UCLA

Tractable and expressive generative models of genetic variation data

Meihua Dang

University of California, Los Angeles
Sriram Sankararaman*
University of California, Los Angeles

* Equal Contribution

Anji Liu
University of California, Los Angeles
Guy Van den Broeck*
University of California, Los Angeles

Xinzhu Wei
University of California, Los Angeles

Tractable and expressive generative models of genetic variation data

DNA sequence data

Can be represented as
$\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Tractable and expressive generative models of genetic variation data

DNA sequence data

Can be represented as
$\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

It has wide applications
\Rightarrow genotype imputation, haplotype phasing, ancestry inference
but challenging to learn

- high-dimensional
data-scarce
unevenly-distributed
$\Rightarrow 1000$ Genomes Project studies 2500 individuals, discovers 90 million

Tractable and expressive generative models of genetic variation data

Probabilistic models that represent joint probability $p(\mathbf{X})$ over random variables X.

\square
traditional probabilistic models, such as HMM and Markov chain
\square more recent ML approaches, such as VAEs and GANs

Tractable and expressive generative models of genetic variation data

expressive

\Rightarrow how well it captures the data

tractable

\Rightarrow ability for probabilistic inferences, such as likelihoods, MAP

Tractable and expressive generative models of genetic variation data

expressive
\Rightarrow how well it captures the data
tractable
\Rightarrow ability for probabilistic inferences, such as likelihoods, MAP
Q: Can we get the benefits of both ?
A: Probabilistic circuits (PCs) !

Outline

Empirical Evaluation
Density Estimation
Principle Component Analysis (PCA)
Pairwise Correlation

Probabilistic Circuits (PCs)

Conclusions

Empirical Evaluation
Density Estimation
Principle Component Analysis (PCA)
Pairwise Correlation

Probabilistic Circuits (PCs)

Conclusions

Density Estimation

how well the models fit the data

Dataset	Indep	Markov Chain	HMM	HCLT (PC)
$\mathbf{8 0 5}$	-491.10	-438.64	-402.50	$\mathbf{- 3 8 9 . 2 0}$
$\mathbf{1 0 K}$	-2390.09	-633.14	-1194.72	$\mathbf{- 3 1 0 . 9 3}$

Table: Log-likelihoods results on subsets SNPs from $\mathbf{1 0 0 0}$ Genomes Project

Principle Component Analysis (PCA)

how well the models fit the data

Principle Component Analysis (PCA)

how well the models fit the data

Pairwise Correlation

(a) R^{2} as a function of SNP distance

(b) R^{2} matrices comparing ground truth and PC

Empirical Evaluation

Density Estimation

Principle Component Analysis (PCA)
Pairwise Correlation

Probabilistic Circuits (PCs)

Conclusions

Probabilistic Circuits (semantics)

PCs encode joint distributions via computational graphs, e.g., a PC with 4 SNPs

Probabilistic Circuits (semantics)

PCs encode joint distributions via computational graphs, e.g., a PC with 4 SNPs

Input nodes are tractable distributions, e.g., indicator functions $\mathrm{p}\left(X_{i}=1\right)=\left[X_{i}=1\right]$

Probabilistic Circuits (semantics)

PCs encode joint distributions via computational graphs, e.g., a PC with 4 SNPs

Product nodes are factorizations $\prod_{c \in \operatorname{in}(n)} \mathrm{p}_{c}(\mathbf{x})$

Probabilistic Circuits (semantics)

PCs encode joint distributions via computational graphs, e.g., a PC with 4 SNPs

Sum nodes are mixture models $\sum_{c \in \operatorname{in}(n)} \theta_{n, c} \mathrm{p}_{c}(\mathbf{x})$

Probabilistic Circuits (tractability)

Compute likelihood $p\left(X_{1}=0, X_{2}=1, X_{3}=0, X_{4}=1\right)$

Probabilistic Circuits (tractability)

Compute likelihood $p\left(X_{1}=0, X_{2}=1, X_{3}=0, X_{4}=1\right)$

Probabilistic Circuits (tractability)

Compute likelihood $p\left(X_{1}=0, X_{2}=1, X_{3}=0, X_{4}=1\right)$

Computing likelihood is time linear in the size of PC

Probabilistic Circuits (expressiveness)

Large scale, a deep architecture, millions of parameters

Efficient learning algorithms

Conclusions

The first attempt to introduce probabilistic circuits to bio-informatics
\square comparable or better performance
\square tractable, expressive, time-efficient to train
\square applicable to different tasks

