

Group Fairness by Probabilistic Modeling with Latent Fair Decisions

YooJung Choi, Meihua Dang, Guy Van den Broeck

AAAI 2021

Why algorithmic fairness

Al systems are increasingly being adopted in areas with personal and societal impact.

Societal bias may be perpetuated and amplified by AI/ML models

for a seri

Google apologises for Photos app's racist blunder

Challenge #2: Fairness guarantees hold only if the real-world distribution is captured.

Challenge #2: Fairness guarantees hold only if the real-world distribution is captured.

Challenge #2: Fairness guarantees hold only if the real-world distribution is captured.

$$\mathbb{E}_{P_{data}}[f|S=1] - \mathbb{E}_{P_{data}}[f|S=0] = 0.13$$

f does not satisfy demographic parity!

Challenge #2: Fairness guarantees hold only if the real-world distribution is captured.

Challenge #2: Fairness guarantees hold only if the real-world distribution is captured.

f is considered fair with respect to *Q*

Challenge #2: Fairness guarantees hold only if the real-world distribution is captured.

Our contribution: address both challenges using *probabilistic modeling* with *latent fair decisions*

Spoiler alert

Results: closely modeling the observed data distribution and bias mechanism leads to competitive *classification accuracy* and better *fairness guarantees*.

Sensitive attribute *S*, set of features *X*, label *D*

Sensitive attribute *S*, set of features *X*, label *D*

Latent variable D_f to represent the hidden, fair label.

Assumption #1: D_f satisfies demographic parity. $\mathbb{E}_P[f(\mathbf{X}, S) | S = 1] = \mathbb{E}_P[f(\mathbf{X}, S) | S = 0]$

Assumption #1: D_f satisfies demographic parity. $\mathbb{E}_P[f(\mathbf{X}, S) \mid S = 1] = \mathbb{E}_P[f(\mathbf{X}, S) \mid S = 0]$

 $\Rightarrow D_f \perp S$ for probabilistic classifier $f(\mathbf{X}, S) = P(D_f | \mathbf{X}, S)$

S,X,D	P(S,X,D)
1,1,1	0.2
1,1,0	0.1
:	:
0,0,0	0.3

S,X,D	P(S,X,D)
1,1,1	0.2
1,1,0	0.1
:	:
0,0,0	0.3

S,X,D	$P(S,X,D,D_f=1)$	P(S,X,D,D _f =0)
1,1,1	0.15	0.05
1,1,0	0.05	0.05
:	:	÷
0,0,0	0.1	0.2

S,X,D	P(S,X,D)
1,1,1	0.2
1,1,0	0.1
:	:
0,0,0	0.3

S,X,D	P(S,X,D,D _f =1)	P(S,X,D,D _f =0)
1,1,1	0.15	0.05
1,1,0	0.05	0.05
:	:	:
0,0,0	0.1	0.2

S,X,D	$P(S,X,D,D_f=1)$	P(S,X,D,D _f =0)
1,1,1	0.2	0
1,1,0	0.1	0
:	:	:
0,0,0	0.3	0

Assumption #2: data provides information about D_f

 $\Rightarrow D \perp X \mid D_f, S$ to model dependence to D_f

S,X,D	P(S,X,D)
1,1,1	0.2
1,1,0	0.1
:	:
0,0,0	0.3

$P(S,X,D,D_f=1)$	P(S,X,D,D _f =0)
0.15	0.05
0.05	0.05
÷	÷
0.1	0.2
	<i>P(S,X,D,D_f=1)</i> 0.15 0.05 ⋮ 0.1

S,X,D	P(S,X,D,D _f =1)	P(S,X,D,D _f =0)
1,1,1	0.2	0
1,1,0	0.1	0
:	÷	:
0,0,0	0.3	0

Learn the distribution that best fits the data while ensuring $D_f \perp S$ and $D \perp X \mid D_f, S$.

Probabilistic circuits

Recursively define distributions using *sums*, *products*, and *univariate distributions*.

$$\Pr_{n}(\mathbf{x}) = \begin{cases} f_{n}(\mathbf{x}) & \text{if } n \text{ is a leaf} \\ \prod_{c \in \mathsf{ch}(n)} \Pr_{c}(\mathbf{x}) & \text{if } n \text{ is a product} \\ \sum_{c \in \mathsf{ch}(n)} \theta_{n,c} \Pr_{c}(\mathbf{x}) & \text{if } n \text{ is a sum} \end{cases}$$

- Expressive: closely model the data
- Tractable: efficiently compute conditionals
- Structure encodes independencies

 $P(D, X, D_f = 1, S = 1)$

Parameters are conditional probabilities $\theta_1 = P(D_f = 1, S = 1)$

Structure encodes conditional independence $P(D, X | D_f, S) = P(D | D_f, S) \cdot P(X | D_f, S)$

 Encode independence assumptions by fixing top-level structure and parameter tying.

- Encode independence assumptions by fixing top-level structure and parameter tying.
- Learn the structure for *X* from data.

- Encode independence assumptions by fixing top-level structure and parameter tying.
- Learn the structure for *X* from data.
- Learn the parameters via EM:

$$\theta_{n,c}^{(\text{new})} = \operatorname{EF}_{\mathcal{D},\theta}(n,c) / \sum_{c \in \mathsf{ch}(n)} \operatorname{EF}_{\mathcal{D},\theta}(n,c).$$

Experiments: modeling the data

Experiments: similarity to observed labels

Experiments: synthetic data

- 1. Latent variable approach can learn *fair decisions* while explaining the data with *biased labels*.
- 2. Closely modeling the data leads to *lower discrimination scores*.
- 3. Latent decision variables from FairPC retain *high similarity* to observed *labels.*