
Left-to-Right Arithmetic Paradigm:
Computing while Communicating - Terminate

Gracefully at Any Moment

DDECS2020 Keynote Presentation

Prof. Miloš D. Ercegovac
milos@cs.ucla.edu

http://web.cs.ucla.edu/˜milos/
Computer Science Department

University of California at Los Angeles

M. ERCEGOVAC - UCLA APRIL 22, 2020

Introductory Comment
Computer arithmetic has always played an important and critical

role in the design of general-purpose and special-purpose processors.
It has been an active research area since the early days of
computers (1950s), albeit relatively small compared to other areas in
computer architecture and computer science. Computer arithmetic,
in brief, investigates theoretical/hardware/software aspects in number
representation, arithmetic algorithms for basic operations, function
evaluation, in fixed-point and floating-point arithmetic. Computer
arithmetic is a synergy of applied mathematics, algorithms, digital
design, VLSI implementation, software and compilers, and applications.
Every new generation of processors, such as GPUs, super-scalar and
multi-core processors, digital signal processors, and, most recently,
processors for AI and machine learning, rely on progress in computer
arithmetic to increase performance and reduce energy, and cost.

1

M. ERCEGOVAC - UCLA APRIL 22, 2020

Short Bio

Professor Ercegovac earned his PhD (’75) and MS (’72) in computer
science from the University of Illinois, Urbana-Champaign, and BS in
electrical engineering (’65) from the University of Belgrade, Serbia. He
specializes in research and teaching in digital arithmetic, digital design,
and computer system architecture. His recent research is in the areas

2

M. ERCEGOVAC - UCLA APRIL 22, 2020

of approximate arithmetic, composite algorithms, complex arithmetic,
design for low power and arithmetic in application-specific architectures.
His research contributions have been extensively published in journals
and conference proceedings. He is a coauthor of two textbooks
on digital design and of a monograph and a book in the area of
digital arithmetic. Dr. Ercegovac has been involved in organizing
the IEEE Symposia on Computer Arithmetic since 1978. He served
as an associate editor of the IEEE Transactions on Computers and
as a subject area editor for the Journal of Parallel and Distributed
Computing. He received a Medal of Ecole Normale Superieure de
Lyon, France, in 2015, a Distinguished Alumni Educator Award in 2013
from the Department of Computer Science, University of Illinois Urbana-
Champaign, and Lockheed-Martin Corporation Excellence in Teaching
Award in 2009. Dr. Ercegovac is a foreign member of the Serbian
Academy of Sciences and Arts, Fellow and Life Member of the IEEE,
and a member of the ACM.

3

M. ERCEGOVAC - UCLA APRIL 22, 2020

MAIN IDEA of LR and ONLINE ARITHMETIC

input

output

δ = 0

(a)

cycle: 1 2 3 4 5 6 7 8 9 10 11 12

T 12 = 1 + 12

(b)

input

output
δ =3

cycle: -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

T 12 = 3+1+12

com pute

0

com pute

• Why compute less significant before more significant digits?

• Compute while communicating: why waste time waiting for
operands?

• Latency parameter: online delay δ - a delay before the most
significant digit of a result appears. A small integer.

4

M. ERCEGOVAC - UCLA APRIL 22, 2020

LEFT-TO-RIGHT AND ONLINE ARITHMETIC

• The inputs applied and output delivered one digit at a time - serially.
All digits of the same operands/results share the the same digit lines.
The systems are usually clocked so that one digit is applied per clock
cycle. It is possible to have some operands in parallel form.

• There are two serial modes: Least-significant digit first (LSDF) and
most-significant digit first (MSDF)

• In left-to-right arithmetic the result is generated most significant digit
first (MSDF mode) and one or more operands are in digit-parallel
form and one or more operands are in digit-serial form.

• In on-line arithmetic the results and the operands are processed one-
digit at a time, most significant digit first (MSDF mode)

5

M. ERCEGOVAC - UCLA APRIL 22, 2020

DIGIT-LEVEL OVERLAP BASIS FOR PERFORMANCE

OLSQ OLSQ

OLADD

OLSQRT

OLDIV OLDIV

xh

δ1 δ1

δ2

δ3

δ4δ4

ai i = h-δ1−1

fk k=i−δ2−1

gp

sqcq

p=k−δ3−1

q=p−δ4−1

∆ ∆ ∆=p∆=p

(on-line
delay)

(p-bit sh ift
register)

(a)

yh

bi

Operation:

S quaring

Addition

S quare root

Division

(b)

x,y
a,b
f
g
c, s

δ1
δ2

δ3
δ4

6

M. ERCEGOVAC - UCLA APRIL 22, 2020

ONLINE ALGORITHM MODEL

• Operands x and y, result z: n radix-r digits, redundant

• In cycle j the result digit zj+1 is computed

• Cycles labeled −δ, . . . , 0, 1, . . . , n

• In cycle j receive the operand digits xj+1+δ and yj+1+δ, and output
zj

• x[j], y[j] and z[j] are the numerical values of the corresponding
signals when their representation consists of the first j + δ digits for
the operands, and j digits for the result.

7

M. ERCEGOVAC - UCLA APRIL 22, 2020

In cycle j

online operands
x[j + 1] = (x[j], xj+1+δ)
y[j + 1] = (y[j], yj+1+δ)
result digit
zj+1 = F (w[j], x[j], xj+1+δ, y[j], yj+1+δ, z[j])

online result
z[j + 1] = (z[j], zj+1)

residual
w[j + 1] = G(w[j], x[j], xj+1+δ, y[j], yj+1+δ, z[j], zj+1)

8

M. ERCEGOVAC - UCLA APRIL 22, 2020

(b)

F; G

W

xj+1+δ yj+1+δ

zj+1

X; Y

x[j] y[j]

w[j+1]

digit-serial
digit-parallel

zj

w[j] (residual)

zj

z[j]

Z

zj+1

xj+1+δ

yj+1+δ

xj+2+δ

yj+2+δ
Input

Cycle
j j+1

x[j+1]

x[j+2]

zj+1

zj

zj+2

zj+1

Compute

Output

(a)

9

M. ERCEGOVAC - UCLA APRIL 22, 2020

Online delay (δ)
– critical parameter: determines the throughput (no pipelining)

Operation LSDF MSDF
Addition 0 2 (r = 2)

1 (r ≥ 4)
Multiplication 0 3 (r = 2)

2 (r = 4)
(only MS half) n
Division 2n 4
Square root 2n 4
Max/min n 0

10

M. ERCEGOVAC - UCLA APRIL 22, 2020

GENERIC FORM OF EXECUTION AND
IMPLEMENTATION.

• Execution: n+ δ iterations of the recurrence, each one clock cycle

• Iterations (cycles) labeled from −δ to n− 1

• One digit of each input introduced during cycles −δ to n− 1− δ and
digits value 0 thereafter

• Result digits 0 for cycles −δ to −1 and z1 is produced in cycle 0

• Result digit zj is output in cycle j (one extra cycle to output zn)

11

M. ERCEGOVAC - UCLA APRIL 22, 2020

• The actions in cycle j:

− Input xj+1+δ and yj+1+δ.

− Update x[j + 1] = (x[j], xj+1+δ) and y[j + 1] = (y[j], yj+1+δ) by
appending the input digits.

− Compute v[j] = rw[j] +H1

− Determine zj+1 using the selection function.

− Update z[j + 1] = (z[j], zj+1+δ) by appending the result digits.

− Compute the next residual w[j + 1] = v[j] +H2(zj+1)

− Output result digit zj

12

M. ERCEGOVAC - UCLA APRIL 22, 2020

IMPLEMENTATION

• Similar structure in all online algorithms:

→ all implemented with the same basic components, including

(i) Registers to store operands, results, and residual vectors;

(ii) Multiplication of vector by digit - trivial in radix 2;

(iii) Append units to append a new digit to a vector - concatenation;

13

M. ERCEGOVAC - UCLA APRIL 22, 2020

(iv) Two-operand and multioperand redundant adders, such as signed
digit adders, [3:2] carry-save adders and their generalization to
[4:2] and [5:2] adders;

(v) Converters from redundant representations (i.e., signed digit and
carry save) to conventional representations - on-the-fly converters
(OTFC);

(vi) Carry-propagate adders of limited precision (3 to 6 bits) to produce
estimates of the residual used in the digit-selection; and

(vii) Digit-selection schemes to obtain output digits - low precision.

14

M. ERCEGOVAC - UCLA APRIL 22, 2020

Online vs. Conventional Arithmetic: Performance

• z = E(x), z is scalar, x argument vector of n-digit elements,
E a scalar expression

• Network of L levels of non-pipelined units to evaluate E

• Conventional arithmetic: units at level i wait for all units at level i− 1
to finish

• Online arithmetic: unit at level i begins when δ + 1 input digits are
received

15

M. ERCEGOVAC - UCLA APRIL 22, 2020

• Latency of a network of L levels of online units:

TOL ≤ [SUML
i=1(δmax + 1) + n]td

• Latency of a network of L levels of conventional units:

TCONV ≤ SUML
i=1(Timax + tLOAD)

– timax time of slowest operation at level i; tLOAD time to transfer
operands

16

M. ERCEGOVAC - UCLA APRIL 22, 2020

SPEEDUP ANALYSIS

• Assume

− δimax = 3

− Timax = cntd, c = 1 for T = O(n), c = (log n)2/n for T = O(log2n)
− tLOAD = td

− Same number of units

− Speedup

S =
TCONV
TOL

=
L(cn+ 1)

n+ 4L

17

M. ERCEGOVAC - UCLA APRIL 22, 2020

SPEEDUP ANALYSIS (cont)

• Minimum L so that TOL < TCONV

Lmin = d n

cn− 3
e

Let n = 32 and c = 25/32, then Lmin = 2

• Speedup for large L

S → (cn+ 1)/δmax

Let n = 32 and c = 25/32, then Smax < 9

18

M. ERCEGOVAC - UCLA APRIL 22, 2020

SPEEDUP ANALYSIS (cont)

• Evaluation of vector expressions

− V vector operands, one vector result, each of M elements (n digits
each)

− Pipelined units: conventional with N stages; online array type, also
pipelined

− L network levels

c n N M Sp
25/32 32 4 100 4.9

1 32 4 100 6.2
1 32 8 1000 3.9
1 64 4 1000 15.0

19

M. ERCEGOVAC - UCLA APRIL 22, 2020

• For large number of operands, M →∞, the speedup is

Sp = cn/N

• For large number of levels, L→∞, the speedup is

Sp = cn/4

• The additional speedup due to online arithmetic: 2 to 16 for typical
precision

• What about cost? From analysis,

COL < CCONV if COL−module ≤ 2× CCONV−module

20

M. ERCEGOVAC - UCLA APRIL 22, 2020

WHY IS LR ARITHMETIC USEFUL?
In LR mode, we can start an operation before finishing the previous

one. Implications:

• Overlap data transmission and computation

• Limit data dependency: a constant delay independent of n

→ Suitable for arithmetic-intensive applications with data dependencies
(recursive computations)

• Reduce width of interconnections

21

M. ERCEGOVAC - UCLA APRIL 22, 2020

• Reduce signal activities - saving energy
2.2. SYNERGY OF ON-LINE AND CDR ARITHMETIC 22

precision:w〈j〉 m

m∗

w〈m〉

required precision for selection, i.e.,

Residual precision requirement

to satisfy selection criteria

in last cycle.

v̂〈j〉

δ(initialization)

j(output)

Resource activity

time

(a)

precision:w〈j〉 m∗

required precision for selection, i.e., v̂〈j〉

δ(initialization)

j(output)

Saved Switching

Activity

time

Resource activity

(b)

Figure 2.4: Illustration of the required precision of on-line and reduced precision on-line residuals w〈j〉.
(a) Activity profile and required precision of implementation for an on-line unit not employing a reduced
precision implementation, i.e., havingm radix-r fractional digit precision. (b) Because of the requirement
on v̂〈j〉 for selection, a reduced precision implementation of the recurrence module, having m∗ radix-r
fractional digits of precision can be employed. The reduced precision implementation also benefits from
reduced switching activity, by only utilizing just enough precision to determine the correct output.

22

M. ERCEGOVAC - UCLA APRIL 22, 2020

2.2. SYNERGY OF ON-LINE AND CDR ARITHMETIC 22

precision:w〈j〉 m

m∗

w〈m〉

required precision for selection, i.e.,

Residual precision requirement

to satisfy selection criteria

in last cycle.

v̂〈j〉

δ(initialization)

j(output)

Resource activity

time

(a)

precision:w〈j〉 m∗

required precision for selection, i.e., v̂〈j〉

δ(initialization)

j(output)

Saved Switching

Activity

time

Resource activity

(b)

Figure 2.4: Illustration of the required precision of on-line and reduced precision on-line residuals w〈j〉.
(a) Activity profile and required precision of implementation for an on-line unit not employing a reduced
precision implementation, i.e., havingm radix-r fractional digit precision. (b) Because of the requirement
on v̂〈j〉 for selection, a reduced precision implementation of the recurrence module, having m∗ radix-r
fractional digits of precision can be employed. The reduced precision implementation also benefits from
reduced switching activity, by only utilizing just enough precision to determine the correct output.

23

M. ERCEGOVAC - UCLA APRIL 22, 2020

• Easy support for variable precision computations:
stop when sufficient accuracy achieved

• Zero-bias truncation instead of rounding: 1/2 ulp error

• Expose parallelism between all operations: overlap always possible

• LR model provides a basis for composite (fused) operations

• Simplifies both partitioning into modules and their designs

24

M. ERCEGOVAC - UCLA APRIL 22, 2020

• Radix-r digit slice is the basic element → design effort largely
independent of precision

1*** 2 m

xj+1+δ yj+1+δ

zj+1

*

**

* paths for appending input digits
** left-shifted bits of the residual
*** the width of the MS slice depends
 on the selection functionzj

digit slice

25

M. ERCEGOVAC - UCLA APRIL 22, 2020

• Reduced energy wrt serial-parallel operation: not all slices need to
be active all the time

SEL 1 2 p

digit out

digit in digit in

1 p...SELcycle

1

2

3

n

.

.

.

active disabled

Slice activity

26

M. ERCEGOVAC - UCLA APRIL 22, 2020

• Overall throughput is determined by the delay of a digit computation:
digit-level pipelining possible

Vk,0

Vk-i,i

Vk-2,2

Vk-14,14

Vk-15,15

Vk-12,12

Vk-13,13

Vk-11,11

Vk-1,1

sk-1,0

sk-i-1,i

sk-3,2

sk-15,14

sk-16,15

sk-13,12

sk-14,13

sk-12,11

sk-2,1

27

M. ERCEGOVAC - UCLA APRIL 22, 2020

• LR arithmetic requires redundant representations

– e.g., signed-digit sets {-1,0,1} for r=2, {-2, -1,0,1,2} for r=4, carry-
save {0,1,2}, etc

– higher cost/bit: 100% for binary, 50% for r=4, 20% for r=16, ...
interestingly 0% for r=10

• On-the-fly conversion: Converts redundant LR (online) results into
conventional representation without extra delay.

• Conventional digit-recurrence division, square root, function
evaluators produce redundant results MSD first - compatible with LR
arithmetic

28

M. ERCEGOVAC - UCLA APRIL 22, 2020

• In left-to-right carry-free (LRCF) multiplication (linear array):

– MS and LS parts of the product obtained in parallel with the
reduction of partial products

– The final MS part of the product produced on-the-fly with carry-
select adders

– This eliminates the delay of the final addition, typically around 20-
30% of the total delay

29

M. ERCEGOVAC - UCLA APRIL 22, 2020

B3 B2 B1

BIIBI

⊕• ⊕• ⊕• ⊕• ⊕• ⊕•

⊕• ⊕• ⊕• ⊕• ⊕•

⊕• ⊕• ⊕• ⊕•

⊕• ⊕• ⊕•

⊕• ⊕•

⊕•

⊕•

⊕•
⊕•

⊕•
⊕•

⊕•

⊕•
⊕•

⊕•

⊕•
⊕•

⊕•

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕CA

SEL

SEL

CA

SEL

SEL HAm

SEL

HA
HA

p1−7 p8 p9 p10 p11 p12

2244

30

M. ERCEGOVAC - UCLA APRIL 22, 2020

• Reduction of intermodule communication bandwidth:

− Approach A: Source module: compute result MSDF, convert on-
the-fly, transmit in parallel to the destination module – full precision
communication

− Approach B: Source module: compute result MSDF, transmit
serially to the destination module during computation; convert
to parallel using OTFC in the destination module – serial
communication

Approaches A and B have the same total latency but vastly different
communication cost.

31

M. ERCEGOVAC - UCLA APRIL 22, 2020

32

M. ERCEGOVAC - UCLA APRIL 22, 2020

Composite (fused) Algorithms

• To reduce the overall online delay of a group of operations, several
operations combined into a single multi-operation online algorithm

• Example: Sum of squares x2 + y2 + z2; Inputs in [1/2,1), output in
[1/4, 3).

• Online delay δss = 0 when the output digit is over-redundant vs.
(3+2+2=7) of a network of separate online operators

• Example: Givens rotation operator y = x
(x2+y2)1/2

• Off-diagonal operations overlapped with computation of rotation
factors

33

M. ERCEGOVAC - UCLA APRIL 22, 2020

SUM OF SQUARES

1. [Initialize]
w[0] = x[0] = y[0] = z[0] = 0

2. [Recurrence]
for j = 0 . . . n− 1
v[j] = 2w[j] + (2x[j] + xj2

−j)xj + (2y[j] + yj2
−j)yj + (2z[j] + zj2

−j)zj
w[j + 1]← csfract(v[j])
sj+1 ← csint(v[j])
x[j + 1]← (x[j], xj+1); y[j + 1]← (y[j], yj+1); z[j + 1]← (z[j], zj+1)
Sout ← sj+1

end for

34

M. ERCEGOVAC - UCLA APRIL 22, 2020

serial

parallel

xj+1 yj+1 zj+1

WS

WC

[5:2] ADDER

CPA

w[j+1]

2w[j]

w[j+1]sj+1

Sout

sj in {0,...,8}

x. x x x x x x x x x
x. x x x x x x x x x
x. x x x x x x x x x
x. x x x x x x x x x
x. x x x x x x x x x

δss = 0

csfraccsint

max(csint) = 8

Note: the fractional portion of the 5-2 CSA
produces at most three carries

2w[j]

(2x[j]xj+1+x2
j+12-j-1)

(2y[j]yj+1+y2
j+12-j-1)

(2z[j]zj+1+z2
j+12-j-1)

(a)

(b)

MUL/APPEND
 implements

2x[j]xj+1+x2
j+12-j-1

APPEND
implements
x[j+1]=x[j]+xj+12-j-1

x[j]

APPEND

MUL/
APPEND

y[j]

APPEND

MUL/
APPEND

z[j]

APPEND

MUL/
APPEND

x[j+1]

35

M. ERCEGOVAC - UCLA APRIL 22, 2020

Higher Order LR Arithmetic: the E-Method

Instead of evaluating an expression, find equivalent system of linear
equations, and use online operations to solve it. Typically, the first
component of the solution is equivalent to the value of the expression.
Specifically,

1. Transform an arithmetic expression into a system of linear
equations L:

f(x) = E(x,p), p parameters

f(x)⇒ L : A · y = b

such that y1 = f(x).

36

M. ERCEGOVAC - UCLA APRIL 22, 2020

2. Solve the system using LR digit-by-digit vector recurrences in m
steps for m digit result.

Typical recurrence: w2[j + 1] = 2(w2[j]− d2j − q1 · d1j + x · d3j)

3. Coefficient matrix corresponds to the matrix divisor and the right-
hand side vector to the vector dividend. The quotient is the solution
vector

4. The elements of the solution vector are obtained in parallel starting
with the most significant digits.

5. Redundancy makes the cycle time independent of precision and
simplifies the selection of result digits.

37

M. ERCEGOVAC - UCLA APRIL 22, 2020

Notation

• Matrices and vectors of elements in boldface: the coefficient matrix
A of order N ; the solution vector y = (y1, . . . , yN); the right-hand side
vector b = (b1, . . . , bN).

• The residual vector at step j;

w[j] = (w1[j], . . . , wN [j]) (1)

• The result digit-vector at step j

d[j] = (d1j, . . . , dNj) (2)

where digit dkj ∈ {−1, 0, 1} is the j-th digit of yk = SUMm
j=1dkj2

−j.

38

M. ERCEGOVAC - UCLA APRIL 22, 2020

E-METHOD ALGORITHM

1. [Initialize]
w[0] = b; d[0] = 0 ;

2. [Recurrence]
for j = 0 . . .m− 1
v[j] = 2(w[j]−Ad[j]);
d[j + 1]← SEL(vest[j]);
w[j + 1]←v[j];
y1[j + 1]← CONV ERT (y1[j], SEL(vest[j])

end for
3. [Result]

y1[m] ≈ f(x)

– Corresponds to SRT division in vector form

39

M. ERCEGOVAC - UCLA APRIL 22, 2020

where

• Residuals in redundant form, represented by the pseudo-sum WS
and stored-carry WC bit-vectors.

• SEL is the digit selection function

dkj+1 = SEL(vkest[j]) =

1 if vkest[j] ≥ 0.5
0 if − 0.5 ≤ vkest[j] ≤ 0
−1 if vkest[j] ≤ −1

where vkest[j] is the estimate of vk[j] truncated to one fractional bit.

Note that the multiplications in the term A×d[j] are implemented as
digit-vector by digit multipliers - trivial in radices 2 and 4.

40

M. ERCEGOVAC - UCLA APRIL 22, 2020

• Examples of mapping : a rational function R2,3(x) is mapped to the
matrix/vector form:

1 −x 0 0
q1 1 −x 0
q2 0 1 −x
q3 0 0 1

y1
y2
y3
y4

 =

p0
p1
p2
0

Solving the system produces y such that:

y1 = R3,2(x) =
p2x

2 + p1x+ p0
q3x3 + q2x2 + q1x+ 1

– Note: no division used in solving L

41

M. ERCEGOVAC - UCLA APRIL 22, 2020

Similarly, a polynomial P3(x) is mapped to the following system

1 −x 0 0
0 1 −x 0
0 0 1 −x
0 0 0 1

y1
y2
y3
y4

 =

p0
p1
p2
p3

such that y1 = P3(x) = p3x
3 + p2x

2 + p1x+ p0

42

M. ERCEGOVAC - UCLA APRIL 22, 2020

EXAMPLE: EVALUATION OF A RATIONAL FUNCTION

• To evaluate the rational function sinh(x) ≈ R3,4(x) to m bits, we
iterate m times.

• The coefficients are obtained from rational function approximation of
sinh(x) in the interval x ∈ [0, 1/6] with a relative error less than 10−13.

• To satisfy the bounds and to have a1,1 = 1, the original coefficients
are divided by q0.We restrict the argument x to [0,1/8] and divide all
normalized coefficients of P by 2 to make them ≤ 3/4. This scaling
requires one additional iteration. In illustrating the algorithm, we show
only the first 12 steps producing the first 13 bits of the solution. The
approximation has a relative error of 2−45 after 46 steps.

43

M. ERCEGOVAC - UCLA APRIL 22, 2020

We illustrate the algorithm for m = 12. The normalized coefficients,
rounded to 12 bits, are shown in hexadecimal:

p3 = 0.0d8
p2 = 0.000
p1 = 0.800
p0 = 0.000
q4 = 0.007
q3 = 0.000
q2 = −0.0fa
q1 = 0.000
q0 = 1.000

44

M. ERCEGOVAC - UCLA APRIL 22, 2020

The recurrences are

w1[j + 1] = 2(w1[j]− d1j + x · d2j)
w2[j + 1] = 2(w2[j]− d2j − q1 · d1j + x · d3j)
w3[j + 1] = 2(w3[j]− d3j − q2 · d1j + x · d4j)
w4[j + 1] = 2(w4[j]− d4j − q3 · d1j + x · d5j)
w5[j + 1] = 2(w5[j]− d5j − q4 · d1j)

The initial residuals are

(w1[0], w2[0], w3[0], w4[0], w5[0]) = (0, p1, 0, p3, 0)

45

M. ERCEGOVAC - UCLA APRIL 22, 2020

THE NETWORK FOR EVALUATING RATIONAL
FUNCTION

Module 1 Module 2 Module 3 Module 4 Module 5
d3jd2j

d1j

d5jd4j

x x x xp1 p30 0 q20 q40

parallel serial
On-the-Fly

Converter

R3,4(x)

0

46

M. ERCEGOVAC - UCLA APRIL 22, 2020

THE COMPUTATION TRACE
Evaluation of sinh(0.10197) using rational approximation R3,4(x) and

radix-2 E-method .

The error |sinh(x) − y1[13])| < 2−12. y1[13] is computed to
compensate for the initial scaling of p coefficients by 2.

The evaluation of R3,4(x) for x = 0.000110100001 with 12-bit
precision, showing non-redundant next residual v1 (for simplicity). Other
residuals are not shown.

47

M. ERCEGOVAC - UCLA APRIL 22, 2020

j v1[j] d1j+1 d2j+1 d3j+1 d4j+1 d5j+1 y1[j + 1]∗
0 0.000000000000 0 1 0 0 0 0.000000000000
1 0.001101000010 0 0 0 0 0 0.000000000000
2 0.011010000100 0 0 0 0 0 0.000000000000
3 0.110100001000 1 0 0 1 0 0.001000000000
4 -0.010111110000 0 0 0 0 0 0.001000000000
5 -0.101111100000 -1 0 1 -1 0 0.000110000000
6 0.100001000000 1 0 -1 1 0 0.000111000000
7 -0.111110000000 -1 0 0 -1 0 0.000110100000
8 0.000100000000 0 0 0 1 0 0.000110100000
9 0.001000000000 0 1 1 0 0 0.000110100000

10 0.011101000010 0 0 -1 0 0 0.000110100100
11 0.111010000100 1 -1 1 0 0 0.000110100010
12 -0.011000111010 0 1 0 0 -1 0.000110100010

48

M. ERCEGOVAC - UCLA APRIL 22, 2020

IMPLEMENTATION

d(k+1)j d1j

Reg qReg x

SELECTORSELECTOR

[4:2]
ADDER

Reg WS Reg WC

wk[j]

dout

dkj

SEL

M

dkj+1

ms bits initialized with

coefficient pk-1

itialized with

coefficient qk-1

complement complement

argument x

parallel serial

dkj

(register control signals not shown)

SEL block produces estimate and
performs selection

M block performs subtraction of dkj

vk[j]

49

M. ERCEGOVAC - UCLA APRIL 22, 2020

Example: FUSED EXPRESSION LR EVALUATION

h =
a(f + gc) + e(1 + cd)

1 + ab+ cd
mapped to

1 −a 0
b 1 −c
0 d 1

y1
y2
y3

 =

e
f
g

Solving the system produces y such that:

y1 = h

50

M. ERCEGOVAC - UCLA APRIL 22, 2020

• Conventional:

− Cost: 5 multiplications, 3 additions, 1 division; full interconnect
− Time to evaluate h: 2tmult + tadd + tdiv;

• Online:

− Cost: 3 eqv. serial-parallel (SP) multiplications; serial interconnect
− Time: m iterations for m-bit result i.e., time of a single SP

multiplication

51

M. ERCEGOVAC - UCLA APRIL 22, 2020

LR iterative E-method vs Jacobi Method
Consider an n-th order system of linear equations

L : A · y = (I−G) · y = b

Classical Jacobi method solves L by iterating

y[j] = b+G · y[j − 1], j = 1, 2, . . .

This step requires (n− 1) full precision multiplications
and (n− 1) full precision additions per row per step

52

M. ERCEGOVAC - UCLA APRIL 22, 2020

The E-method solves L by iterating

d[j] + z[j] = r(z[j − 1] +G · d[j − 1]), j = 1, 2, . . . ,m

where d[j] is a vector of digits, z[j] a vector of m-digit fractions,
and G is a matrix with m-digit fractions as coefficients

Therefore, the step uses (n− 1) m-digit × single digit multiplications
and (n− 1) redundant additions

– A significant reduction in cost, delay and energy

53

M. ERCEGOVAC - UCLA APRIL 22, 2020

LR ARITHMETIC: SUMMARY OF FEATURES

+ Digit-in/digit-out, left-to-right model of computation (after online delay
of δ steps, small integer)

+ Overlaps communication and computation

+ Exposes massive digit-level concurrency via overlap, masks serial
nature of individual operations

+ Handles well deep data-dependent expressions and recursive
algorithms: full result not needed to start next operation

+ Data-dependency penalty: online delay δ – it does not matter if linear
or nonlinear systems

54

M. ERCEGOVAC - UCLA APRIL 22, 2020

+ Inherently variable precision; can stop any time; truncated result with
unbiased error

+ Modular design with digit-serial input/output between modules:
economy of design effort

+ No time penalty for operand alignment in FLPT addition

+ Online algorithms implementation similar to implementation of digit-
recurrence algorithms

+ Algorithms and implementations developed for most of basic
arithmetic operations and for certain composite operations

+ Larger set of operations possible than with LSDF approach

55

M. ERCEGOVAC - UCLA APRIL 22, 2020

+ Higher level operators possible: e.g., E-method for solving systems
of linear equations

On the other hand:

- Requires redundant representations – higher cost for lower radix than
conventional implementations

- Single operations are serial (serial-parallel equivalent)

- Online delay sensitive to MSD cancellation: rare event

- More complex design for mult, div, sqrt than conventional designs

56

M. ERCEGOVAC - UCLA APRIL 22, 2020

LR ARITHMETIC - POTENTIAL USES

• Wide range of uses because online arithmetic is possible in all
operations

• Flexible arithmetic design technique for accelerators

• In multipliers: Left-to-right carry-free multiplication (LRCF) avoids the
final adder

• Applicable in the design of inner products, sum of products, sum of
squares, convolutions

• In composite (fused) arithmetic algorithms for matrix multiplication,
norms, and sparse matrix operations

57

M. ERCEGOVAC - UCLA APRIL 22, 2020

• In low-precision and variable-precision arithmetic designs

• In function approximation using polynomials and rational functions:
use the E-method. m steps for m digit precision, time independent of
degree, cost proportional to degree

• In recursive computations, e.g., IIR filters, root finders.

• In convolutional neural networks, multilayer perceptrons, and in
backpropagation

• Reconfigurable architectures - fused operations, minimal interconnect,
and variable-precision

• Low energy arithmetic - minimal signal activity

58

M. ERCEGOVAC - UCLA APRIL 22, 2020

Bibliography - Ercegovac and collaborators

• Digital Arithmetic M.D. Ercegovac and T. Lang, Morgan Kaufmann
Publishers, 2004, An Imprint of Elsevier. Chapters 9 and 10.

[Selected papers authored or coauthored by M.D.Ercegovac and his
students; covers Online Arithmetic and the E-Method]

PhD and MS Theses: at UCLA and U of Illinois

• M.D Ercegovac, Radix-16 Evaluation of Certain Elementary Functions, MS Thesis,
University of Illinois Urbana-Champaign, 1972.

• M.D Ercegovac, A General Hardware-Oriented Method for Evaluation of Functions
and Computations in a Digital Computer, PhD Dissertation, U of I TR-750, 1975.

• M.M. Takata, A Design of Modular Arithmetic Unit for Polynomial and Rational
Function Evaluation, MS Thesis, CSD UCLA, June 1978.

59

M. ERCEGOVAC - UCLA APRIL 22, 2020

• V.G. Oklobdzija, An On-Line Higher Radix Square Rooting Algorithm, MS Thesis,
CSD UCLA, June 1978.

• O. Watanuki, Floating-Point On-Line Arithmetic For Highly Concurrent Digit-Serial
Computation: Application to Mesh Problems, PhD Thesis, CSD UCLA,1981

• A. Gorji-Sinaki, Error-Coded Algorithms For On-Line Arithmetic, PhD Thesis, CSD
UCLA, 1981.

• D. M. Tullsen, A Very Large Scale Integration Implementation of an On-Line
Arithmetic Unit, MS Thesis, June 1986, Report No. CSD-860094.

• R. Brackert, Design and Implementation of A High Speed Recursive Digital Filter
Using On-Line Arithmetic, (co-chair with A.N. Wilson, Jr.), PhD Thesis, CSD-EE
UCLA1989

• P. K.-G. Tu, On-Line Arithmetic Algorithms for Efficient Implementation, PhD
Thesis, CSD UCLA,1990

• J. S. Fernando, Design Alternatives for Recursive Digital Filters Using On-Line
Arithmetic, PhD Thesis, CSD UCLA, 1993.

• M. E. Louie, Variable Precision Arithmetic with Lookup Table Based Field
Programmable Gate Arrays, PhD Thesis, CSD UCLA, 1994.

60

M. ERCEGOVAC - UCLA APRIL 22, 2020

• R.D. McIlhenny, Complex Number On-line Arithmetic for Reconfigurable Hardware:
Algorithms, Implementations, and Applications, PhD Thesis, CSD UCLA, 2002.

• A.F. Tenca, Variable Long-Precision Arithmetic (VLPA) for Reconfigurable
Architectures, PhD Thesis, CSD UCLA, 1998.

Journal papers

• W. Yan, M.D. Ercegovac and H. Chen, An Energy-Efficient Multiplier With Fully
Overlapped Partial Products Reduction and Final Addition, IEEE Transactions on
Circuits and Systems,, 63(11):1954-1963, 2016.

• D. Wang and M.D. Ercegovac, A Radix-16 Combined Complex Division/Square
Root Unit with Operand Prescaling, IEEE Trans. Computers, 61(9):1243-1255,
2012.

• M.D. Ercegovac and J.-M. Muller, An Efficient Method for Evaluating Complex
Polynomials. Journal of Signal Processing Systems, Volume 58, Issue 1, Page
17, Springer 2010, also published online
http://www.springerlink.com/content/5582844402n0t2x1/

61

M. ERCEGOVAC - UCLA APRIL 22, 2020

• D. Lau, A. Schneider, M.D. Ercegovac, and J.A. Villasenor, FPGA-based library for
on-line signal processing. Journal of VLSI Signal Processing Systems for Signal,
Image, and Video Technology, 28(1-2):129-43, Kluwer Academic Publishers, May-
June 2001.

• J.S. Fernando and M.D. Ercegovac, A Method of Eliminating Oscillations in High-
Speed Recursive Digital Filters. IEEE Trans. on Circuits and Systems-II: Analog
and Digital Signal Processing, 44(10):861-864, 1997.

• J.S. Fernando and M.D. Ercegovac. Conventional and on-line arithmetic designs
for high-speed recursive digital filters. J. of VLSI Signal Processing, 7:189–197,
1994.

• M.D. Ercegovac and T. Lang. On-the-fly rounding. IEEE Trans. Comput., Vol.
41(12):1497–1503, Dec. 1992.

• P.K.-G. Tu and M.D. Ercegovac. Gate array implementation of on-line algorithms
for floating-point operations. J. of VLSI Signal Processing, (3):307–317, 1991.

• M.D. Ercegovac and T. Lang. Fast multiplication without carry-propagate addition.
IEEE Trans. Comput., C-39(11):1385–1390, November 1990.

• M.D. Ercegovac and T. Lang. On-the-fly conversion of redundant into conventional

62

M. ERCEGOVAC - UCLA APRIL 22, 2020

representations. IEEE Trans. Comput., Vol. C-36(7):895–897, July 1987.
• M.D. Ercegovac. A general hardware-oriented method for evaluation of functions

and computations in a digital computer. IEEE Trans. Comput., C-26(7):667–680,
July 1977.

• K.S. Trivedi and M.D. Ercegovac. On-line algorithms for division and multiplication.
IEEE Trans. Comput., C-26(7):681–687, July 1977.

• M.D. Ercegovac. Radix-16 evaluation of certain elementary functions. IEEE Trans.
Comput., Vol. C-22(6):561–566, June 1973.

Conference papers

• N. Brisebarre, G. Constantinides, M. D. Ercegovac, S.-I. Filip, M. Istoan and J-
M. Muller, ”A High Throughput Polynomial and Rational Function Approximations
Evaluator”, Proc. of the IEEE Symposium on Computer Arithmetic, pp. 95-102,
June 2018.

• M. D. Ercegovac, ”On Left-to-Right Arithmetic”, Proc.51st Asilomar Conference on
Signals, Systems and Computers, 2017.

63

M. ERCEGOVAC - UCLA APRIL 22, 2020

• W. Yan and M. D. Ercegovac, Radix-4 Energy Efficient Carry-Free Truncated
Multiplier, Proc. 50th Asilomar Conference on Signals, Systems and Computers,
2016.

• M.D. Ercegovac and L. Meng, Low-power Radix-4 Quotient Generator, Proc. 48th
Asilomar Conference on Signals, Systems and Computers, 2014.

• H. Parta, M.D. Ercegovac and S. Pamarti, RF Digital Predistorter Implementation
using Polynomial Optimization, IEEE 57th International Midwest Symposium on
Circuits and Systems, 2014.

• M.D. Ercegovac, On Approximate Arithmetic, Proc. 47th Asilomar Conference on
Signals, Systems and Computers, 2013.

• N. Brisebarre, S. Chevillard, M. D. Ercegovac, J.-M. Muller and S. Torres. An
Efficient Method for Evaluating Polynomial and Rational Function Approximations.
IEEE International Conference on Application-Specific Systems, Architectures and
Processors, pp. 233-238, July 2008.

• P. Dormiani and M.D. Ercegovac, ISA Extensions for Online Floating-Point Addition.
Proc. SPIE on Advanced Signal Processing Algorithms, Architectures, and
Implementations XII, Vol. 6697, 12 pps., 2007.

64

M. ERCEGOVAC - UCLA APRIL 22, 2020

• M.D. Ercegovac and J.-M. Muller, Complex Multiply-Add and Other Related
Operators. Proc. SPIE on Advanced Signal Processing Algorithms, Architectures,
and Implementations XII, Vol. 6697, 12 pps., 2007.

• M.D. Ercegovac and J.-M. Muller, A Hardware-Oriented Method for Evaluating
Complex Polynomials. IEEE International Conference on Application-Specific
Systems, Architectures and Processors, pp. 122-127, 2007.

• M.D. Ercegovac and J.-M. Muller, Arithmetic Processor for Solving Tridiagonal
Systems of Linear Equations. Proc. 40th Asilomar Conference on Signals,
Systems and Computers, pp. 337-340, 2006.

• P. Dormiani and M.D. Ercegovac, Interconnection Scheme for Networks of Online
Modules. Proc. SPIE on Advanced Signal Processing Algorithms, Architectures,
and Implementations XII, pp. 631308-1:12, 2006.

• R. McIlhenny and M.D. Ercegovac, On the Design of an On-line Complex
Householder Transform, Proc. 40th Asilomar Conference on Signals, Systems and
Computers, pp. 318-322, 2006.

• P. Dormiani, D. Omoto, P. Adharapurapu, and M.D. Ercegovac, A Design of
Online Scheme for Evaluation of Multinomials. Proc. SPIE on Advanced Signal
Processing Algorithms, Architectures, and Implementations XII, 12 pps., 2005.

65

M. ERCEGOVAC - UCLA APRIL 22, 2020

• P. Adharapurapu and M.D. Ercegovac, A Linear-System Operator Based Scheme
for Evaluation of Multinomials. Proc. 17th IEEE Symposium on Computer
Arithmetic, pp. 249-256, 2005.

• P. Adharapurapu and M.D. Ercegovac, A Composite Arithmetic Scheme for
Evaluation of Multinomials. Proc. 38th Asilomar Conference on Signals, Systems
and Computers, pp. 1889-1893, 2004.

• R. McIlhenny and M.D. Ercegovac, On the Design of an On-Line Complex FIR
Filter. Proc. 38th Asilomar Conference on Signals, Systems and Computers, pp.
478-482, 2004.

• M. D. Ercegovac, Left-to-right squarer with overlapped LS and MS parts. In Proc.
37th Asilomar Conference on Signals, Systems and Computers, pp. 1451-1455,
2003.

• Z. Huang and M.D. Ercegovac, FPGA Implementation of Pipelined On-line Scheme
for 3-D Vector Normalization, IEEE Symposium on Field-Programmable Custom
Computing Machines, pp. 61-70, 2001.

• M.D. Ercegovac. Left-to-Right Carry-Free Scheme for Computing ab + cd. Proc.
34th Asilomar Conference on Signals, Systems and Computers, pp.1330-3, 2000.

66

M. ERCEGOVAC - UCLA APRIL 22, 2020

• A.F. Tenca and M.D. Ercegovac. On the Design of High-Radix On-Line Division for
Long Precision. In Proc. 14th IEEE Symposium on Computer Arithmetic, pages
59–66, 1999.

• A.F. Tenca, M.D. Ercegovac and M. Louie. Fast On-Line Multiplication Using
LSA Organization. Proc. SPIE on Image Processing Architectures, Digital Signal
Processing, volume 3807, 1999.

• A.F. Tenca and M.D. Ercegovac. A Variable Long-Precision Arithmetic Unit
Design for Reconfigurable Coprocessor Architectures. IEEE Symposium on Field-
Programmable Custom Computing Machines, pages 216-225, 1998.

• A.F. Tenca and M.D. Ercegovac. A High-Radix Multiplier Design for Variable Long-
Precision Computations. 31st Asilomar Conference on Signals, Systems and
Computers, pages 1173-1177, 1997.

• A.F. Tenca and M.D. Ercegovac. Design of High-Radix Digit-Slices for On-Line
Computations. Proc. SPIE on High-Speed Computing, Digital Signal Processing,
and Filtering using Reconfigurable Logic, volume 2914, pages 14–25, 1996.

• M. Louie and M.D. Ercegovac. On digit-recurrence division implementations for
field programmable gate arrays. Proc. 11th IEEE Symposium on Computer
Arithmetic, pages 202–209, 1993.

67

M. ERCEGOVAC - UCLA APRIL 22, 2020

• M. Louie and M.D. Ercegovac. A digit-recurrence square root implementation for
field programmable gate arrays. In Proc. IEEE Workshop on FPGAs for Custom
Computing Machines, pages 178–183, 1993.

• M. Louie and M. Ercegovac. Mapping division algorithms to field programmable
gate arrays. Proc. 26th Asilomar Conference on Signals, Systems, and
Computers, 1992.

• M.D. Ercegovac. On-line arithmetic for recurrence problems. Proc. SPIE, Vol.1566,
Advanced Signal Processing Algorithms, Architectures, and Implementations II,
pages 263–274, 1991.

• P.K. Tu and M.D. Ercegovac. Application of on-line arithmetic algorithms to the
SVD computation: Preliminary results. Proc. 10th IEEE Arithmetic Symposium,
pages 246–255, 1991.

• P.K. Tu and M.D. Ercegovac. Gate array implementation of on-line algorithms for
floating-point operations. Proc. 24th Asilomar Conference on Signals Circuits and
Computers, 1990.

• M.D. Ercegovac and T. Lang. Most-significant-digit-first and on-line arithmetic
approaches for the design of recursive filters. 23rd Asilomar Conference on
Signals, Systems and Computers, pages 7–11, 1989.

68

M. ERCEGOVAC - UCLA APRIL 22, 2020

• P. Tu and M.D. Ercegovac. Design of on-line division unit. Proc. 9th IEEE
Symposium on Computer Arithmetic, pages 42–49, 1989.

• R.H. Brackert, M.D. Ercegovac, and A. Willson. Design of an on-line multiply-
add module for recursive digital filters. Proc. 9th IEEE Symposium on Computer
Arithmetic, pages 34–41, 1989.

• M.D. Ercegovac and T. Lang. On-line arithmetic for DSP applications. Proc. 32nd
IEEE Midwest Symposium on Circuits and Systems, 1989.

• R.H. Brackert, A.N. Willson, and M.D. Ercegovac. Recursive filter using on-line
arithmetic. Proc. IEEE International Symposium on Circuits and Systems, pages
1552–1556, 1989.

• M.D. Ercegovac and T. Lang. On-line schemes for computing rotation angles for
SVDs. Proc. SPIE on Advanced Signal Processing Algorithms, Architectures, and
Implementations, San Diego, pages 160-169, 1987.

• M.D. Ercegovac and T. Lang. On-line scheme for computing rotation factors. Proc.
8th IEEE Symposium on Computer Arithmetic, pages, 196-203, 1987.

• P. Tu and M.D. Ercegovac. A radix-4 on-line division algorithm. In 8th IEEE
Symposium on Computer Arithmetic, pages, 1-8, 1987.

69

M. ERCEGOVAC - UCLA APRIL 22, 2020

• D. Tullsen and M.D. Ercegovac. Design and implementation of an on-line algorithm.
In Proc. SPIE Conference on Real-Time Signal Processing, pages 92-99, San
Diego, August 1986.

• M.D. Ercegovac. On-line arithmetic: An overview. SPIE Vol. 495 Real-Time Signal
Processing VII, pages 86–93, 1984.

• A.L. Grnarov and M.D. Ercegovac. On-line multiplicative normalization.
Proceedings of the 6-th IEEE Symposium on Computer Arithmetic, Aarhus,
Denmark, pages 151-155, 1983.

• O. Watanuki and M.D. Ercegovac. Floating-point on-line arithmetic: Algorithms.
Proc. 5th IEEE Symposium on Computer Arithmetic, pages 81–86, 1981.

• A. Gorji-Sinaki and M.D. Ercegovac. Design of a digit-slice on-line arithmetic unit.
Proc. 5th IEEE Symposium on Computer Arithmetic, pages 72–80, 1981.

• C.S. Raghavendra and M.D. Ercegovac. A simulator for on-line arithmetic. Proc.
5th IEEE Symposium on Computer Arithmetic, pages 72–80, 1981.

70

