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Abstract

This paper introduces a new multilinear projection algo-
rithm for appearance-based recognition in a tensor frame-
work. The multilinear projection simultaneously maps an
unlabeled image from the pixel space into multiple causal
factors underlying image formation, including illumination,
imaging, and scene structure. For facial recognition, the
most relevant aspect of scene structure is the specific per-
son whose face has been imaged. Our new multilinear pro-
jection algorithm, which is based on the canonical decom-
position of tensors, is superior to our previously proposed
multilinear projection algorithm that is based on an M -
mode SVD. To develop our new algorithm, we extend and
formalize the definition of the mode-m product, the mode-
m identity tensor, and the mode-m pseudo-inverse tensor.
We demonstrate our multilinear projection in the context
of facial image recognition and compare its results in si-
multaneously inferring the identity, view, illumination, etc.,
coefficient vectors of an unlabeled test image against those
obtained using multilinear projection based on the M -mode
SVD, as well as against the results obtained using a set of
multiple linear projections. Finally, we present a strategy
for developing a practical biometric system that can enroll
an uncooperative subject using a one or more images and
then recognize that subject in unconstrained test images.

1. Introduction

The goal of many statistical data analysis problems,

among them those arising in the domains of computer vision

and machine learning, is to find a suitable representation of

multivariate data that facilitates the analysis, visualization,

compression, approximation, recognition and/or interpreta-

tion of the observed data. This is often done by applying a

suitable transformation to the space in which the observa-

tional data reside.

Representations that are derived through linear trans-
formations of the original observed data have traditionally

been preferred due to their conceptual and computational

simplicity. Principal components analysis (PCA), one of

the most valuable results from applied linear algebra, is

used broadly in many forms of data analysis, including

the analysis of facial image data, because it is a simple,

non-parametric method for extracting relevant information

from complex data sets. PCA provides a dimensionality

reduction methodology that aspires to reveal a meaning-

ful causal factor underlying data formation. Whether de-

rived through second-order or higher-order statistical con-

siderations, however, linear transformations, such as PCA

[12, 14, 11] and independent components analysis (ICA)

[2, 8], are limited in their ability to support the analysis of

multifactor data formation, since linear transformations are

best suited to modeling observational data that results from

single-factor linear variation or from the linear combination

of multiple sources.

Vasilescu and Terzopoulos [16, 15] have argued that

since natural images result from the interaction between

multiple causal factors related to the imaging process, the il-

lumination, and the scene geometry, a principled mathemat-

ical approach to disentangling and explicitly representing

these causal factors essential to image formation is through

numerical multilinear algebra, the algebra of higher-order

tensors. The multilinear transformations that are involved

in this approach lead to generative models that explicitly

capture how the observed data are influenced by multiple

causal factors. In general, these causal factors may be fun-

damental physical, behavioral, or biological processes that

cause patterns of variation in the observational data, which

comprise a set of measurements or response variables that

are affected by the causal factors. Facial images in particu-

lar are the result of specific facial geometry (person, facial

expression, etc.), the pose of the head relative to the camera,

the lighting conditions, and the type of camera employed.

A multilinear transformation computes a unique represen-

tation for each causal factor and an image is represented as

a collection of causal factor representations.

In this paper, we develop a multilinear projection method

for appearance-based recognition through canonical de-
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composition, the so-called the CANDECOMP/PARAFAC

(CP) decomposition [5, 7]. Given an unlabeled facial image,

the multilinear projection maps it from the measurement,

pixel space to the multiple causal factor spaces, thus simul-

taneously inferring the identity of the person, the viewpoint

of the camera, the illumination conditions, etc., coefficient

vectors of the test image. Due to differences in the opti-

mization constraints, our multilinear projection based on CP

decomposition (MP-CP) is superior to our earlier multilin-

ear projection based on multilinear PCA (MP-MPCA) [19].

The earlier approach must first compute an intermediate

rank-(R1, . . . , RM ) decomposition that optimizes for or-

thonormal mode matrices and that must be dimensionally

reduced [10, 9, 6, 17]. This intermediate step, which re-

quires the imposition of an orthonormality constraint, can

introduce bias, resulting in a suboptimal solution. Our new

approach employs a modified CP algorithm, which com-

putes the best fitting rank-1 decomposition without an in-

termediate step that biases the solution. To develop our new

multilinear projection algorithm, we extend and formalize

the definition of the mode-m product, the mode-m identity

tensor, and the mode-m pseudo-inverse tensor. There have

been two previous attempts at such a generalization [1, 19],

which were informal and/or incomplete.

We demonstrate multilinear projection via canonical de-

compostion in the context of facial image recognition and

compare its results against those associated with multilin-

ear projection via multilinear PCA [19] as well as against

the results associated with performing a set of multiple lin-

ear projections [16].

Finally, we discuss a strategy for developing a practical

biometric system that can enroll an uncooperative subject

from a small number of surveillance images, by represent-

ing his/her facial image(s) relative to the statistics encoded

in a multilinear model that is trained on a set of coopera-

tive subjects, and that can then recognize the uncooperative

subject in unconstrained test images.

The remainder of this paper is organized as follows: In

Section 2, we review our multilinear image analysis ap-

proach and, in particular, the TensorFaces method. Sec-

tion 3 develops our multilinear projection algorithms. Sec-

tion 4 applies the multilinear projection to face recognition

and discusses the development of a realistic face recogni-

tion system where uncooperative subjects must be enrolled

from only one or a few images and then recognized in un-

constrained test images.

2. Multilinear Image Representation

The multilinear analysis framework for appearance-

based image representation offers a potent mathematical

approach to analyzing the multifactor structure of image

ensembles and for addressing the fundamental yet difficult

Views

People

Illuminations

Figure 1. A facial image dataset. (a) 3D scans of 75 subjects,

recorded using a CyberwareTM 3030PS laser scanner as part of

the University of Freiburg 3D morphable faces database [3]. A

portion of the 4th-order data tensor D of the image ensemble used

for training. Only 4 of the 75 people are shown.

problem of disentangling the causal factors.1

Multilinear transformations lead to generative models
that explicitly capture how the observed data are influenced
by multiple underlying causal factors. A multilinear trans-
formation is a nonlinear function or mapping from not just
one, but a set of M domain vector spaces Rmi , 1 ≤ i ≤M ,
to a range vector space R

n:

T : {Rm1 × R
m2 × · · · × R

mM } �→ R
n. (1)

Given the data tensor D of labeled, vectorized training
images dpvle, where the subscripts denote person p, view
v, illumination l, and expression e labels, we can apply the
MPCA algorithm [17, 15] to compute causal mode matri-
ces UP, UV, UL, and UE as well as the TensorFaces basis
T = D×P U

T
P
×V U

T
V
×L U

T
L
×E U

T
E

that governs the inter-
action between them (Figure 2(a)). Then the method repre-
sents an image dpvl by the relevant set of person, view, and
illumination coefficient vectors as follows:

dpvle = T ×P p
T
p ×V vT

v ×L l
T
l ×E e

T
e . (2)

Alternatively, we can apply the MICA algorithm [18, 20],
which employs higher-order statistics to compute an MICA
basis tensor M = D ×P C

+
P
×V C

+
V
×L C

+
L
×E C

+
E

. Anal-
ogous to the MPCA case, an image can be represented with
respect to the MICA basis, as follows:

dpvle = M×P p
T
p ×V vT

v ×L l
T
l ×E e

T
e . (3)

By comparison to linear approaches where an individual

has a representation for every image in which they ap-

pear, in the multilinear approaches discussed above, such

1An observation comprises a set of measurements or response variables
whose values are influenced by multiple underlying causal factors. The

causal factors are not directly measurable, but they are of interest, and the

variables extracted by data analysis in order to represent them are known

as explanatory variables. For example, an image is an observation whose

measurements are pixels, the values of which vary with changes in the

causal factors—scene structure, illumination, view, etc.
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Figure 2. (a) MPCA image representation d = T ×Pp
T×Vv

T×L

lT. (b) Given an unlabeled test image d, the associated coefficient

vectors p, v, l are estimated by decomposing the response tensor

R = T +
x ×T

x d using a multilinear projection algorithm.

as MPCA and MICA, an individual has the same represen-

tation regardless of viewpoint, illumination, expression, etc.

This is an important advantage of multilinear models over

linear ones on which our recognition system capitalizes for

superior results.

3. Multilinear Projection
Given an unlabeled test image (probe) d and T or M,

we must determine the unknown coefficient vectors, pp, vv ,

ll, and ee in order to recognize the person, view, illumina-

tion, and expression associated with the test image. Solving

for these vectors in (2) or (3) will, in principle, require the

computation of a pseudo-inverse of tensor T or M. In

analogy with matrix algebra, this raises the following ques-

tions: How does one “invert” a tensor? When one “mul-

tiplies” a tensor with its “inverse tensor”, what should be

the resulting “identity tensor”? We will next show that an

M th-order tensor has M pseudo-inverse tensors, one with

respect to each mode, and that there are M identity tensors,

one per mode, whose structure is not diagonal with ones

along the main diagonal.

3.1. Identity and Pseudo-Inverse Tensors

First, we generalize the definition of the mode-m prod-

uct2 of a tensor and a matrix to two tensors:3

Definition 3.1 (Generalized Mode-m Product) The gen-
eralized mode-m product between two tensors A ∈
R

I1×I2×···×Im×···×IM and B ∈ R
J1×J2×···×Jm×···×JM is

expressed as follows:

1. A ×m B = C ∈ R
I1×···×Im−1×Jm×Im+1×···×IM ,

where Im = J1 . . . Jm−1Jm+1 . . . JM , can be ex-
pressed in matrix form as C[m] = B[m]A[m].

2. A ×T

m B = C ∈ R
I1×···×Im−1×Km×Im+1×···×IM ,

where Km = J1 . . . Jm−1Jm+1 . . . JM and Im = Jm,
can be expressed in matrix form as C[m] = BT

[m]A[m].

3. A ×T m B = C ∈ R
Im×Jm , where

I1 . . . Im−1Im+1 . . . IM = J1 . . . Jm−1Jm+1 . . . JM ,
can be expressed in matrix form as CT

[m] = B[m]A
T
[m].

4. A ×T T

m B = C ∈ R
J1×···×Jm−1×Im×Jm+1×···×JM ,

where Jm = I1 . . . Im−1Im+1 . . . IM , can be ex-
pressed in matrix form as CT

[m] = BT
[m]A

T
[m].

With the above generalization, we define the mode-m iden-

tity tensor as follows:

Definition 3.2 (Mode-m Identity Tensor) Tensor Im is
a mode-m multiplicative identity tensor if and only if
Im ×m A = A, where A ∈ R

I1×···×Im×···×IM and
Im ∈ R

I1×···×Im−1×Jm×Im+1×···×IM , where Jm =
I1I2 . . . Im−1Im+1 . . . IM .

While a mode-wise identity tensor might seem to be a con-

struct peculiar to multilinear algebra, one should recall that

in linear algebra there exist left and right identity matrices

for every rectangular matrix A ∈ R
I1×I2 . Whereas the left

and right identity matrices have different dimensions, they

share the same diagonal structure. By contrast, the mode-m
identity tensors are not diagonal tensors. Figure 3 illustrates

the structure of the three identity tensors of order 3.
The mode-m identity tensor can be used to tensorize

a matrix or a row vector via a mode-m product. It
does not change the values of the matrix/vector but sim-
ply reorders its elements. In particular, it can re-tensorize
a matrix obtained by matrixizing a tensor; i.e., given

2[A ×m B]i1...im−1jmim+1...iM =∑
im

ai1...im−1imim+1...iM bjmim .
3Note that there have been two previous attempts at such a generaliza-

tion [1, 19], which were informal and/or incomplete.
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(a) (b) (c)
Figure 3. The three identity tensors of order 3; (a) mode-1 identity

tensor; (b) mode-2 identity tensor; (c) mode-3 identity tensor.

a tensor A ∈ R
I1×···×Im×···×IM and an identity ten-

sor, Im ∈ R
I1×···×Im−1×Jm×Im+1×···×IM with Jm =

I1I2 . . . Im−1Im+1 . . . IM , then

Im ×m A[m] = A. (4)

We now define a mode-m pseudo-inverse tensor that gen-

eralizes the pseudo-inverse matrix from linear algebra.

Definition 3.3 (Mode-m Pseudo-Inverse Tensor)
The mode-m pseudoinverse tensor A+

m of tensor
A ∈ R

I1×I2×···×IM satisfies:

1. (A×T

m A+
m)×m A = A

2. (A+
m ×T m A) ×T T

m A+
m = A+

m

The mode-m pseudoinverse tensor A+
m of A is the ten-

sorized version of A+T
[m] ; i.e., A+T

[m] = [A+
m ]

[m]
.

3.2. Multilinear Projection Algorithms
To determine the coefficient vectors that represent an un-

labeled observation (image), which is a point (vector) in
the (pixel) measurement space, we must map the observa-
tion from the measurement space to the causal factor spaces
(Figure 2). Given an unlabeled test (probe) image d and a
learned TensorFaces model T , the image is represented as
follows:

d = T ×P r
T
P ×V rTV ×L r

T
L ×E r

T
E + ρ, (5)

where d ∈ R
Ix×1×···×1 and ρ is a residual vector that lies

outside the range of the multilinear generative model. Thus,

ρ is orthogonal to the TensorFaces basis T and ρ = 0 when

d lies in the subspace spanned by the basis. Thus, to com-

pute the coefficient vector representations, rP, rV, rL, and rE,

needed to recognize the person, view, illumination, and ex-

pression depicted in test image d, we must pseudo-invert T
with respect to the (pixel) measurement mode—i.e., com-

pute T +
x .

In view of the above considerations, we will now derive
a general multilinear projection algorithm. To this end, we
will temporarily revert back to numbering modes for full
generality and assume that mode 1 is the measurement (e.g.,
pixel) mode. The general, M -mode form of (5) is

d = T ×2 r
T
2 · · · ×M rTM + ρ. (6)

Performing a mode-1 product of both sides of this equation
by the mode-1 pseudo-inverse of the TensorFaces bases, we
obtain a response tensor

R = T +
1 ×T

1 d (7)

= T +
1 ×T

1 (T ×2 r
T
2 · · · ×m rTm · · · ×M rTM + ρ) (8)

= (T +
1 ×T

1 T )×2 r
T
2 · · · ×m rTm · · · ×M rTM + (T +

1 ×T

1 ρ)

� I1 ×2 r
T
2 · · · ×m rTm · · · ×M cTM + 0 (9)

= 1×2 r2 · · · ×m rm · · · ×M rM Rank-(1, . . . , 1) (10)

= r2 ◦ r3 · · · ◦ rM , Rank-1 (11)

where d ∈ R
I1×1×···×1 and d[1] = dT, where (T +1 ×T

1

T ) � I1 when I1 < I2I3 . . . IM , otherwise (T +1×T

1T ) =
I1, and where I1 ∈ R

(I2I3...IM )×I2×···×IM . The three

equalities (9)-(11) can be derived using the definition of the

mode-m product 4 and the vec-Kronecker property 5. The

rank-(1, . . . , 1)/rank-1 structure of the response tensor R is

amenable to a tensor decomposition using the MPCA algo-

rithm or a modified CP algorithm in order to determine the

rm coefficient vector representations.
The multilinear projection algorithm can employ a modi-

fied CANDECOMP/PARAFAC (CP) algorithm to compute
the best fitting rank-1 term for the response tensor. Like the
MPCA algorithm, the CP algorithm takes advantage of the
structure of R. The mode-m vectors of R are multiples
of rm and the scalar multiples have a well defined structure
that the CP algorithm exploits. Given the structure of R, the
outer product of coefficient vectors rm may be expressed in
matrix form as:

R[m] � (r2 ◦ r3 · · · ◦ rM )
[m]

(12)

= rm(rM ⊗ · · · ⊗ rm+1 ⊗ rm−1 ⊗ · · · ⊗ r2)
T

= rm(rM � · · · � rm+1 � rm−1 � · · · � r2)
T

= rmyT
m, (13)

where ◦ is the outer-product, ⊗ is the Kronecker product6,
� is the Khatri-Rao product 7, and ym = (rM � · · · �
rm+1�rm−1�· · ·�r2). Therefore, each coefficient vector
representation is given by

rm = R[m]ym(yT
mym)−1 = R[m]ym/‖ym‖2. (14)

Given the form of ym, we can compute its norm efficiently
using the relationship (U � V)T(U � V) = (UTU) �
(VTV) between the Khatri-Rao and Hadamard products 8,

4The mode-m product C = A×1 B1 · · · ×m Bm · · · ×M BM can

be expressed in matrix form as C[m] = BmA[m](BM ⊗· · ·⊗Bm+1⊗
Bm−1 ⊗ · · · ⊗B1)T where ⊗ is the Kronecker product.

5The vec-Kronecker property: vec(a ◦ b) = vec(abT) = b⊗ a

6The Kronecker product is U⊗V =

⎡
⎢⎣

u11V . . . u1JV
.
.
.

. . .
.
.
.

uI1V . . . uIJV

⎤
⎥⎦.

7The Khatri-Rao product is a columnwise Kronecker product:

U�V = [(u(1) ⊗ v(1)) . . . (u(l) ⊗ v(l)) . . . (u(L) ⊗ v(L))].
8The Hadamard product is an element-wise product defined as

[U �V]ij = uijvij .
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Algorithm 3.1 Multilinear projection (MP) algorithm with

CP, rank-1 decomposition

Input a TensorFaces basis tensor T ∈ R
I1×···×IM ,a where mode

m = 1 is the measurement mode, and an unlabeled test observa-

tion (image) d.

1. Compute the pseudo-inverse T +
1 (in matrix form, T+T

[1] ).

2. Compute the response tensor R := T +
1 ×1 d

T.

3. Initialize ym to the column norms of R[m].

4. For m := 2, . . . ,M , set rm := R[m]ym/‖ym‖2.

5. Local optimization via alternating least squares:

Iterate for n := 1, . . . , N

For m := 2, . . . ,M ,
rm := R[m] (rM � · · · � rm−1 � rm+1 � · · · � r2) /

‖rM‖2 . . . ‖rm+1‖2‖rm−1‖2 . . . ‖r2‖2.
Set Z := R×2 r

T
2 · · · ×M rTM . b

until convergence. c

Output the converged causal factor representation vectors

r2 . . . rM .

aOr given a MICA basis tensor M.
bNote that Z ∈ R

1M is a degenerate tensor of order M ; i.e., a scalar.
cNote that N is a prespecified maximum number of iterations. A possi-

ble convergence criterion is to compute at each iteration the approximation

error en := ‖D− D̃‖2 and test if en−1− en ≤ ε for a sufficiently small

tolerance ε.

as follows:

‖ym‖2 = yT
mym (15)

= rTMrM � . . .� rTm+1rm+1 � rTm−1rm−1 � . . . rT2 r2

= (rTMrM ) . . . (rTm+1rm+1)(r
T
m−1rm−1) . . . (r

T
2 r2)

= ‖rM‖2 . . . ‖rm+1‖2‖rm−1‖2 . . . ‖r2‖2. (16)

Algorithm 3.1 is a multilinear projection algorithm via
Rank-1 analysis, which employs a modified CP algorithm,

and computes the best fitting rank-1 decomposition of R.

Each rm is computed efficiently according to (14) with (16)

and in an iterative manner by holding all other coefficient

vectors fixed.

Next, we will summarize the multilinear projection al-

gorithm [19] that computes the coefficient vectors by ap-

plying the MPCA algorithm (MP-MPCA). Since, in prin-

ciple, the mode-m vectors of R are multiples of the rm
coefficient vectors (e.g., for facial image recognition, rP, rV,

rL, rE; cf. the framed rows/columns in Figure 2(b)), ma-

trixizing R in each mode yields rank-1 matrices, enabling

the M-mode SVD algorithm to compute the correspond-

ing coefficient vector. When dealing with facial images,

the person coefficient vector rP is the leading left-singular

vector of the SVD. In practice, the M-mode SVD [15] of

R may not result in a rank-(1, . . . , 1) decomposition. The

MP algorithm introduced in [19] exploits the MPCA algo-

rithm [17] which achieves a locally optimal dimensionality

reduction through alternating least squares and computes a

Rank-(1, . . . , 1) Multilinear Projection (MP-MPCA). MP-

MPCA first optimizes for the computation of orthonormal

mode-matrices, which is unnecessary and can result in a

rank-(R2, . . . , RM ), followed by dimensionality reduction

to achieve a rank-(1, . . . , 1) decomposition. The first step

biases the MP-MPCA algorithm. In contrast, the CP initial-

ization computes a rank-1 analysis from the start, which is

a better initial condition since R is a rank-1 tensor.
The MP-MPCA method is sensitive to the sign indeter-

minacy of the decomposition of the response tensor; i.e., for
any pair of factor representation vectors,

R � r2 ◦ · · · ◦ ri ◦ · · · ◦ rj ◦ · · · ◦ rM (17)

= r2 ◦ · · · ◦ −ri ◦ · · · ◦ −rj ◦ · · · ◦ rM , (18)

and alternative decompositions can be obtained by flipping

the signs of any number of vector pairs. Sign consistency

in the MP-MPCA can be achieved analogously to how one

might achieve consistency in choosing PCA basis vectors

[4]. Note, however, that the MP-CP method starts with a

consistent initialization condition, so it is less prone to sign

indeterminacy.
The application of the MP-PCA Algorithm or the MP-

CP Algorithm 3.1 to an unlabeled test image d yields causal
factor representation vectors r2, . . . , rM . For recognition,
we assign causal mode labels to d by computing a cosine
similarity measure between rm and each of the Im rows cTi
of Um:

argmax
i

cTi rm
‖ci‖‖rm‖ . (19)

The probe d is assigned the label i, where 1 ≤ i ≤ Im,
of the signature cTi that maximizes (19). In the particular
context of facial image recognition, we denote the rm vec-
tors computed by the MP algorithms as rP, rV, rL, and rE,
in association with the people, views, illuminations, and ex-
pressions modes, respectively. To recognize the unlabeled
test image d, we maximize the set of similarity measures

argmax
p

pT
p rP

‖pp‖‖rP‖ ; argmax
v

vT
v rV

‖vv‖‖rV‖ ;

argmax
l

lTl rL

‖ll‖‖rL‖ ; argmax
e

eT
e rE

‖ee‖‖rE‖ ; (20)

that for rP, rV, rL, and rE find the best matching signatures;

i.e., rows pT
p , vT

v , lTl , and eTe of the causal mode matri-

ces UP, UV, UL, and UE, respectively. Evaluating the set

of similarity measures together enables us to recognize the

probe image d as depicting person p in view v, illumination

l, and expression e.

Figure 4 illustrates the architecture of our multilin-

ear recognition system, showing the TensorFaces (MPCA)

model using (20). Of course, if we are interested only in rec-

ognizing the person depicted in d, we can achieve savings
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by storing only the person signatures UP and performing

only the first similarity optimization in (20).

4. Facial Image Recognition Experiments
We will now evaluate the recognition algorithms that we

have developed in this paper. There are a number of mean-

ingful experimental scenarios: We employ the Freiburg im-

age database (Figure 1). We represent images by using an

MPCA (TensorFaces) model, and in the testing phase we

recognize unlabeled test images (probes) by first inferring

their coefficient vector representations and then using a sim-

ilarity measure to label the probes, thus achieving recogni-

tion. The inference step may be accomplished using (i) the

multiple linear projection (MLP) method [16], or (ii) the

multilinear projection (MP) method implemented either (a)

by MP-MPCA [19] or (b) by our MP-CP (Algorithm 3.1).

In all the experiments reported below, people depicted

in unlabeled test images (probes), which were not part

of the training set, are recognized by inferring the per-

son representation associated with the test image and

choosing the person label using the similarity methods

argminp; vle ‖pp − rvle‖, for MLP and (19) for MP.

Our next experiments employed the Freiburg facial im-

age dataset of 16,875 images and the data tensor D illus-

trated in Figure 1.

The trained MPCA (TensorFaces) basis and mode matri-

ces have dimensions T ∈ R
8560×74×3×1, UP ∈ R

75×74,

UV ∈ R
6×3, and UL ∈ R

6×1. Thus, the TensorFaces ba-

sis tensors contains 222 basis vectors. However, an image is

represented by 74+3+1 = 78 parameters. The MPCA im-

age representations and response tensors are shown in Fig-

ure 2.

We trained the TensorFaces model and obtained recog-

nition results employing the different projection algorithms

to compute the person representations of unlabeled test im-

ages (probes). Table 1 compares the recognition rates ob-

tained when applying the multiple linear projections (MLP)

method and when applying the multilinear projection the

MP-MPCA algorithm or with our MP-CP algorithm. Note

that our MP-CP algorithm outperforms the MP-MPCA al-

gorithm used in the previous recognition experiment.

Table 2 provides a detailed study of how dimensionality

reduction in the trained TensorFaces model affects recog-

nition rates when using the MP-CP algorithm. The table

shows recognition percentage rates obtained for the number

of people, view, and illumination basis vectors retained as

indicated along each axis.

4.1. Practical Face Recognition

Our multilinear framework is clearly relevant to biomet-

ric systems. A big challenge for a face recognition system in

real-world use is enrolling unwilling participants from one

 21.43       61.45       97.09       95.93         0.02         0
   2.78         9.42       14.16          5.43         0.26         1.20
   3.28         1.07         5.25          4.05       35.52         0.13
   1.56         1.81         3.08          2.29       11.44       65.81
   1.51         3.52         2.16          2.16         1.78       14.73
   2.60         5.00         2.04          1.51         3.97         2.34

viewpoint

dimension

illumination
dimension

people 
dimension

 21.48       61.60       95.89       25.28       0.02        0

21.68       62.86       95.94       94.54         0              0.03

19.65       63.13       95.62       93.56       69.53         0.25

19.85       61.55       96.81       92.33         0.23         0.21

 21.43       61.45       97.09       95.93         0.02         075

74

73

72

71

1
2
3
4
5
6

1 2 3 4 5 6

Table 2. Recognition rates obtained by the MP-CP, rank-1 recog-

nition algorithm with the MPCA (TensorFaces) model subject to

various dimensionality reductions. The table shows percentage

recognition rates obtained for the number of people, view, and

illumination basis vectors retained that are indicated along each

axis.

or more unconstrained surveillance images and recognizing

them under different imaging conditions. Such a system

might be structured as shown in Figure 4. First, a multilin-

ear model is learned from a (hopefully large and represen-

tative) set of cooperative participants representative of the

human population, each of whom ideally supply a complete

set of training images acquired from multiple views, under

multiple illuminations, in multiple expressions, etc., thus

learning how the different causal factors interact to form an

image. An uncooperative subject whose face is detected in

one or more surveillance images can then be enrolled into

the system, by representing his/her facial image(s) relative

to the statistics encoded in the learned model.

Since an individual has the same person representation

in a multilinear framework regardless of other imaging con-

ditions, the person representation is extracted by decompos-

ing the surveillance image(s). The multilinear basis tensor

T or M learnt from the training data is employed and a

surveillance image is decomposed by employing multilin-

ear projection (Algorithm 3.1). When more than one im-

age is available, a more robust person representation can be

computed by exploiting all the available images and Step

4 of the MP-CP (Algorithm 3.1) is modified for the person

mode. Thus, we compute a Ri for every image i and an

associated ym,i for every image when mode m is the per-

son mode (Steps 2-3 of Algorithm 3.1). Step 4 integrates all

this information by defining R[m] = [R[m]1 . . .R[m]i . . . ],
ym = [yT

m,1 . . .y
T
m,i . . . ]

T and rm := R[m]ym/‖ym‖2
when m is the person mode. The collection of people rep-

resentations UP can be augmented and employed in recog-

nition. Since a person representation is invariant of the

other causal factor associated with image formation, the
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MPCA: MLP vs. MP-MPCA vs. MP-CP Recognition Experiment MLP MP-MPCA MP-CP

Training: 75 people, 6 views (θ = ±35,±20,±5, φ = 0),

6 illuminations (θ = 45, φ = 90 + δ, δ = ±35,±20,±5)

Testing: 75 people, 9 views (φ = 0± 10,±15,±25,± = 30), 92.67% 92.65% 96.81%
9 illuminations (θ = 90 + δ, δ = ±35,±20,±5, θ = 0)

Table 1. Facial recognition rates when using the image dataset in Figure 1 to train a TensorFaces model and using the MLP and MP

recognition methods.

person representation extracted from a few surveillance im-

ages should enable the recognition of the subject from an

arbitrary, unlabeled image, as illustrated at the bottom of

the figure. This should also make it possible, in principle,

to synthesize a complete image set of training images for

the subject.

Implementing a prototype recognition system of this

kind, especially one that would also support the multilin-

ear fusion of multimodality biometric data (e.g., video and

speech) would be a worthwhile future goal.

5. Conclusion

We have introduced a multilinear projection via a rank-1

analysis that employs a modified CP algorithm by extend-

ing the underlying mathematics through a generalization of

the mode-m product, mode-m identity tensor, and mode-m
pseudo-inverse tensor. Our multilinear projection algorithm

was applied to facial image recognition and its results were

compared with the results achieved by applying a set of

multiple linear projections (MLP) [16] as well as the results

achieved with multilinear projection that employs MPCA

(MP-MPCA) [19]. A detailed study was made of the recog-

nition rates obtained with the Tensorfaces model using the

MP-CP and rank-1 algorithms subject to various dimension-

ality reductions. A strategy for practical biometric systems

was also discussed, where an uncooperative subject can be

enrolled into the biometric system from a small number of

images and then recognized in unconstrained test images.
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