models do not convergence or
generalize.

Summary: This paper contributes to the tensor algebraic
paradigm and models cause-and-effect as a hierarchical block
tensor interaction between intrinsic and extrinsic hierarchical
causal factors of data formation.

A data tensor expressed as a function of a hierarchical data
tensor is a unified tensor model of wholes and parts from which
a new compositional hierarchical block tensor factorization
was derived. The resulting causal factor representations are

interpretable, hierarchical, and statistically invariant to all other
causal factors. Our approach was demonstrated in the context of
facial images by training on a very small set of synthetic images.
While we have not closed the gap on human performance, we
report encouraging face verification results on two test data
sets—the Freiburg, and the Labeled Faces in the Wild datasets.
CNN verification rates improved the 70% prior art to 97.35%
when they employed 4.4M images from 4, 030 people, the same
order of magnitude as the number of people in the LFW database.
We have currently achieved verification rates just shy of 80% on
LFW by employing synthetic images from 100 people for a total
of less than one percent (1%) of the total images employed by
DeepFace. By comparison, when data is limited, CNN models
do not convergence, or generalize.
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