UCLA

Tractable and expressive generative models of genetic variation data

Meihua Dang University of California, Los Angeles Sriram Sankararaman* University of California, Los Angeles Anji Liu University of California, Los Angeles Guy Van den Broeck* University of California, Los Angeles Xinzhu Wei University of California, Los Angeles

* Equal Contribution

May 23th, 2022 - International Conference on Research in Computational Molecular Biology

DNA sequence data

	SNP 1			SNP 2							
	A	Т	С	С	Т	Т	A	G	G	А	Maternal
Individual 1	A	Т	С	Т	Т	Т	С	A	G	А	Paternal
Individual 2	А	Т	С	т	Т	Т	С	А	G	А	
	А	T,	С	Т	Т	Т	С	A	А	А	

Can be represented as

[1	1	1	0
0	0	0	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \end{array} $
0	0	0	0
0	0	0	1

DNA sequence data


Can be represented as

0	
	0
0	0 0 0
0	1
	0

It has wide applications

 \Rightarrow genotype imputation, haplotype phasing, ancestry inference

but challenging to learn

unevenly-distributed

1000 Genomes Project studies 2500 individuals, discovers 90 million SNPs, includes >99% of SNPs with with frequency > 1%

Probabilistic models that represent joint probability $p(\mathbf{X})$ over random variables \mathbf{X} .

traditional probabilistic models, such as HMM and Markov chainmore recent ML approaches, such as VAEs and GANs

expressive

 \implies how well it captures the data

tractable

 \Rightarrow

ability for probabilistic inferences, such as likelihoods, MAP

expressive

 \implies how well it captures the data

tractable

 \Rightarrow ability for probabilistic inferences, such as likelihoods, MAP

Q: Can we get the benefits of both?

A: Probabilistic circuits (PCs) !

Empirical Evaluation

Density Estimation Principle Component Analysis (PCA) Pairwise Correlation

Probabilistic Circuits (PCs)

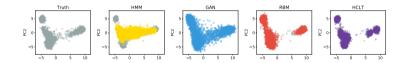
Conclusions

Empirical Evaluation Density Estimation Principle Component Analysis (PCA) Pairwise Correlation

Probabilistic Circuits (PCs)

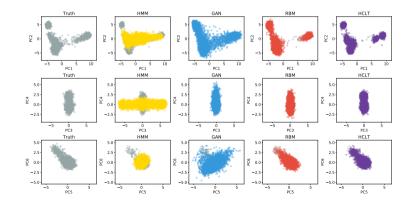
Conclusions

Density Estimation

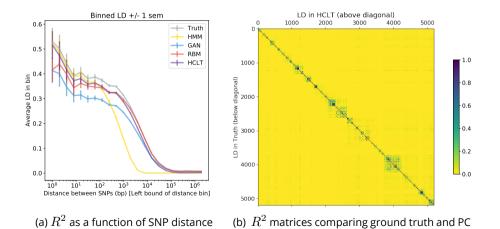

how well the models fit the data

Dataset	Indep	Markov Chain	НММ	HCLT (PC)
805	-491.10	-438.64	-402.50	-389.20
10K	-2390.09	-633.14	-1194.72	-310.93

Table: Log-likelihoods results on subsets SNPs from 1000 Genomes Project


Principle Component Analysis (PCA)

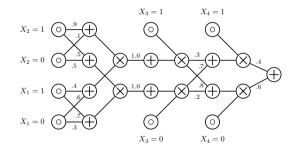
how well the models fit the data



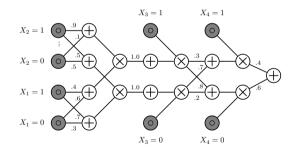
Principle Component Analysis (PCA)

how well the models fit the data

Pairwise Correlation

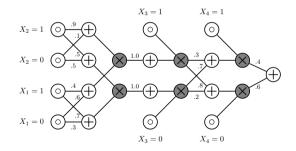


Empirical Evaluation Density Estimation Principle Component Analysis (PCA) Pairwise Correlation

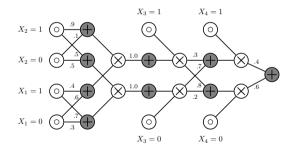

Probabilistic Circuits (PCs)

Conclusions

PCs encode joint distributions via computational graphs, e.g., a PC with 4 SNPs

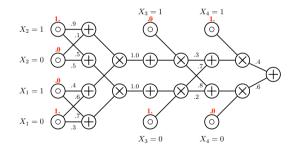


PCs encode joint distributions via computational graphs, e.g., a PC with 4 SNPs

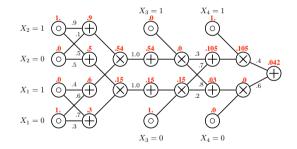

Input nodes are tractable distributions, *e.g.*, *indicator functions* $p(X_i = 1) = [X_i = 1]$

PCs encode joint distributions via computational graphs, e.g., a PC with 4 SNPs

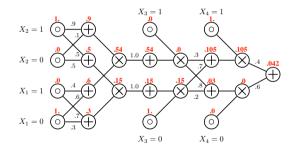
Product nodes are factorizations $\prod_{c \in in(n)} p_c(\mathbf{x})$


PCs encode joint distributions via computational graphs, e.g., a PC with 4 SNPs

Sum nodes are mixture models $\sum_{c\in \mathsf{in}(n)} heta_{n,c} \operatorname{p}_c(\mathbf{x})$

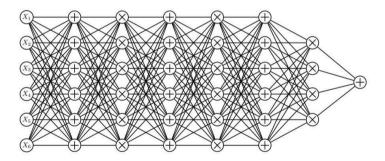

Probabilistic Circuits (tractability)

Compute likelihood $p(X_1 = 0, X_2 = 1, X_3 = 0, X_4 = 1)$


Probabilistic Circuits (tractability)

Compute likelihood $p(X_1 = 0, X_2 = 1, X_3 = 0, X_4 = 1)$

Probabilistic Circuits (tractability)


Compute likelihood $p(X_1 = 0, X_2 = 1, X_3 = 0, X_4 = 1)$

Computing likelihood is time linear in the size of PC

Probabilistic Circuits (expressiveness)

Large scale, a deep architecture, millions of parameters

The first attempt to introduce probabilistic circuits to bio-informatics

- comparable or better performance
- tractable, expressive, time-efficient to train
- applicable to different tasks