
Tractable and expressive generative models
of genetic variation data

Meihua Dang
University of California, Los Angeles

Anji Liu
University of California, Los Angeles

Xinzhu Wei
University of California, Los Angeles

Sriram Sankararaman*
University of California, Los Angeles

Guy Van den Broeck*
University of California, Los Angeles

* Equal Contribution May 23th, 2022 - International Conference on Research in Computational Molecular Biology



Tractable and expressive generative models of genetic variation data
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Tractable and expressive generative models of genetic variation data

DNA sequence data Can be represented as
1 1 1 0
0 0 0 0
0 0 0 0
0 0 0 1


It has wide applications

⇒ genotype imputation, haplotype phasing, ancestry inference
but challenging to learn

high-dimensional
data-scarce
unevenly-distributed⇒ 1000 Genomes Project studies 2500 individuals, discovers 90 million

SNPs, includes >99% of SNPs with with frequency > 1%
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Tractable and expressive generative models of genetic variation data

Probabilistic models that represent joint probability p(X) over random
variablesX.

traditional probabilistic models, such as HMM and Markov chain

more recent ML approaches, such as VAEs and GANs
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Tractable and expressive generative models of genetic variation data

expressive
⇒ how well it captures the data

tractable
⇒ ability for probabilistic inferences, such as likelihoods, MAP
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Tractable and expressive generative models of genetic variation data

expressive
⇒ how well it captures the data

tractable
⇒ ability for probabilistic inferences, such as likelihoods, MAP

Q: Can we get the benefits of both ?
A: Probabilistic circuits (PCs) !
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Density Estimation
how well the models fit the data

Dataset Indep Markov Chain HMM HCLT (PC)

805 -491.10 -438.64 -402.50 -389.20

10K -2390.09 -633.14 -1194.72 -310.93

Table: Log-likelihoods results on subsets SNPs from 1000 Genomes Project
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Principle Component Analysis (PCA)
how well the models fit the data
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Pairwise Correlation
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Probabilistic Circuits (semantics)

PCs encode joint distributions via computational graphs, e.g., a PC with 4 SNPs
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Probabilistic Circuits (semantics)

PCs encode joint distributions via computational graphs, e.g., a PC with 4 SNPs
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Input nodes are tractable distributions, e.g., indicator functions p(Xi=1)=[Xi=1]
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Probabilistic Circuits (semantics)

PCs encode joint distributions via computational graphs, e.g., a PC with 4 SNPs
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Probabilistic Circuits (semantics)

PCs encode joint distributions via computational graphs, e.g., a PC with 4 SNPs
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Probabilistic Circuits (tractability)

Compute likelihood p(X1 = 0, X2 = 1, X3 = 0, X4 = 1)
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Probabilistic Circuits (tractability)

Compute likelihood p(X1 = 0, X2 = 1, X3 = 0, X4 = 1)
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Computing likelihood is time linear in the size of PC
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Probabilistic Circuits (expressiveness)

Large scale, a deep architecture, millions of parameters

Efficient learning algorithms 13/14



Conclusions

The first attempt to introduce probabilistic circuits to bio-informatics

comparable or better performance

tractable, expressive, time-efficient to train

applicable to different tasks
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