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Introductory Comment
Computer arithmetic has always played an important and critical

role in the design of general-purpose and special-purpose processors.
It has been an active research area since the early days of
computers (1950s), albeit relatively small compared to other areas in
computer architecture and computer science. Computer arithmetic,
in brief, investigates theoretical/hardware/software aspects in number
representation, arithmetic algorithms for basic operations, function
evaluation, in fixed-point and floating-point arithmetic. Computer
arithmetic is a synergy of applied mathematics, algorithms, digital
design, VLSI implementation, software and compilers, and applications.
Every new generation of processors, such as GPUs, super-scalar and
multi-core processors, digital signal processors, and, most recently,
processors for AI and machine learning, rely on progress in computer
arithmetic to increase performance and reduce energy, and cost.
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Short Bio

Professor Ercegovac earned his PhD (’75) and MS (’72) in computer
science from the University of Illinois, Urbana-Champaign, and BS in
electrical engineering (’65) from the University of Belgrade, Serbia. He
specializes in research and teaching in digital arithmetic, digital design,
and computer system architecture. His recent research is in the areas
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of approximate arithmetic, composite algorithms, complex arithmetic,
design for low power and arithmetic in application-specific architectures.
His research contributions have been extensively published in journals
and conference proceedings. He is a coauthor of two textbooks
on digital design and of a monograph and a book in the area of
digital arithmetic. Dr. Ercegovac has been involved in organizing
the IEEE Symposia on Computer Arithmetic since 1978. He served
as an associate editor of the IEEE Transactions on Computers and
as a subject area editor for the Journal of Parallel and Distributed
Computing. He received a Medal of Ecole Normale Superieure de
Lyon, France, in 2015, a Distinguished Alumni Educator Award in 2013
from the Department of Computer Science, University of Illinois Urbana-
Champaign, and Lockheed-Martin Corporation Excellence in Teaching
Award in 2009. Dr. Ercegovac is a foreign member of the Serbian
Academy of Sciences and Arts, Fellow and Life Member of the IEEE,
and a member of the ACM.
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MAIN IDEA of LR and ONLINE ARITHMETIC

input

output

δ = 0

(a)

cycle: 1 2 3 4 5 6 7 8 9 10 11 12

T 12 = 1 + 12

(b)

input

output
δ =3

cycle: -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

T 12 = 3+1+12

com pute

0

com pute

• Why compute less significant before more significant digits?

• Compute while communicating: why waste time waiting for
operands?

• Latency parameter: online delay δ - a delay before the most
significant digit of a result appears. A small integer.
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LEFT-TO-RIGHT AND ONLINE ARITHMETIC

• The inputs applied and output delivered one digit at a time - serially.
All digits of the same operands/results share the the same digit lines.
The systems are usually clocked so that one digit is applied per clock
cycle. It is possible to have some operands in parallel form.

• There are two serial modes: Least-significant digit first (LSDF) and
most-significant digit first (MSDF)

• In left-to-right arithmetic the result is generated most significant digit
first (MSDF mode) and one or more operands are in digit-parallel
form and one or more operands are in digit-serial form.

• In on-line arithmetic the results and the operands are processed one-
digit at a time, most significant digit first (MSDF mode)
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DIGIT-LEVEL OVERLAP BASIS FOR PERFORMANCE
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ONLINE ALGORITHM MODEL

• Operands x and y, result z: n radix-r digits, redundant

• In cycle j the result digit zj+1 is computed

• Cycles labeled −δ, . . . , 0, 1, . . . , n

• In cycle j receive the operand digits xj+1+δ and yj+1+δ, and output
zj

• x[j], y[j] and z[j] are the numerical values of the corresponding
signals when their representation consists of the first j + δ digits for
the operands, and j digits for the result.
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In cycle j

online operands
x[j + 1] = (x[j], xj+1+δ)
y[j + 1] = (y[j], yj+1+δ)
result digit
zj+1 = F (w[j], x[j], xj+1+δ, y[j], yj+1+δ, z[j])

online result
z[j + 1] = (z[j], zj+1)

residual
w[j + 1] = G(w[j], x[j], xj+1+δ, y[j], yj+1+δ, z[j], zj+1)
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(b)

F; G

W
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Online delay (δ)
– critical parameter: determines the throughput (no pipelining)

Operation LSDF MSDF
Addition 0 2 (r = 2)

1 (r ≥ 4)
Multiplication 0 3 (r = 2)

2 (r = 4)
(only MS half) n
Division 2n 4
Square root 2n 4
Max/min n 0
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GENERIC FORM OF EXECUTION AND
IMPLEMENTATION.

• Execution: n+ δ iterations of the recurrence, each one clock cycle

• Iterations (cycles) labeled from −δ to n− 1

• One digit of each input introduced during cycles −δ to n− 1− δ and
digits value 0 thereafter

• Result digits 0 for cycles −δ to −1 and z1 is produced in cycle 0

• Result digit zj is output in cycle j (one extra cycle to output zn)
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• The actions in cycle j:

− Input xj+1+δ and yj+1+δ.

− Update x[j + 1] = (x[j], xj+1+δ) and y[j + 1] = (y[j], yj+1+δ) by
appending the input digits.

− Compute v[j] = rw[j] +H1

− Determine zj+1 using the selection function.

− Update z[j + 1] = (z[j], zj+1+δ) by appending the result digits.

− Compute the next residual w[j + 1] = v[j] +H2(zj+1)

− Output result digit zj
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IMPLEMENTATION

• Similar structure in all online algorithms:

→ all implemented with the same basic components, including

(i) Registers to store operands, results, and residual vectors;

(ii) Multiplication of vector by digit - trivial in radix 2;

(iii) Append units to append a new digit to a vector - concatenation;
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(iv) Two-operand and multioperand redundant adders, such as signed
digit adders, [3:2] carry-save adders and their generalization to
[4:2] and [5:2] adders;

(v) Converters from redundant representations (i.e., signed digit and
carry save) to conventional representations - on-the-fly converters
(OTFC);

(vi) Carry-propagate adders of limited precision (3 to 6 bits) to produce
estimates of the residual used in the digit-selection; and

(vii) Digit-selection schemes to obtain output digits - low precision.
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Online vs. Conventional Arithmetic: Performance

• z = E(x), z is scalar, x argument vector of n-digit elements,
E a scalar expression

• Network of L levels of non-pipelined units to evaluate E

• Conventional arithmetic: units at level i wait for all units at level i− 1
to finish

• Online arithmetic: unit at level i begins when δ + 1 input digits are
received
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• Latency of a network of L levels of online units:

TOL ≤ [SUML
i=1(δmax + 1) + n]td

• Latency of a network of L levels of conventional units:

TCONV ≤ SUML
i=1(Timax + tLOAD)

– timax time of slowest operation at level i; tLOAD time to transfer
operands
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SPEEDUP ANALYSIS

• Assume

− δimax = 3

− Timax = cntd, c = 1 for T = O(n), c = (log n)2/n for T = O(log2n)
− tLOAD = td

− Same number of units

− Speedup

S =
TCONV
TOL

=
L(cn+ 1)

n+ 4L
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SPEEDUP ANALYSIS (cont)

• Minimum L so that TOL < TCONV

Lmin = d n

cn− 3
e

Let n = 32 and c = 25/32, then Lmin = 2

• Speedup for large L

S → (cn+ 1)/δmax

Let n = 32 and c = 25/32, then Smax < 9
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SPEEDUP ANALYSIS (cont)

• Evaluation of vector expressions

− V vector operands, one vector result, each of M elements (n digits
each)

− Pipelined units: conventional with N stages; online array type, also
pipelined

− L network levels

c n N M Sp
25/32 32 4 100 4.9

1 32 4 100 6.2
1 32 8 1000 3.9
1 64 4 1000 15.0
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• For large number of operands, M →∞, the speedup is

Sp = cn/N

• For large number of levels, L→∞, the speedup is

Sp = cn/4

• The additional speedup due to online arithmetic: 2 to 16 for typical
precision

• What about cost? From analysis,

COL < CCONV if COL−module ≤ 2× CCONV−module
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WHY IS LR ARITHMETIC USEFUL?
In LR mode, we can start an operation before finishing the previous

one. Implications:

• Overlap data transmission and computation

• Limit data dependency: a constant delay independent of n

→ Suitable for arithmetic-intensive applications with data dependencies
(recursive computations)

• Reduce width of interconnections
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• Reduce signal activities - saving energy
2.2. SYNERGY OF ON-LINE AND CDR ARITHMETIC 22

precision:w〈j〉 m

m∗

w〈m〉

required precision for selection, i.e., 

Residual precision requirement

to satisfy selection criteria

in last cycle.
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δ(initialization)

j(output)
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(a)

precision:w〈j〉 m∗

required precision for selection, i.e., v̂〈j〉

δ(initialization)

j(output)

Saved Switching

Activity

time

Resource activity

(b)

Figure 2.4: Illustration of the required precision of on-line and reduced precision on-line residuals w〈j〉.
(a) Activity profile and required precision of implementation for an on-line unit not employing a reduced
precision implementation, i.e., havingm radix-r fractional digit precision. (b) Because of the requirement
on v̂〈j〉 for selection, a reduced precision implementation of the recurrence module, having m∗ radix-r
fractional digits of precision can be employed. The reduced precision implementation also benefits from
reduced switching activity, by only utilizing just enough precision to determine the correct output.
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2.2. SYNERGY OF ON-LINE AND CDR ARITHMETIC 22
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Figure 2.4: Illustration of the required precision of on-line and reduced precision on-line residuals w〈j〉.
(a) Activity profile and required precision of implementation for an on-line unit not employing a reduced
precision implementation, i.e., havingm radix-r fractional digit precision. (b) Because of the requirement
on v̂〈j〉 for selection, a reduced precision implementation of the recurrence module, having m∗ radix-r
fractional digits of precision can be employed. The reduced precision implementation also benefits from
reduced switching activity, by only utilizing just enough precision to determine the correct output.
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• Easy support for variable precision computations:
stop when sufficient accuracy achieved

• Zero-bias truncation instead of rounding: 1/2 ulp error

• Expose parallelism between all operations: overlap always possible

• LR model provides a basis for composite (fused) operations

• Simplifies both partitioning into modules and their designs
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• Radix-r digit slice is the basic element → design effort largely
independent of precision

1*** 2 m

xj+1+δ yj+1+δ

zj+1

*

**

*      paths for appending input digits 
**   left-shifted bits of the residual
*** the width of the MS slice depends
        on the selection functionzj

digit slice
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• Reduced energy wrt serial-parallel operation: not all slices need to
be active all the time

SEL 1 2 p

digit out

digit in digit in

1 p...SELcycle

1

2

3

n

.

.

.

active disabled

Slice activity
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• Overall throughput is determined by the delay of a digit computation:
digit-level pipelining possible

Vk,0

Vk-i,i

Vk-2,2

Vk-14,14

Vk-15,15

Vk-12,12

Vk-13,13

Vk-11,11

Vk-1,1

sk-1,0

sk-i-1,i

sk-3,2

sk-15,14

sk-16,15

sk-13,12

sk-14,13

sk-12,11

sk-2,1
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• LR arithmetic requires redundant representations

– e.g., signed-digit sets {-1,0,1} for r=2, {-2, -1,0,1,2} for r=4, carry-
save {0,1,2}, etc

– higher cost/bit: 100% for binary, 50% for r=4, 20% for r=16, ...
interestingly 0% for r=10

• On-the-fly conversion: Converts redundant LR (online) results into
conventional representation without extra delay.

• Conventional digit-recurrence division, square root, function
evaluators produce redundant results MSD first - compatible with LR
arithmetic
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• In left-to-right carry-free (LRCF) multiplication (linear array):

– MS and LS parts of the product obtained in parallel with the
reduction of partial products

– The final MS part of the product produced on-the-fly with carry-
select adders

– This eliminates the delay of the final addition, typically around 20-
30% of the total delay
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• Reduction of intermodule communication bandwidth:

− Approach A: Source module: compute result MSDF, convert on-
the-fly, transmit in parallel to the destination module – full precision
communication

− Approach B: Source module: compute result MSDF, transmit
serially to the destination module during computation; convert
to parallel using OTFC in the destination module – serial
communication

Approaches A and B have the same total latency but vastly different
communication cost.
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Composite (fused) Algorithms

• To reduce the overall online delay of a group of operations, several
operations combined into a single multi-operation online algorithm

• Example: Sum of squares x2 + y2 + z2; Inputs in [1/2,1), output in
[1/4, 3).

• Online delay δss = 0 when the output digit is over-redundant vs.
(3+2+2=7) of a network of separate online operators

• Example: Givens rotation operator y = x
(x2+y2)1/2

• Off-diagonal operations overlapped with computation of rotation
factors

33



M. ERCEGOVAC - UCLA APRIL 22, 2020

SUM OF SQUARES

1. [Initialize]
w[0] = x[0] = y[0] = z[0] = 0

2. [Recurrence]
for j = 0 . . . n− 1
v[j] = 2w[j] + (2x[j] + xj2

−j)xj + (2y[j] + yj2
−j)yj + (2z[j] + zj2

−j)zj
w[j + 1]← csfract(v[j])
sj+1 ← csint(v[j])
x[j + 1]← (x[j], xj+1); y[j + 1]← (y[j], yj+1); z[j + 1]← (z[j], zj+1)
Sout ← sj+1

end for
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serial

parallel

xj+1 yj+1 zj+1

WS

WC

[5:2] ADDER

CPA

w[j+1]

2w[j]

w[j+1]sj+1

Sout

sj in {0,...,8}

x. x x x x x x x x x 
x. x x x x x x x x x
x. x x x x x x x x x
x. x x x x x x x x x
x. x x x x  x x x x x

δss = 0

csfraccsint

max(csint) = 8

Note: the fractional portion of the 5-2 CSA 
produces at most three carries

2w[j]

(2x[j]xj+1+x2
j+12-j-1)

(2y[j]yj+1+y2
j+12-j-1)

(2z[j]zj+1+z2
j+12-j-1)

(a)

(b)

MUL/APPEND
 implements 

2x[j]xj+1+x2
j+12-j-1

APPEND
implements
x[j+1]=x[j]+xj+12-j-1

x[j]

APPEND

MUL/
APPEND

y[j]

APPEND

MUL/
APPEND

z[j]

APPEND

MUL/
APPEND

x[j+1]
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Higher Order LR Arithmetic: the E-Method

Instead of evaluating an expression, find equivalent system of linear
equations, and use online operations to solve it. Typically, the first
component of the solution is equivalent to the value of the expression.
Specifically,

1. Transform an arithmetic expression into a system of linear
equations L:

f(x) = E(x,p), p parameters

f(x)⇒ L : A · y = b

such that y1 = f(x).
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2. Solve the system using LR digit-by-digit vector recurrences in m
steps for m digit result.

Typical recurrence: w2[j + 1] = 2(w2[j]− d2j − q1 · d1j + x · d3j)

3. Coefficient matrix corresponds to the matrix divisor and the right-
hand side vector to the vector dividend. The quotient is the solution
vector

4. The elements of the solution vector are obtained in parallel starting
with the most significant digits.

5. Redundancy makes the cycle time independent of precision and
simplifies the selection of result digits.
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Notation

• Matrices and vectors of elements in boldface: the coefficient matrix
A of order N ; the solution vector y = (y1, . . . , yN); the right-hand side
vector b = (b1, . . . , bN).

• The residual vector at step j;

w[j] = (w1[j], . . . , wN [j]) (1)

• The result digit-vector at step j

d[j] = (d1j, . . . , dNj) (2)

where digit dkj ∈ {−1, 0, 1} is the j-th digit of yk = SUMm
j=1dkj2

−j.
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E-METHOD ALGORITHM

1. [Initialize]
w[0] = b; d[0] = 0 ;

2. [Recurrence]
for j = 0 . . .m− 1
v[j] = 2(w[j]−Ad[j]);
d[j + 1]← SEL(vest[j]);
w[j + 1]←v[j];
y1[j + 1]← CONV ERT (y1[j], SEL(vest[j])

end for
3. [Result]

y1[m] ≈ f(x)

– Corresponds to SRT division in vector form
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where

• Residuals in redundant form, represented by the pseudo-sum WS
and stored-carry WC bit-vectors.

• SEL is the digit selection function

dkj+1 = SEL(vkest[j]) =





1 if vkest[j] ≥ 0.5
0 if − 0.5 ≤ vkest[j] ≤ 0
−1 if vkest[j] ≤ −1

where vkest[j] is the estimate of vk[j] truncated to one fractional bit.

Note that the multiplications in the term A×d[j] are implemented as
digit-vector by digit multipliers - trivial in radices 2 and 4.
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• Examples of mapping : a rational function R2,3(x) is mapped to the
matrix/vector form:




1 −x 0 0
q1 1 −x 0
q2 0 1 −x
q3 0 0 1







y1
y2
y3
y4


 =




p0
p1
p2
0




Solving the system produces y such that:

y1 = R3,2(x) =
p2x

2 + p1x+ p0
q3x3 + q2x2 + q1x+ 1

– Note: no division used in solving L
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Similarly, a polynomial P3(x) is mapped to the following system




1 −x 0 0
0 1 −x 0
0 0 1 −x
0 0 0 1







y1
y2
y3
y4


 =




p0
p1
p2
p3




such that y1 = P3(x) = p3x
3 + p2x

2 + p1x+ p0
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EXAMPLE: EVALUATION OF A RATIONAL FUNCTION

• To evaluate the rational function sinh(x) ≈ R3,4(x) to m bits, we
iterate m times.

• The coefficients are obtained from rational function approximation of
sinh(x) in the interval x ∈ [0, 1/6] with a relative error less than 10−13.

• To satisfy the bounds and to have a1,1 = 1, the original coefficients
are divided by q0.We restrict the argument x to [0,1/8] and divide all
normalized coefficients of P by 2 to make them ≤ 3/4. This scaling
requires one additional iteration. In illustrating the algorithm, we show
only the first 12 steps producing the first 13 bits of the solution. The
approximation has a relative error of 2−45 after 46 steps.
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We illustrate the algorithm for m = 12. The normalized coefficients,
rounded to 12 bits, are shown in hexadecimal:

p3 = 0.0d8
p2 = 0.000
p1 = 0.800
p0 = 0.000
q4 = 0.007
q3 = 0.000
q2 = −0.0fa
q1 = 0.000
q0 = 1.000
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The recurrences are

w1[j + 1] = 2(w1[j]− d1j + x · d2j)
w2[j + 1] = 2(w2[j]− d2j − q1 · d1j + x · d3j)
w3[j + 1] = 2(w3[j]− d3j − q2 · d1j + x · d4j)
w4[j + 1] = 2(w4[j]− d4j − q3 · d1j + x · d5j)
w5[j + 1] = 2(w5[j]− d5j − q4 · d1j)

The initial residuals are

(w1[0], w2[0], w3[0], w4[0], w5[0]) = (0, p1, 0, p3, 0)
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THE NETWORK FOR EVALUATING RATIONAL
FUNCTION

Module 1 Module 2 Module 3 Module 4 Module 5
d3jd2j

d1j

d5jd4j

x x x xp1 p30 0 q20 q40

parallel serial
On-the-Fly

Converter

R3,4(x)

0
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THE COMPUTATION TRACE
Evaluation of sinh(0.10197) using rational approximation R3,4(x) and

radix-2 E-method .

The error |sinh(x) − y1[13])| < 2−12. y1[13] is computed to
compensate for the initial scaling of p coefficients by 2.

The evaluation of R3,4(x) for x = 0.000110100001 with 12-bit
precision, showing non-redundant next residual v1 (for simplicity). Other
residuals are not shown.
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j v1[j] d1j+1 d2j+1 d3j+1 d4j+1 d5j+1 y1[j + 1]∗
0 0.000000000000 0 1 0 0 0 0.000000000000
1 0.001101000010 0 0 0 0 0 0.000000000000
2 0.011010000100 0 0 0 0 0 0.000000000000
3 0.110100001000 1 0 0 1 0 0.001000000000
4 -0.010111110000 0 0 0 0 0 0.001000000000
5 -0.101111100000 -1 0 1 -1 0 0.000110000000
6 0.100001000000 1 0 -1 1 0 0.000111000000
7 -0.111110000000 -1 0 0 -1 0 0.000110100000
8 0.000100000000 0 0 0 1 0 0.000110100000
9 0.001000000000 0 1 1 0 0 0.000110100000

10 0.011101000010 0 0 -1 0 0 0.000110100100
11 0.111010000100 1 -1 1 0 0 0.000110100010
12 -0.011000111010 0 1 0 0 -1 0.000110100010
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IMPLEMENTATION

d(k+1)j d1j

Reg qReg x

SELECTORSELECTOR

[4:2]
ADDER

Reg WS Reg WC

wk[j] 

dout

dkj

SEL

M

dkj+1

ms bits initialized with

coefficient  pk-1

itialized with

coefficient  qk-1

complement complement

argument x

parallel serial

dkj

(register control signals not shown)

SEL  block produces estimate and
performs selection

M block  performs subtraction of dkj

vk[j]
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Example: FUSED EXPRESSION LR EVALUATION

h =
a(f + gc) + e(1 + cd)

1 + ab+ cd
mapped to




1 −a 0
b 1 −c
0 d 1





y1
y2
y3


 =



e
f
g




Solving the system produces y such that:

y1 = h

50



M. ERCEGOVAC - UCLA APRIL 22, 2020

• Conventional:

− Cost: 5 multiplications, 3 additions, 1 division; full interconnect
− Time to evaluate h: 2tmult + tadd + tdiv;

• Online:

− Cost: 3 eqv. serial-parallel (SP) multiplications; serial interconnect
− Time: m iterations for m-bit result i.e., time of a single SP

multiplication
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LR iterative E-method vs Jacobi Method
Consider an n-th order system of linear equations

L : A · y = (I−G) · y = b

Classical Jacobi method solves L by iterating

y[j] = b+G · y[j − 1], j = 1, 2, . . .

This step requires (n− 1) full precision multiplications
and (n− 1) full precision additions per row per step
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The E-method solves L by iterating

d[j] + z[j] = r(z[j − 1] +G · d[j − 1]), j = 1, 2, . . . ,m

where d[j] is a vector of digits, z[j] a vector of m-digit fractions,
and G is a matrix with m-digit fractions as coefficients

Therefore, the step uses (n− 1) m-digit × single digit multiplications
and (n− 1) redundant additions

– A significant reduction in cost, delay and energy
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LR ARITHMETIC: SUMMARY OF FEATURES

+ Digit-in/digit-out, left-to-right model of computation (after online delay
of δ steps, small integer )

+ Overlaps communication and computation

+ Exposes massive digit-level concurrency via overlap, masks serial
nature of individual operations

+ Handles well deep data-dependent expressions and recursive
algorithms: full result not needed to start next operation

+ Data-dependency penalty: online delay δ – it does not matter if linear
or nonlinear systems
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+ Inherently variable precision; can stop any time; truncated result with
unbiased error

+ Modular design with digit-serial input/output between modules:
economy of design effort

+ No time penalty for operand alignment in FLPT addition

+ Online algorithms implementation similar to implementation of digit-
recurrence algorithms

+ Algorithms and implementations developed for most of basic
arithmetic operations and for certain composite operations

+ Larger set of operations possible than with LSDF approach
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+ Higher level operators possible: e.g., E-method for solving systems
of linear equations

On the other hand:

- Requires redundant representations – higher cost for lower radix than
conventional implementations

- Single operations are serial (serial-parallel equivalent)

- Online delay sensitive to MSD cancellation: rare event

- More complex design for mult, div, sqrt than conventional designs
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LR ARITHMETIC - POTENTIAL USES

• Wide range of uses because online arithmetic is possible in all
operations

• Flexible arithmetic design technique for accelerators

• In multipliers: Left-to-right carry-free multiplication (LRCF) avoids the
final adder

• Applicable in the design of inner products, sum of products, sum of
squares, convolutions

• In composite (fused) arithmetic algorithms for matrix multiplication,
norms, and sparse matrix operations
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• In low-precision and variable-precision arithmetic designs

• In function approximation using polynomials and rational functions:
use the E-method. m steps for m digit precision, time independent of
degree, cost proportional to degree

• In recursive computations, e.g., IIR filters, root finders.

• In convolutional neural networks, multilayer perceptrons, and in
backpropagation

• Reconfigurable architectures - fused operations, minimal interconnect,
and variable-precision

• Low energy arithmetic - minimal signal activity
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