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Probabilistic circuits (PCs) encode a probability distribution p,,(x) defined By pruning away “unimportant” parameters, it is possible to significantly Learning Sparse PCs
recursively as follows. reduce model size while maximally retaining model expressiveness.
() if 7 is an input unit ition: when drawin _ _ 1. Growing operation copies parameters and injects noise
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An example PC defined over 4 random variables and an equivalent Bayesian network X2 @ X3 a X1 a ' Image datasets: MNIST, EMNIST'. FashionMNIST
. . N o | Character-level language modeling task: PTB
We study smooth and decomposable PCs. Sampling as a backward propagation The probability of each unit being sampled Baselines: PC learners (HCLT, RatSPN) VAEs, flow-based models
Two perspectives: Circuit Flows Table 1: Density estimation performance on MNIST-family datasets in test set bpd.
;. gOIzpzlf/q;/ona/ gI’Cllf)hZ mferencte dS florward prop?glatlo?. o | The circuit flow of unit n on examp|e X is the probability that n will be Dataset Sparse PC (ours) HCLT RatSPNIDF BitSwap BB-ANS McBits
. Probability semantics: parameter value represents local conditiona i - - » : MNIST 1.14 1.20 167 | 1.90  1.27 1.39 1.98
Srobability. visited during tbe sampling procedure cond/t/oneq on. X being samp/ed. EMNIST(MNIST) 5o 177 e | 207 188 > o 519
iy 3_ If nIs the root unit, EMNIST(Letters) 1.58 1.80 2.73 | 1.95 1.84 2.26 3.12
70 L _ EMNIST(Balanced) 1.60 182 278 | 215  1.96 2.23 2.88
F. (x) = | Fm (X) If N IS asum unit, EMNIST(ByClass) 1.54 185 272 | 1.98  1.87 2.23 3.14
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As we scale up learning PCs, the performance of PCs plateaus as model m!out(n)  pm (x) m _ _
size increases. Thus, we need to better utilize the available capacity Haref q th th ! it fl Table 2: Character-level language modeling results on Penn Tree Bank in test s
' ' ' Therefore, we prune edges with the smallest aggregate circuit flow. Dataset | Sparse PC (ours) Bipartite 3ow [42] AF/SCF [48] IAF/SCF [48]
0.5 | | Pruning by Circuit Flows Penn Tree BanK 1.35 | 1.38 1.46 1.63
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' = 0.0585%) | ~ Pruning % Parameter Values semantics: pruning away low probability sub -structures
| Pruning by circuit flows can prune up to .
0-0 80% of the parameters without much log- The parameter values take higher
000 001 002 003 004 005 g P J significance after pruning. 3. The main idea can be generalized to compress other deep generative
Parameter Values lkelihoods decrease. models or neural networks
Histograms of a SOTAPC on MNIST, 95% of the parameters have clost-zero values (Theorem) The log-likelihood drop by pruning away multiple edges is [W] 05 W)
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Though PC structures have fully -connected parameter layers, the bounded and approxmat?d! by | ;! Scan this code! 1
parameter values are only sparsely used. 'LL(D,CE)"! D log(1! Fnc (X)) % D Fn.c (D). [=]
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