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AI systems are increasingly being adopted 
in areas with personal and societal impact.

Societal bias may be perpetuated and 
amplified by AI/ML models

Why algorithmic fairness



Challenge #1: When learning classifiers, the labels may have historical bias 

or be proxies to the true target variable.

Challenge #2: Fairness guarantees hold only if the real-world distribution is 

captured.
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f does not satisfy demographic parity!
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Challenge #1: When learning classifiers, the labels may have historical bias 

or be proxies to the true target variable.

Challenge #2: Fairness guarantees hold only if the real-world distribution is 

captured.

Our contribution: address both challenges using probabilistic modeling with 

latent fair decisions

Motivation



Results: closely modeling the observed data distribution and bias mechanism 

leads to competitive classification accuracy and better fairness guarantees.

Spoiler alert



Latent fair decisions

Sensitive attribute 𝑆, set of features 𝑿, label 𝐷

Latent variable 𝐷𝑓 to represent the hidden, fair label.
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Latent fair decisions

Learn the distribution that best fits the data while 

ensuring 𝐷𝑓 ⊥ 𝑆 and 𝐷 ⊥ 𝑿 | 𝐷𝑓, 𝑆.



Probabilistic circuits

Recursively define distributions using    
sums, products, and univariate distributions.

▪ Expressive: closely model the data

▪ Tractable: efficiently compute conditionals

▪ Structure encodes independencies



Learning fair probabilistic circuits

via EM:
𝑃(𝐷, 𝑿, 𝐷𝑓 = 1, 𝑆 = 1)

Parameters are conditional probabilities
𝜃1 = 𝑃 𝐷𝑓 = 1, 𝑆 = 1

Structure encodes conditional independence

𝑃 𝐷,𝑿 | 𝐷𝑓 , 𝑆 = 𝑃 𝐷 | 𝐷𝑓, 𝑆 ⋅ 𝑃 𝑿 | 𝐷𝑓, 𝑆
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▪ Encode independence assumptions by 
fixing top-level structure and parameter 
tying.

▪ Learn the structure for D,X from data.

▪ Learn the parameters via EM:
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Experiments: modeling the data



Experiments: similarity to observed labels 
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Experiments: synthetic data



1. Latent variable approach can learn fair decisions while explaining the 

data with biased labels. 

2. Closely modeling the data leads to lower discrimination scores.

3. Latent decision variables from FairPC retain high similarity to observed 

labels.

Conclusion


