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Why algorithmic fairness
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Machine Bias

Al systems are increasingly being adopted P————
in areas with personal and societal impact. 7 .
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Google apologises for Photos app's
racist blunder

Societal bias may be perpetuated and

amplified by AI/ML models




Challenge #1: When learning classifiers, the labels may have historical bias
or be proxies to the true target variable.



Challenge #1: When learning classifiers, the labels may have historical bias
or be proxies to the true target variable.

Challenge #2: Fairness guarantees hold only if the real-world distribution is
captured.
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Challenge #1: When learning classifiers, the labels may have historical bias
or be proxies to the true target variable.

Challenge #2: Fairness guarantees hold only if the real-world distribution is
captured.
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Challenge #1: When learning classifiers, the labels may have historical bias
or be proxies to the true target variable.

Challenge #2: Fairness guarantees hold only if the real-world distribution is

captured.
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f does not satisfy demographic parity!



Challenge #1: When learning classifiers, the labels may have historical bias
or be proxies to the true target variable.

Challenge #2: Fairness guarantees hold only if the real-world distribution is
captured.
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Challenge #1: When learning classifiers, the labels may have historical bias
or be proxies to the true target variable.

Challenge #2: Fairness guarantees hold only if the real-world distribution is
captured.
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Challenge #1: When learning classifiers, the labels may have historical bias
or be proxies to the true target variable.

Challenge #2: Fairness guarantees hold only if the real-world distribution is
captured.

Our contribution: address both challenges using probabilistic modeling with
latent fair decisions



Spoiler alert
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Results: closely modeling the observed data distribution and bias mechanism
leads to competitive classification accuracy and better fairness guarantees.



Latent fair decisions

@ Sensitive attribute S, set of features X, label D
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Latent fair decisions
@ Sensitive attribute S, set of features X, label D

@ @ Latent variable D, to represent the hidden, fair label.



Latent fair decisions

@ Assumption #1: Dy satisfies demographic parity.
EplfX,S)[S=1=Ep[fX,$) |S = 0]

ONO



Latent fair decisions

6 @ Assumption #1: D satisfies demographic parity.
Eplf(X,$) S =1]=Eplf(X,5) | S =0]

= Dy L S for probabilistic classifier f(X,S) = P(Df|X, S)
e ? e



Latent fair decisions

a @ Assumption #2: data provides information about Dy

Ono



Latent fair decisions

a @ Assumption #2: data provides information about Dy

Ono
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Latent fair decisions

a @ Assumption #2: data provides information about Dy

Ono

5XD  P(XD) 5XD P(SX.D,DFT)  P(S,X.D,D=0)
1,11 0.2 1,11 0.15 0.05
1,1,0 0.1 1,1,0 0.05 0.05

0,0,0 0.3 0,0,0 0.1 0.2



Latent fair decisions

e @ Assumption #2: data provides information about Dy

Ono

5XD  P(XD) 5XD P(SX.D,D=1)  P(5,XD,D=0) (5,)(,D PSXD,DFT)  PSXD, Df&
1,11 0.2 1,11 0.15 0.05 1,11 0.2 0
1,1,0 0.1 1,1,0 0.05 0.05 1,1,0 0.1 0
0,0,0 0.3 0,0,0 0.1 0.2 KO'OIO 0.3 0 j




Latent fair decisions

e @ Assumption #2: data provides information about Dy

’ =D 1 X | Df,S to model dependence to Dy

5XD  P(XD) 5XD P(SX.D,D=1)  P(5,XD,D=0) (S,X,D P(SX.D,D=1)  P(S,XD, D,F&
1,11 0.2 1,11 0.15 0.05 1,11 0.2 0

1,1,0 0.1 1,1,0 0.05 0.05 1,1,0 0.1 0

0,0,0 0.3 0,0,0 0.1 0.2 KO'OIO 0.3 0 )




Latent fair decisions

’ Learn the distribution that best fits the data while

ensuring D L Sand D L X | Dy, S.



Probabilistic circuits

Recursively define distributions using
sums, products, and univariate distributions.

fn(x) if n is a leaf

Pry,(x) = q Icech(n) Pre(x) if n is a product

ZcEch(n) 0n.c Pre(x) if nis a sum

» Expressive: closely model the data
= Tractable: efficiently compute conditionals
= Structure encodes independencies




Learning fair probabilistic circuits

P(D,X,Df = 1,5 = 1)

Parameters are conditional probabilities
0, =P(Df=1,S=1)

S &
Structure encodes conditional mdependenﬂ DOEOOD OO
P(D,X|Df,5)= P(D|Df,5)'P(X|Df,S) D X D X D X D X



Learning fair probabilistic circuits

= Encode independence assumptions by
fixing top-level structure and parameter

tying.
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Learning fair probabilistic circuits

= Encode independence assumptions by
fixing top-level structure and parameter

tying.
= Learn the structure for Xfrom data.
= Learn the parameters via EM:

00) = EFpg(n,c)/ » EFpg(n,c).
cech(n)




Experiments: modeling the data
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Experiments: similarity to observed labhels
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Experiments: synthetic data
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Conclusion

1. Latentvariable approach can learn fair decisionswhile explaining the
data with biased labels.

2. Closely modeling the data leads to /ower discrimination scores.

3. Latent decision variables from FairPC retain high similarityto observed

labels.



