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Errata (UIUCDCS-R-75-750)

Page 17: last 1ine of Example 2.1 should be:
=713 = . . '

Page 49: equation (3.1) should read:
n

R AL W)

and the phrase "where Asy = -1" should be eliminated.

Page 80: Tlast sentence shou]& read:
e

. .and utilizing (4.29), any Ruv{x). . .

Page 100: 1last Tine, second paragraph, should read:

Pagsl 28 (ay 59 Irlay 4 D
Page 107: '
108: the jnitials of the following authors should be:

Campeau, J.0.

Volder, J.E.

Walther, J.S. _

The missing reference [MEG62], mentioned on page 5 is:

[MEGA2]  Meggitt, J.E., "Pseudo Division and Pseudo Multip]ication'Processes,“
IBM J. Res. Develop., Vol. 6, pp. 210-226, April, 1962.

Page 30: Tlast line of Example 2.2 should read:

y=y + 2(8) L 78 4 o (8) L o8

Page 69: equation (4.15) should read

b ~
[mgr U.—;.U.} i [lbl e

0 otherwise
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A GENERAL METHOD FOR EVAIUATION OF FUNCTIONS AND
CCMPUTATIONS IN A DIGITAL CCMPUTER

Milog Dragutin Ercegovac, Ph.D.

Department of Compuber Science
University of Illinois at Urbana-Champaign, 1975

This thesls presents a general computational'method, amensble for
an efficient implementation in digital computing systems. The method
provides a unique, simple and fast algoritim for solving many computational
problems, such as the svaluation of polynomials, rational fumctions and
arithmetic expressions, or solving a class of systems of linear equations,
or performing %the bagic arltimetics. In particular, the methed is well-~
sulted for fast evaluation of comonly used mathematical functions, The
method consists of i) a correspondence rule waich reduces a given
computational problem f into a system of linear equations L and ii) an
algoritmm which generabes the solution to the system L and, hence, to the
problem f, in O{m) addition steps with an m-digit precision. However,
the time to execute each addition step is independent of the operand
precigion., The algorithm is deterministic and always generates the result
in a digit-by-digit fashion, the most significant digit appearing first.
Therefore, the algorithm provides for an overlép in a sequence of
computations as well as for a variable precision operation, The method,
in general, has favorable error properties and simple implementation
requirements, It is believed that the proposed method represents not only
a practical and widely applicsble computational appreach but alsgo an
effective technique for reducihg the'computahional complexity and

increaging the speed of numerical algoritlmg in genersl.
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1, INTRODUCTION

1.1 Motivations, Objectives and Related Work

The subject of this dissertation is a novel computational method,
motivated by a desire to demonstrate an approach in designing fast
algorithms for numerical computations as a viable alternative to the:
camonly known parallel algorithms, requiring multiprocessor systems on
one side, and to the strictly hardware-criented algorithms on the other
gide.

Fagt algorithns are of basic interest in the theory of computation
and of an increasingly practicgl importance in the organization and
design of computing systems. With respect to implementation, i% is
convenient to classify here fast methods as i) those which use a
multiplicity of general-purpose processors with the corresponding
algorithms specified on the software (instruction) level, and ii) those
which require special—purpose processors with algorithms embedded in the
hardware (operatién) level. By definition, the. first class carries
with it a notion of generality while the second class implies limitations
of the application domain, Due to implementation properties, the former
class cannot achieve the speed and the efficiency of the latter with
respect to a glven algoritim,

The evident progress of hardware technology does enhance the

performance of the methods in both classes but the problem of algorithm




design, which 1s optimal with respect to the availsble technology, becomes,
in some sense, even more challenging, That is, as the cost and attainable
complexity of hardware change, what are the optimal algorithms and primitive
operaters? It 1s, perhaps, a coavenience, from a human point of view, to
insist on implementing all and only fouf basgic arithmetics as the primitive
operators, but that hardly proves the convenience with respect to £he
implementation environment.,

When considering a computational method for poseible implementation,
one 1s usually concerned with i) its application domain, ii) the required
set of algoritims, and iii) the required set of primitive operators,

With these, one also asgociates a set of desired or regulred properties,
for instance, the speed, the complexity and fhe cogt of implementation,
mmerical characteristics of the algoritims, etec. Ideally, an implemented
computational method should have as large a domaln of application as
posgible, a single but simple algorithm and only those primitive operators
which are efficiently realizebie in the given implementation technology.

The objective here ig to define a method which would have a
sufficient generality in applications and such functional properties
in order to Jjustify, without difficulties, a hardware-~level Implementation.
In other words, the intention is to combine the‘favorable propertéeg of
the two previously mentioned c¢lasses of computational methods,

One of the original motivations was the problem of fast evaluation
of commonly used mathematical functions. The proposed method evolved
while attempting to solve this problem in a new way. For that reason,
we will reéstrict our attention‘in the‘remainder of the present chapter

to some of the known practical methods of evaluation of functions. One




class of these methods is based on the classical approximation techniques,
in particular, the minimex or near-minimax polynomial or raticnal
approximations [HARG8]. These methods, for all practicél purposes, can

be considered genefal. The other class contains those methods which are
baged on certain specific properties of the functions being evaluated: they
are devised with implementation efficiency and speed as cbjectives but
they have a limited domain of application by definition [FRAT3]. For the
former class, since the approximation problem can be assumed to be solved,
one is concerned only with the problem of efficient ewvaluation of the
corresponding approximating functions. For polynomials, a direct
hardware-implemented evaluation scheme, based on Horner's or Clenshaw's
recurrences, suitable for the summation of the Chebyshev series [CLEGZ]

in time O(n) multiplications, gives only a slight improvement in performance
over the software versions so that its implementation, except in
microprogrammed machines, is hardly justified, The fast polynomial
evaluation schemes, on the other hand, provide a significant gain in speed -
at the expense of a considerable hardware complexity. Tung [TUN6E]
congidered the implemgntation of an efficient polynomizal evaluator, based
on the fast primitive operstors and a redundant number representation. The
proposed gtructure is versatile bub complicated'on the level of tﬁé basic
building blogk a8 well as in the overall control and intercomunication
requirements, For the rational functions, fast parsllel schemes offer

even less efficiency yet the rational approximations would be preferable

in many ingtances. The method, proposed here, has the same generality

in sguch an-application but offers a bebtter performance, Its algorithm is

simple and requires two (three) operand additions as the primitive




operator for the evaluation of polynomial (retional) functions. A
corresponding implementation can be simple, yet the time required for
evaluation is of the order of one carry-save type multiplication time, if the
coefficients of the approximating functions satisfy certain range conditions.
Otherwise,'the required scaling will cause a logarithmic extension in the
working precision. In addition to a simple basic computing block, ‘the
interconnection requirements of this method are much gimpler than those

of the above mentioned methods.

The second class of methods being considered, as mentioned earlier,
includes those methods which utilize certain functional properties to
achieve an efficient and fast implementation., Although these methods
appear limited in application, some of them can generate enough different
functiong in order to justify a hardware implementation. Their efficiency
comeg from simple computational algorithms and primitive operators, like
add and shif%t, which can be conveniently implemented. The proposed
method appears even better in this respect: its computational algorithm
is simpler and problem invariant. There is no shift operator, which in
many cases must have a variable shifting capebility. When a redundant
representation is introduced in order to make the basic computation step
independent in time of the length of the operan&s, a variable shift
operator can conglderably affect the complexity of implementation, Some
cf the most important methods in this c¢lass are: Volder's coordinabe
rotation techmicue (CORDIC), described in [VOI59] and later generalized,
in the form of a unified algorithm in [WAL71l]; the normalization methods,
based on an iterative co-transformation of a mumber pair (x,y) such that

a function fx,y) remains invariant as proposed in [SPEE5, DEL7O, CHE72]:



and the pseﬁdo-division and. the pseudo-multiplication methods for some
elementary functions as described‘in [MEGE2]. A conbingtion of some of
these methods provideg for fast evaluation of the most often'used elementary
functions (for instance square roots, logaritlms, exponentials, trigono-
metric; hyperbolic and thelr inverse functions). The method proposed here
hag even more versatility in this respect and it is generally compérgble in
gpeed., Although some of the methods mentioned above may use fewer
implementation resocurces, the proposed method excels in simplicity with
respect to the basic compubing block and overall structure. DMoreover,

the proposed method can be applied in solving pfoblems othey- than function
evalugtion, Certain arithmetic expressions, multiple preoducts and sums,
inner products, integral powers and solving of gyetems of linear equations
under cerbtain conditions, are among the possible applications. Basic
arithmetics, in particular, muitiplication and division are easily
performed by thiS'methbd. Furthermore, it has useful functicnal properties:
ite computatbional algoritim is problem~ and step-invariant; the results

are generated in & digit-by-digit fashion with the most significant digits
appearing first so that an overlap of computations can be utilized, These
properties make the method suitable for a variable precigion mode’of
operation, The algorithm itself shares some properties with the incremental
computations in fhe digital differential analyzers (DDA) although it is

not based on an integration principle. The potential of such an algorithm,
using systematically variable powers of two increments rather than

constant increments as in DDA, and its possible application in implementing
multiprocessing systems have been recégnized in [CAM69a, CAM6Gb, CAMT7O].

Campeau also recognized the possibility of solving a linear. system
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iteratively in a left~to-right mcde using a DDA-like configuration but not

the constant inecrements.

1.2 Dissertation Overview

The main result of this work is presented in Chapter 2, as a general
computational method. In its exposition, we have emphasized the b@sic
principles of the method and presented those details which we found to
have direct implications on the performsnce of the method., Several
implementation aspects are considered in Chapter 3. The physical counter-
part of the basic computational expression of the method, the elementary
unit, is defined in relation to a graph model representation'of the entire
method. Certain properties of implementation, such as its flexibility
and modularity, are discussed in gufficient detail. In Chapter 4, an
atbtempt is made to illustrate the applicability of the proposed method in
various problems., For example, the evaluation of polynomials and rational
polynomial functions is considered in general and as a basis for the
evaluation of various functions. Basic arithmetics and certain types of
arithmeticrexpressions are shown to be compatible with the proposed method.
Finally, the application of the method in solving the systems of linear
equabions is considered in some detail. A summary of the results .and a

digscussion of the possible implications appears in the final chapter,




2, THE EVALUATION METHOD

2.1l TIntroduction

In this chapter a general evaluation technique, named E-method,
ig introduced. The E-method, in general terms, can be described as
(i) A correspondence rule, Cf, which associates independent

variables Ef’ dependent variables Xf’ and parameters Ef of

s given computational problem f(§f,2f) with a system L of
similtanecus linear equations éfl = Ef in such a way that

there is a one-one correspondence between dependent variables

L i,e., the resulbts of f, and the solution y of the system L.
The elements of the matrix Af and wvector bf must satisfy

certain conditions, as specified later. Symbolically,

(Co=mhnb) = W L = A7)
(i1) A computational algorithm for solving the system L in time

linearly propertional to the desired number of correct digits

of the solution y, and which is amenablé tc an efficient 1

implementation.
A computational problem f is sald to be L-reducible if thepe is a
corresponding rule Cf, not necegsarily unique.. The E-method is applicable
in all I-reducible problems: the compubational algorithm remains invariant
while the particular correspondence rule, no more camplex than the

assigmment of values, characterizes the problem,



The choice of a linear system as the.target of correspondence stems
from an observation that the expansion of an n-th order determinant has
the form of a sum of n! terms, each term being s product of n factors.
Sinee the solution of & linear system L appears as the ratio of the
corres@onding determinants, there is an obvious potential to repregent
and accordingly evaluate certain general arithmetic expressions, rational

functions in particular, as the ratios of determinants in expanded form.

The exposition of the E-method in this chapter closely follows the
order in which the fundamental ideas were developed. Thus the problem of
evaluating rational functions, which alone is of sufficient importance,
will be used to introduce and demonstrate the correspondence part of the
E-methed, Tts correspondence riule, CR’ will be defined in the next
section while the computational algorithm will be given in Section 2.7
after discussing in some detail what appears to be the generic problem
for the E-method. The generic problem and some of the associated concepts

are investigated in Sections 2.3-2.6,

2.2 The Correspondence Problem of the E-method

A simple way of establishing the correspondence CR between the

coefficients and the argument of a given rabional function Ru v(X)_ and
2

a syétem L of simmltaneous linear eqﬁations, such that% the value of R N is
2

computed as the first component of the solution vector y, is described

as a general example of the correspondence problem of the E-method,

Let Rp v(x) be a real-valued rational function:
’

b i
Pu(x) oo By *
R (x)= = — 2.1
w8 ey R (2.1)
Zoq. X




Without loge of generality it is assumed that q0=l. Let
Ax)y =1t (2.2)

be & nonhomogeneous system of n simultaneous linear equaticns with

é(x) = (a’ij)nxn (2‘3)
- the nonsingular system coefficlent matrix;
¥y = [Yl:y'g)---;yn] (2.4)
~ the solution vector and
E = [bl’bg’o‘-’bn] . (2‘5)
- the right-hand side vector,
Let D(x) denote the determinant of A(x):
D(x) = det A(x) (2.6)
Similarly,
Dj {(x) = de-b(él’ég’”"éj-}_’p-’?‘-jJ!-l’ ---:_a'_n) (2,7_)
where
a. = (a,.,4 a, )t (2.8)
25 7 Yy %Ry g '

is the j-th column vector.

Theorem 2,1
if max(u,v) < n-1 and the coefficients aij's, bi's of the system
(2.2) are put into correspondence with the coefficients pi's, qi's and

the argument X according to the following rule CR:
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1. for 1

= J3
a, for j =landi=2,3,...,vt1;
as = 4 i-1 \ (2.9)
' for j = i+l and i = 1,2,.,..,0~1;
kO otherwise;
p,_y fori=1,2,...,mtl; L
b, = ‘ (2.10)}
* 0 otherwise,
then
Dl(x) PM(X)
X = = = R . 2'1:1_
v (=) D(x) q,(x) R, v ) (.11)
Proof:
By the Leplace expansion of the determinants
n
D(x) = .Z B, cil(x) (e.12)
i=1
and
n
Dl(x) = ‘Z b, cil(x) (2.13)
i=l
where
' A+1
Cii(x) = (=1) det Ail(x) : (2.1h4)

is the cofactor of the element Y and deb Ail(x) is its corresponding

minor, defined in the usual way. In general,

" n
hiA B for i=1;
k= : .
0,1 (x) = (2.15)

i+l:'L--IL n ‘
(-1) [kﬁ By k+;][£ I B for i=2,3,...,0 .
=1 " =i+1
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In particular,

1 ~for i=l; _
cil(x) = - (2.16)

for 1=2,3,...,n
and, since

(_l)l+1[_X]i—l - Xl"‘l

it immediately follows that

i
M

D{x) = 81 cil(x) (2.17)

i=1

w1

i
=
—+
™
f?
[
S

i=2

]
i_l
+
™

o
W

1
{éD
—~
b
~——

and,

|

g =
o

o
-
e

P
Ee]
S

Dl(x) = (2.18)

It
™
g
[N
1
[
»

Therefore,
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Theorem 2.1 establishes the corregpondence rule CR 50 that the
F-method can be applied to evaluate a given raticnal fugction Ru,v(x)'
The correspondence rules for several other representative problems will
be given in Chapter L, Figure 2.1 illustrates how the gystem L g(x) ¥y =
appearé after an initialization has been performed according to the
correspondence ruie CR'
Tt can be noted that the correspondeﬂce rule CR is degenerate in

s sense that only one of the n generated components Ii0 i=1...,0,.

namely, ¥y is of interest.

2.3 The CGeneric Problem

The proposed compubational algorithm of the E-method convenlently
appears to be a generalization of a solution to a rather simple problem.
Namely, the problem of evaluating a linear function, subject to certain
conditions, may be considered here as the generic problem in the sense
that the functional properties of its algoiithm are preservéd in the
algorithm of the E-method. Moreover, the exposition of the camputational
technique for the generic problem, being a scalar type, proves to be
straight forward and it is immediately extendable to vector type paraliel
algorithms, as the one used in the E-method.

Congider the linear function
y =ax +b

where a snd b are coefficients and x is the argument. While y could be
trivially evaluated with the help of any muttiplication algorithm, the
following set of imposed properties makes the problem of evaluating ¥y

relevant for our purposes.




X

-X

Figure 2.1 Correspondence Rule C

R

13



14

Property 1. The algorlithm must genefate the most significant

digits of y.first in such a way that once genersted, diglt yj.

at the step § will not be affected by any subséquent-step ,

k >33 |

Property 2. The basic computational step should be invariant

with the only primitive arithmetic operation being addition;

the selection procedure which genefates one digit of the result

per step should be deterministic and feasikle on a limited

precision so that the step execution time is independent

of the length of operands.

Property 3. The algorithm should have an "on~line" capability

with respect to the independent variable. Namely, if

[xiii = 1,2,,..,m) are the digits of the independent variable

¥ then only the digit X, need be used at the (j+1)st step.
The first property, essential for the ccmputational approach of the E-method,.
provides, in a simple yet effective way for the reduction of computation
per step by preventing further involvement of previously computed entities.
It implies & redundant representation of, at least, the result and it also
indicates that a corrésponding algorithm will belong to the class of
digit-by-digit algorithms, generally known to provide a very efficient
and elegant basis for hardware-oriented implementaticns. Step-invariance
and the detefministic nature of the algorithm make the control part of
implementation certainly very simple, while the requirement that addition
be the only primitive operator simplifies the operational part of
implementation. Furthermore, the property allowing a limited precision
selection provides for a cost-effective speed;up of the algorithm through

the use of a limited carry propagation mode of addition.
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The last property, although easily aéhieved in the case of the
generic problem, will be seen as essential in assuring desirable effects
of Property 1 in the general algorithm of the Enmethod;

A1l numerical values considered here are assumed to be represented
in a finité precision, fixed-point fractional format, with a representation
error {e] < r_m. The effect of representation errors on the E~method, as
discussed in Section 2.8, is minor and causes only a slight extension of
the precision required to represent initial data with respect to the
prescribed precision of the result, Thus the representation errors need
not be of immediate concern in the following discussions. It will be
asaumed that all relevant initial data have the precision of their
representations properly adjusted so that, for given m, they can be
regarded as exact.

Definition 2.1: An m digit radix r representation of a number

%, |x] <1, is a polynomial expansion

-1
X. T
i

M

X = gign x °
=1

where
x, €D, Vi
i

and O is a given digit set,

Definition 2.2: For a given radix r, a set of comsecutive

integerse D is

i) a nonredundant digit set if its cardinality satisfies

1ol =~
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ii) a redundant digit set if
|D| >

Definition 2.3: A symmebric redundant digit set is

defined as
Dp = {“p.?"(p-l)’ .o -)-l)O)_l; .e .,p—l,p}
where

Spsr-l

Mol

assuming, for simplicity, an even radix r. In
particular, Dp is
1) minimally redundant if
lp | =r+1
p

so that
- r
P=32
ii) maximally redundant if
o | =2r - 1
p
so that
p=1r-1.

Consequently, the representation of a number x is redundant or

nenredundant depending whether Xieﬂp or xieD. In the cage.of a redundant

representation
sign x = sign Xy
. 5
go X = X Xl r T,
i=1
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Example 2.1, For radix r = L

D= {0,1,2,3)}
mein = {.ém)l: 0,1,2)
meax = {-5_’:-2-:10: 1L,2,3)
where the overbar denctes the negative sign, l.e., 2 = -2, Then
X = "2310 = _1l3h for XiED
= 121 = 221 for x.eD
. i p
= 113 = 1313 = 133321 ... for Xiempmax . {j
Theorem 2.2
Let
L) _ ) ) LY LG, 2.19)
be the baslec recursion where
3 ig the recursiocn index;
T ig the radix;
ol )ef)p ig the j-th generated digit of the result;
e is the j-th residual such that

|Z_(j)l <t V3,
the bound ¢ satisfying
%S§<l;
a is the given coefficient such that

jal <a,

the bound o satisfying

P
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and
X(j) = Xj is the j-th digit of the iﬁdependent variable x,
Then the following selection procedure, defined as a step-invarlant functlon

S(W(j)):

sign W(j)[lw(j)|+l/2j for iw(j)l <p

d(j) _ s(w(j)) _

otherwige

sign w

where [WJ denctes the integer part of w, can generate in m steps, given

z(o) = b, a sequence of digits (d(l),d(g),.,.,dﬁm)) such that

E3 »
[y'- v | <r m

where
m, . .
y'*: T d,(g) T_J
j=1
and.
mn .
y=a I X(J)I‘JwLb
j=1
Proof':

The selection function s(w(j)}, for practical purposes, represents
a rounding procedure,'modified at the endpoints of the demain to avold
digit values ld(j)[ > p. Tt simply maps>a w-subinterval [k-1/2, k+1/2)
to an integer k, the subinterval boundaries being aésigned ag closge
or open as convenlent,

The consistency of the recursion formula (2.19), with respect to
the selection-function S(W(j)) is established by proviﬁg inductively

the boundedness of the residuals {Z(J)). By the condition of the theorem:

120 < ¢,
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Then, assuming
IZ(J”l)l S C ,

it follows that

IW(j)| < le(é*l)l + rla x(j"l)t
<rt o+ [% (3 - Qiglili}p
=p+ g

(3)

By definition of the selection function s(W(J)), the choice of digit &

can always be made such that

|Z(j)| _ lw(j) B d(j)|‘s ¢,

as desired.

To show the convergence of the corresponding algoritim, 1t may be
first established, by substitution, that the k-th residual gatisfies the
following equality:

28) Lk L kgl L)

J=i 3

ald) 9, k=1,2,...

™M

By definition

o () -
y=ax+tb=a I X r F D
J=1
and
m
% : =
S e n ald) ol
j=1
Thereflore
* - .
y-y =r m(Z(m) + a x(m))
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so that
Iy - ¥ <=0 =D
<r7HE +ap)
<™
since
E +ap = £§9 <1l for (<1, p<r-~-1 ]

Tt may be noted that it takes (m+l) steps to form all 2m digits

of y since
I I
i=1

and adding the last residual can be done by concatenabion. One extra step
results from the way in which the recursion formuia (2.19) was defined.

Theorem 2.2 indicateg precisely an.algorithm having all of the
required properties, It does not, however, indicate explicitly how
addition in the recursive formula can be replaced by a limited carry
propagation addition so that the same simple selection function s(w{j))

will remain applicable. For that purpose the selection problem and the

relationehips between £, ¢ and p bounds need to be analyzed in more detail.

o L4 An Analysis of the Selection Problem

The selection function s(w) can be interpreted ag & conventional
rounding rule, conforming to the given conditions on {, @ and p bounds.
Therefore the digit selection process itself can be carried out in a
determinisﬁic faghion: no tesfs need to be performed since the result of the

selection is exactly the inbeger part of the rounded w(j).' Thie proved to be
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a particularly practical way of performing sélection when a higher radix
is wbilized [ERC73]. While rounding itself needs no further elaboration,
a more detalled analysis of this selection problem appears useful in
demonstrating that the basic recursion can be perfoxmed in time independent
of the length of the operands.

The selection procedure is congidered here to be defined by a

function
s tW-D - (2.20)
where the domsin
= o w@er 2 a6 1t | (2.21)

is the finite set of values w(g), defined by the recursiocn formuls (2,19),
and the range Dp ig a redundant digit set.

Let
Ik = [Ek,uk] s ker (2.22)

be s subinterval of I, with lower and upper endpoints Ek and U such

that il

WBex
then
atd) {d)y

= s(w = k

is a valld digit cholce,
For the continuity of the domain W, the overlap between the

adjacent subintervals, defined as

A, = u, - Ei+l s ‘iEEp - {p) (2.23)
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must satisfy
NI (2.2k)
(3)

agsuming m digit precieion of the w representation., The linear form of

the recursion formuls and the selection function S(W(J)) imply that

Ai:&: Vi _,(2~25)
(3)

Since the selection, in principle,'is performed by comparing w

to a fixed get of interval breakpoints - comparison constants {ci} as

(J)
k ck < W < Ck+1

ald) _ - | (2.26)

(3)
Kbl Gy ST S Cp 0

it is important to maximize the overlap A betﬁeen subintervals so that a
convenient choice of comparison constants as "simple, " low precision
mumbers (e.g., 1/2, 1/4, etc,) can be made. Moreover, the precision to
which.w(j) must be computed for selection in order to be correct, is of
the same order as the precision of the overlap A. Thus a sufficiently
large overlap can make the time necessary to perform the recursion
independent of the precision of the operands. Let the comparison constant

sati
Ck atisfy

_ AN A :
°p T A1 VBT 2 (2.27)
Then, instead of performing selection as in (2.26), it can be carried out

as

, K
ald) _ : \ _ (2.28)
k1l e L <2 <o
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provided that
lW(J) - %\(J)l S_éA_ (2°29)

where ﬁ(j) is compubed by any limited carry propagation technique. To
satisfy (2.29), the carry needsto be assimilated only in ~|%gr|A|[ most
significant positions.
The effects of the overlap A on the considered selection problem
can be swmarized as follows:
i) If A=0 or -1 the full precision value of w(j) must be
used in the selection even though the comparison constants

are simple, i.e.,
1
¢ =k -5, ker (2.30)

Furthermore, to satisfy the consistency requirement of the

recursion formula (2.19), the following must hold

le, - k[ ¢ Vker (2.31)

The domain continuity implies

Cppy = K =TS8 (2.32)

g0 that the residual bound must satisfy

-m
£ > 1';; iF A= -

(2.33)
it A=0

noJ -

£ 2

This establishes the lower upper bound on the resiauals with respect
to the defined selection function. Such a result is intuitively

clear since the value of the lower upper bound on residual z(j)
cannot be less than one half of the smallest positive digit d(j)

value if the rounding is to be used. The selection function

s(w(J)), in the case where the full precision is used, is
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11lustrated in Figure 2.2. The z~w graph is analogous to the
SRT divislon chart [ROB58I.

ii) If the overlap A > O, the benefits of a preclsion independent
speed can be introduced in a rather simple way. Wamely, by

redefining the residual bound { to satisfy

(174) <€ <1 (2.34)

PO

for the given overlap A, the same comparison constants {ci}, and
hence the selectlon funetion 8 as in thé full precision case,
may be retained while using a low precision selection argument
'ﬁ(j)xﬂiher than'w(j).'An.eXample of'umacorresponding Z~W graph
with an overlap A = 1/2 and the residual bound ¢ = 3/h is given
in Figure £.3. Tor the selection function s(#\)) to satisty
s(ﬁ(j)) (3))

= s(w
i.e., to work correctly, %(J) mast be compubed so that
|W(J) _ @(J)I < 1/4 ,

a trivial congtraint indeed,
The potential for a computation time independent of the precision of

operands is implicit in the recursion formula (2.19): it reguires a rather

(3)

guperficial change in the bound { and an appropriate representation 6f W

(3)

allowing for the simple calculation of W

2.5 The Relationships Between &, { and p Bound

It can be observed that there ig a strong interdependence between
the bounds, @ on the coefficient a, { on the residuals [Z(J)} and the

maximal value p of the digit set, by definition, The values chosen for
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these bounds largely determine the basic computational'properties of The
generic algorithm,

The bound @ on the coefficient a,

o<o:5%[l--£-(-:;:rl—)] <1 (2.35)

- 2
r
ig defined in thisg particular way so that the consistency reguirement of

Theorem 2.2 can be easily satisfied. It jmmediately follows that

¢ < =B |  (2.36)
since
a >0,
Also, because p < r-1,
%s £ <1, (2.37)

the lower bound on £ being established earlier on the basis of the selection
function congideration (2.33). Furthermore, when the selection subinterval

overlap A is used, { bound is increased by A/2, ‘thus,

20 _
A< -1 (.38)
which, for a minimelly redundant digit set Dp, with p = %, becomes
: 1 ' :
A< 3 ~ (2.39)
and for a maximally redundant digit set, where p = r-1,

A<, ' (2.40)

“confirming a generally known property that more redundancy in the
representation system provides for a faster and easier computation.
The bounds & and ¢ determine required scaling for arbitrary

coefficients a and b. TI% may be noted that, again, Ilncreased redundancy
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reduces scaling although not significantly. ‘The gcaling pregents no

problems in the generic algorithm but, in general it would be desirable

4o maximize the bound <. However, since @ < %, there is little Jjustification,

not at least in a practical sense, to constrain t or p in order to increase O.
- A summary of the relationships among the bounds, with respect to

the operating modes of interest, is given in Table Z.1.

2.6 The Algoritim G

Although Theorem 2,2 1tself epecifies the algorithm for solving
the generic problem, this will be formalized again here as the Algoritim G

for reference convenlence.

Algorithm G
/ Initialization /
120 cns (%) o

/ Recursion /
2. for j = 1,2,...,m:
0.1 W) Lol g (1),
pe at) oy,
2.3 () L) 403),

3
/ Termination /
HALT

' * g qld) -
/ The result isy = £ a“’ ¢/ o
J=1 '
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Table 2.1 Relationships Between Bounds

Redundancy in DQ:
Mode of Operation: :
Minimal Maximal
r
p=3 p=r-1
Operand
Precision Dependent
_ o < L L
C‘g = 2 aSEI‘
r
A =0
Operand
Precision Independent
1
¢ =5 (Lra)
| o < Bll-a(e-1)] | o <51
0<ap <2B -1 r
r-l
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Ixample 2.2
Compute y = ax + b using the Algorithm G for

a = 0.00101011 r=2
b = 0,0101100% D = {1,0,1)
x = 0.10111001 m =8
g W) L) 23 5 (3)
1 1 0.1011001 1 -0.0100111
2 0 -0.0100011 0 -0, 0100011
3 1 -0.1000110 1 0.0111010
b 1 1,0011111 1 0.0011111
5 1 0.1101001 1 -0,0010111
6 0  -0.000001L 0 -0, 0000011
7 0 -0,0000110 0 -0.0000110
8 1 -0,0001100 0 -0.0001.100
The compubed solution is
9 T
y = » d‘’ 27¢ = (,10111000 = 0,01111000
J=1

while y = 0,0111100000010011. It can be easily verified that

2.7 The Computational Algorithm of the E-method

The computational part of the E-method consists of a unique
algorithm for golving the system I, defined for a particular problem T

by its correspondence rule C By definition, the generated solution of

f'
the system L is, in its tobtality or in part, also the solution of the
original problem f, This algorithm, referred to as Algorithm E, is a

direct generalization of the generic, scalar Algorithm G for an n
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dimensional vector space, n being the order of the sysbem L., It retains
all of the important properties of the generic algorithm: it also belongs
to the class of digit-by-digit, left-to-rightmethodsand generates the
solution in at most m+l recursive steps, if supported by a configuration
of n identical elementary units, However, the Algorithm E, allows in a
straightforward menner for compromises between speed and implementafion
complexity. Furthermore, the selection function s and the bounds &, £ and
p, as defined in the generic problem, remain applicable.

Let j = 1,2,...,m+1 denote the recursion index. Define the j-th

digit wvector Q(J) ag

51_(:;) _ [dgj):dg(j):---edflj)] : (2.41)
the j-th residual vector z () as
200 [zﬁj),zé‘j),...,zﬁﬂ)] (2.12)
and their vector sum E(j) as
MCORPLC D CI [W;(Lj),Wéj )’---’Wx(lj)] (2.43)
where

(3) _ al@) 4 ,(3)
L 1

i i=5L2,...,0n, Vi

Let S(E(J)) be the vector selectlon function

S(E(J)) = [S(W:E_j)):S(Wéj));--.,S(W](:lj))] (2.44)
guch that
dia') - s(ng)) , i=1,2,..,0, V3
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and each s(-wéa)) ig defined ag in Theorem 2.2 of the generic problem,

Furthermore, define the n-th order matrix G(x) as

a(x) = I - A(x) = (&, (2.45)

1] )n Xn
where I is the identity matrix and _A_(x) ig the coefficient mabrix of the

gystem L defined by the correspondence rule C £ The maximum vector noim

Jacl,, = e, | (2.46)

and the consistent matrix norm

n
= max (Z |

b, (2.47)
i j=1 .

8. .
S
as the only norms considered, will be denoted as [ix| and [|All, respectively.
Theorem 2.3
If
oGl <a; (2,48)
el <t (2.49)
and
_dgj) eD, ¥V V,
i P i 4
then the following n~th order system of linear fecursions

(2.50)
j = 1,2,.-.,m+l

with the initial conditions

(o)

(0) _,,
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generates m leftmost correct digits of the solution
L=A70) 2

in at most m+l steps as the sequence {Q(J)], Q(J), V'j, selected according

to (E.HH). Namely, the generated solution

m+l
LGRS | " &(J) e o oal
- J=i J=1 - R

£ 9]  (2.51)

satisfies
% ~ ' '
ly - ¢ <= . (2.52)
Proof:

The consistency of the system of recursions with resgpect to the

selection function (2.44) is proved inductively. By the statement of the

theoren,
12 < ¢
Assume that
=01 < ¢
Then
1) - 12+ 28 |  (e.53)

A
=
1<y
+
2
f=}
A
&
=
=
Pan
o]
i.._l

<I‘§+I‘ap

r g2 - Mztly g

i

1

p + €
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)23 - o) ana stem @)~ sign wld)

i i 7’
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by definition of the selection function S(E(J)), it immediately follows that

129 < ¢ .

The convergence is proved by showing that the solution error vector

h = [hl,h,z,...,hn] =y -y
gsatisfies
I <™ .

After mt+l steps the following holds:

9(m+l) N E(m+l) Ll b+ g()f ® d(a) m+ln3]
j=1
- I = (J)I,m+l'j]
=401
or
_mnl(g(m+l) E(m+l)) b - A)I g QCJ)r_J]
: j=1
or
-m-1  (m+l) _ b - A(x)-y - G(x) d(m+3_) —m=1
Let .
E(m+1) _ [eim+l),eém+l),...’e£m+l)] _ (E(m+l)f§(x)§(m*l)

(é.5u)

(2.55)

(2.56)
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Since y = g__"l(x) D,
* -1, . (m+1)
b=y-y =& (e ), (2.59)
The error after m+l steps ig, therefore, bounded by
-1 m+1
I - oG- ) (2.60)

< Pt ey

gince [le(x)]| <@ < L by definition for r > 2, the matrix G(x) is convergent,

i.e.,

tim [g(x)1F =0
poo

By the well-known result [FAD63]:

AN = (- a()T™h =t (@ al) &) b+ EP)) (2.61)
Do
so that
IOl = Iz F e) + ) v (2.60)
<zl el + llaGf +
<1+ ;jo ap
p=1
1 I
*Ta 3
Also

le™ D) = 2 g o) (2.63)
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Therefore,

I < <2 - &% .l (2.61)

where
Y = 5 (2.65)

for minimally redundant digit set and

el

7 = (2.66)

for maximally redundant digit set., Since y <1 for r >1
laf < =™ | o

Theorem 2.3 completes the general specification of the computational
part of the B-method. Clearly, the recursionAformula (2.50) may be
computed in time independent of the operands precision, provided that the
(1) (J) satisfies the

' o~
approximate, low-precision value w of the sum w

selection requirement
'3 - 540 <4 (2.67)

where A is the given overlap between the selection subintervals, as discussed
in the generic problem}

It may be seen from the recursions (2.50) how Property 1, bne-step
dependent generation of digits [g(j)], and Property 3, on-~line restriction
on the usage of digits [g(j)], as lntroduced in the generic problem, are
critical for simplicity and speed of the Algorithm E: not 5nly is the
computation of the recursion formula reduced to additions but the effective
delay between two successive applications of the recursion formula is

equivalent to the time necessary to generate just a single digit., Some

implications of these properties on the complexity and possible speed-up
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of computations will be discussed later. Note that the argument of the

original problem f appears, after initialization, as a parameter in the

(3)

system of recursions (2.50), and, at a particular step J, only d is

cdnsidgred as the independent variable. The rate of convergence of the
Algorithm E is, by definition, regtricted in that it must be linearlwith
regpect to the radix, i.e., one radix r digit per step. However, the
resulting computational simplicity of the recursgive formula and, equally
important, the effective way of introducing paréllelism.more than coﬁpensate
for such a restriction,

The error properties and the scaling problem of the E-method will
be discussed next, while a summary of the E-method with an example concludes
this chapter. Certain aspects of the E-method related to the implementatiocn

and performence evaluation will be considered in the following chapter.

2.8 An Brror Analygis of the E-method

The errcr behavior of the E-method appears to be quite favorable.
First, it can be seen that if the system of linear equations L satisfies
the boundsg, as required by Theorem 2,3, then it is ingensitive to small
perturbations in elements of A(x) and b since the corresponding condition

number of the matrix A(x) satisfies

k(A)) = G| a7 )] (2.68)

140
1-G

<

Lopun

Second, by definition of the computational algorithm, no roundoff errors are

generated when E-method is applied. However, the finiteness in the
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representations of' the elehents of g(x) and b inevitably introduces
representation errors which will systematically propagate to the left and
eventually invalidabe selection of digits [déj)] and hence déstroy the
accuracy of the result. In view of (2.68), it is clear that, by comnsidering
represéntation errors as perturbations of the correct values of the elements
of A(x) and b, no serious difficulty should be expected. Indeed, if will
be shown that the ill-effects of these represéntatiom srrors can be
compensated for by an extended precision m' in the coéfficients representa-~
tions with respect to the prescribed precigion m of the result.

To determine m' > m such that the first‘m+l digit wvectors g(j) are

correctly selected, assume that

G- 66) + By09) = (g5 liwn * Gy dnxn = @iglaxa (269

represents the matrix of exact elements (Eij} while g(x) ig thelr finite

precision representation matrix with the corresponding error matrix

%) such that
EG()

leg | < =,V v, (2.70)
Similarly, 77

) ), ) e
and |

33) ) ) | 2.72)

Since, by definition of Algorithm B

NCDCHIRMC I

i
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then
~(3) _3) ) L @)
i W, i i
23) L, 6) , ) 00, )
i i Wy i %y
so that ' .
eﬁj) _ ‘ff) wa el - oD 2.73)

By substitution, applying (2.73), it follows that

mn "
o (mtL) rm+1{e(o) R s gld)
= =z =G =1 =

r 9] ' @.71)

For the selection to be correct, the discrepancy between the true and computed

selection argument must satisfy

I A BT (2.75)
Since
D) < L) n@(}(x)n-ni at) w73y
and
BTN

n
I, G < max jflleij .i 5 | (2.76)
m .
R R
J:

it can be found that the precigion of coefficient representation must satisfy

2
m'2m+1+909r(

= a') (2.17)
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where n' is the maximum number of possible nonzero elements in any row of
the matrix g(x). In the most important appiications considered here, n'
is very small., For example, in the case of the rational function evaluation

proolem, n' = 3 80 that, for r =2 and A= 1/2, m' 2m + 1 + lg, 12 =~n + 5.

2.9 The Scaling Problem

The conditions (2.48) and {2.49) of Theorem 2.3 on norms of matrix
A(x) and vector b, imply that, in general, an sdjustment of the size.of
the elements aij and bi will be required. Althgugh scaling commeonly appears
whenever fixed-point representation arithmetic is used, it can be handled
without serioug difficulties. The E-method, however, requirés more
congideration of the scaling problem.

The sealing problem of the E-method will be considered here in
general terms, with specifics to be given later for particular spplications.

The simplest problem in scaling which may arise ig that
jlax) <1 +a (2.78)
but
el £ ¢
However, instead of solving
Alx) y =B
one can solve an equivalent system, scaled as follows

Ax) Sy =81 (2.79)

or

gt
z
ot
il
1=
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where
ol = s vl < ¢
The scaling matrix § = (Sij)n><n is defined as
rr for i=j
Si4 = : - (2.80)
0 for 1i#]

where ¢ 1s a positive integer such that

v el <t

or
ol
7= [og, 7]

Clearly, in order to retain the same number of significant digite in y'

ag in y, one must carry ¢ extra steps. Then

y=8"y
Muitiplications with § and §fl involve only a shift of ¢ positions right
and left, respectively. Therefore, the case (2.78) is always trivially
solvable and cne need be concerned only with the case when matrix A(x)
requires gcaling,

The problem of scaling the matrix A(x) may be considered equivalent
to a problem of transforming & given matrix A, with arbitrarily large

elements aij’ into a diagonally dominant matrix-g such that

a | >xla, |, Viti,
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k is a givﬁn constent. This, in general, requires prohibitively

complex computatioﬁ in view that é(x) depends on independent variables of
the original problem. For example, consider a general technique which

can be used to reduce a given gystem of lineér equation to & form, convenient

for iteration [DEM73)}. By definition, in our case, det A{x) # O so

-1 -1

A7) - 8) Alx) y = A7) -8) b (2.81)
cr
-1
y=8a)y+ & () -8)p
where S is the scaling metrix (2.80), being defined so that
s A g1 +a

The form, although slightly different from that of Algorithm K, ig acceptable
and mabrix &(x) has been effectively scaled. However, camputation of

(a7

x) - g) b would require an amount of work incomensurable with the
expected performance of the E-method, There are, fortunately, many
important applications where scaling of matrix g(x) does not appear to be
a problem, It is of practical importance that certain problems allow for
redefinition in a convenient way so that gcaling again is simple matter.
With respect to scaling, two classes of'applications of E:method
can be distinguished. In one clasg there are problems, for instance, the
evaluation of functions, where all parameters are known & priori so that
scaling ig a one-time job for a particular argument range. In this class,
the E-method spplies without any overhead. In the other class are the

problems with arbitrary parameters so that scaling must be performed each

time the E-method is applied. This involves an overhead, commonly
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encountered‘in any other method of camputation in a fixéd—point representation
domain, The applicétions of the E-method in this class would make the
extensicn of the method to a floating-point representation démain highly
desirable., It may be noted that the E-method is easily applicable when a

block-floating point representation is used.

2,10 Summary of the E-method

The E-method is summarized below for refgrence convenlience:

Part 1 (Correspendence)
Given an L-reducible computabional problem f, apply the
correspondence rule Cf on the arguments and parameters of T
in order to obtain the coefficient matrix A and the vector
b of the system of linear eguations L. The correspondence
rule ¢ must guarantee that the elements of A and b can

f

he made conformable to the conditions:

T
‘Z Iaijlid, Vi

j=1-
J#L
]bj_l SQ 2 Vj_

Part 2 {Computation)

Algorithm E
/ Tnitislization /

1o 2 C b a0 - a6 al%ho;
/ Recursion /

2. for j = 1,2,...,mk1:

2.1 E(j)ﬂ«(g(j”l) + g(x) g(j“l))s




Ly

IR

o SDo) L 40,
/ Termination /

3. HALT
/ The result(s) of £, for the given precision m, are

represented by
ST al8)
j=1

* ¥ *
= [yl’yg’”"ynj : /

Example 2.3:

As a general example of the E-method we present the evaluation of
R3)h(x) as an approximation to sinh(x), xe[0,1/8], with a precision
of 13 decimal digits. The coefficlents are taken from [HAR6S,
SINHR2002, p. 104, p. 216]. Before normalizing q, to 1, they

appear as follows:

By = 0.0

p, = 0.5353890456087786+10°
p, = 0.0 |

Py = 0.56u627u506878u9*162
9 = 0.535389ou560879u*1o3
q; = 0.0

a, = -o.32769h3311233h7*102
4y = 0.0

q, = 1.0

The other parameters are: 1 = 2, n = 5, £ = 3/4 a=1/8, q = 1,

mt' =4 + 1+ 1 =46, For
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x = 0.1019734533301,
the evaluation is illustrated in Figure 2.4, The generated value
*
¥y satisfies

i (sinn(x) - yi)/sinh(x)i < 2*LL5 )
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3, ON IMPLEMENTATION AND PERFORMANCE
OF THE E-METHOD

3.1 Imtroduction

We intreduce in this chapter a definition of the basic computing

block, the elementary unit EU, and congider, in some detail, its

implementation. Then, a graph model of a general compubing configuration,
congtructed by connecting several elementary units, ig defined as a
convenient form of representation, exhibiting directly the basic parameters
which determine the performance of the E—methbd. Finally, we discuss
several modes of operation, in which the E-method can be applied, in

relation to the general impleméntation properties of the method.

3.2 The Basic Computational Block

The basic computational block, the elementary unit EUi’ ig a
hardware structure implementing the basic recursion formula (2.50) or,
mere precisely, the récursion step of the Algorithm E. Due to its
simplicity, it seems sufficient to indicate only the major parts and a
control strategy of an EU in the present discussion, without considefing
low-level details of an gctual implementation, Hopefully, our global
description will suffice to estimate precisely enough the ﬁerformance and
complexity features of an EU, and, consequently of the E-method.

It seems preferable, .from the -implementation point of view, to

restate the bagsic recursion formula (2.50) ag follows:
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R 32

where Biy = -1, so that the need for explicitly calculated residuals zéj)
ig avoided,

. Ag indicated by Figure 3.1, where a global structure of the
elementary unit EUi is shown, the evaluation of w§3) baglcally reguires
an s-operand adder. In many practical applications s is rather small.
Tn order for the time of addition to be independent of operand Preciéion,
wﬁj) need to be represented in a redundant forﬁ. |

The selection procedure, defined by the selection function

s(@éj)) is performed by the block S, which forms %§j) by conﬁerting a
few of the most significant digits of wij) into nonredundant form. After
rounding %ij)’ the integer part represents the selected digit déj). The
precisglon of ng) is basically determined by the overlap A and the number
s of summands, All functions of the selection block S can be easily
implemented, The previous value dgéﬂl) is saved in register D. The
coefficients {aik} may be, for better storage efficiency and simpler adder
structure, fepresented in a nonredundant form., The single, signed digit
radix-r multipliers dé;) are incorporated through the selection networks
{SNR}, each capable of forming required multiples of B qe The carry
generator C would be needed if, for example, a radix complement representa-
tion of negative nuwbers is adopted. In that case, the selection networks
merely form direct or complement of a possibly shifted value of Bipee The
complexity of the selection networks increases for higher radices, and

since the‘additional multiples -appear as summands, complexity of the adder

will also be increased. ‘Therefore, a higher radix, while reducing the
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necessary mumber of steps for a given precision, does increase both the
time to perform the basic recursion and the complexity of the corresPEnding
elementary unit. The problem of finding an optimal radix under given
application and implementation conditions will not be considered here.

The central part of an BEU, the multioperand adder, can be
implemented in various ways in order to achieve the desired speed/cost
factor. The }egisters Rk store the corresponding coefficients 8
throughout a particular evaluation; their numiber for the elementary unit
EUi is determined by the mumber of nonzero elements in the i~-th row of
the matrix G(x), i.e., the mumber of inputs to EUi' Register R and the
corresponding data path must accommodate the redundantly represented ng).
The initialization, i.e., the execution of thé particular correspondence
rule Cf is performed by loading the coefficients [aik} and‘bi via the
initial wvalue entry bus.

The control requirements of an EU are very simple: assuming a
synchronous mode of operation of the entire configuration of the elementary
units, synchronizing, clock pulses on which the trangfer of wéj) into RW
occurs, are all that is needed. The same clock pulseg, defining the
basic step, are disbributed to all units. By controlling their nurber,
one can eagily achieve a variable precision mode of operation, as discussed
later.

The time required to perform one recursive step on an elementary

unit ig defined as:



50

where tA is‘the time to generate wéj) in a redundant form, tS is the
selection time and.fT ig the register transfer time, Both tS and tT
correspond to a few gate delays--(3-4) tg, so that t, appears ss the
dominant factor, which depends on the number s of summands and the adder
structure. For practical reasons, s may be defined to denote the number
of radix-2 summands, i.e., the higher radix or redundantly represented
cperands are feplaced by their binary equivalents. Then a gimple adder
gstructure, consisting of s-2 levels of full-adder rows, will have a

5y = 2(g=2) tg, assuming etg per full-adder. Mgre gsophisticated adder
structures, i.e., Dadda-type [H073] can considerably reduce this time.

However, when & is small, like in polynomial evaluation, it can be seen

that, for radix 2, t, = O(lotg).

3.3 A Graph Representation of -a General Computing Confilguration

An I-reducible problem £ of order n can be solved by the -method.
on & structure consisting of n interconnected elementary units. The
computational algorithm E indicates that the intercommunication requirements
are simple due to the fact that the elementary units are functionally
related to each other only via the digit vector d. This implies that the
physical connection between the units EUi a.nd.EUj only needs to
asccommodate a transfer of one, gigned radix r digit. In common
multiprocessor structures, used for fast paraliel canputations, the
processgor intercommunications usually require fgll precisi&n width.

A camputing structure for solving a given problem { by the E-method

may be conveniently specified by a compubational graph

G (V,K) | (3.2)
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where V = {Vili:l,...,n} is a set of vertices and X is a connection matrix,
defining a set of directed arcs. Fach vertex Vi corresponds to an
elementary unit EUi, gymbolically represented as in Figure 3;2 where the
outgoing arc di carries the diglt generated by EUi and one or more
incdmiﬁg arcs dj’ inputs to EUi’ carry the digits generated by {EUJ}{ The

connection matrix K = (k is in one-one corregpondence with the

ij)an
matrix G{x) = I - A(x) of the system L, as follows:

1 if gy # 0
Kyy = | ‘ (3.3)

. 0 if gij =0

and kij = 1 specifies tThat the arc dg is an incoming arc for the vertex
Ve i.e., the connection matrix K defines the relation "receives from"
between the elementary units {EUi} of the computing structure. Note that
the utilization of di for internal functlong in EUi, as indicated in
Figure 3.1, need not be specified on the graph unless &3 # O.

Wo attempt is presently being made to treat the properties and,
applications of the above defined computational graphs in a rigorous
and extensive way. Rather, some basic cbservations are made and geveral
examples are given to illustrate usefulness of computational graphs in
the E-method.

Strietly speakiﬁg, there is only one functional primitive, the
elementary unit, which appears in any application of the E-method. Yet
for convenience, four types of nodes, obtainable by obvious modlfications
of the elementary unit, are defined as primitives in a sense that no Gf,
where f is an L-reducible problem, exists which cannot be constructed

from these four primitives.




Figure 3.2 Elementary Unit:
Representation

Graph

sl
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Thé conversion primitive GC’ shown in Figure 3.3 (a), satisfies

the following output function:

s q(d) -3
_a _
jil d,i r = Cio (3o)"I')
where éio is a constant, possibly in a nonredundant form., If dia)eﬂ, as

is the case in the E-method, the GC primitive performs a serial convérsion
of 0 into the corrresponding redundant form., For completeness, one could.
define a primitive without an outgoing arc to perform gerial conversion
into a nonredundant form., However, such a primitive would require a
facility for full-precision carry propagation, unlike the other primitives.
For that reason, we prefer to assume that the conversion to a conventiconal,
nonredundant representation, when necessary,.would be done in a separate
addition step, on a separate unit.

The multiply primitive‘GM, Figure 3.3 {b), satisfies the input-output

function:

(GY -3 _ > (3) -d
d°7 T T = cig ey jil T (3.5)

it M8

j=1

and it is a degenerate case of the inner product primitive GI, Figure 3.3 (c},
which satisgfies
o . . o oo . . :
J — -
.Z dé_) rd=c  + = L Ciy &éJ) r 9 (3.6)

=1 0 g1 k-1

kA

The divide primitive G, Figure 3.3 (d), satisfies

I (3.7)
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(a) (b)

(c) (d)

IMgure 3._3 Compubational Primitives
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In all primitives, Csp BTE the coefficients assumed to satisfy the
conditions of Theorem 2.3, For example, the computing_structure for the
evaluation of a polynomial has a graph G, as in Figure 3.4 (a), the
evaluation of a rational function has a graph G, Figure 3.4 (b), while the

evaluation of an expression like

D 7 .
f=c + L c (——-——-) (3.8)
G k=1 k lwbk

requires a structure with a graph G, Figure 3.4 (e).

The compubational graph Gf may be acyclic or cyelic, as previous
examples show. The graph Gf is acyclic if and bnly if ite connection
matrix K is strictly upper (lower) triangular. In a practical sense, a

eyclic graph G, corresponds to a probiem f which involves divisgion.

F
Importantly, a graph Gf provides a direct estimate of the required
time and implementation compleﬁity. It N(g) denotes the number of ones

in the connection matrix Kn n then the computatiocnsl structure requires

X
at most N{K) + 2n m-digit registers, n adders with total of N(K) + 2n
operands and N(E) single digit'interconnections. It is assumed that two
registers are sufficlent to store LA value in a redundant form. IFf
N, = [{dk][ denotes the number of inputs to the i-th elementary unit,
then EUi requires 8 = (Ni+2) operand adder and that many registers.
The time tO required to perform one recursive step is clearly

determined by the parameterg of the elementary unit EUk guch that
N, = max (Ni). The total time, then, for the E-method evaluation,

1

aesuming an m-digit precision, is

1,(e) = (nl) %, . (3.9)




{b)

Figure 3.4 IExamples of Computational Structures
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if no scaling is required, and
T(f) = (m+l+o) B, (3.10)

otherwise, where integer ¢ > O is defined by the particular scaling

requirements.

3.4 On Modes of Operation and Implementation

The functional properties of the E-method, namely the step-invariant
nature of its computational algorithm and linearity of its basic operator,
make an adaptation both to a variable precision mode of operation and a
variable number of elementary units rather stralghtforward.

A variable precision mode of operation is very desirable from the
user's point of view. Since the computationdl algorithnm of the E-method
is deterministic, in the sense that no tests need to be performed tc check
the attained accuracy at each step, the desired accuracy of the result is
specified directly by the given number of recursive steps. This leade
in a natural way %o a variable precision operation. The second aspect,
i.e,, the ability of the method to perform without severe degradation
while using the limited resocurces, or its implementation flexibility in
other words, is also of pracﬁical importance.

Consider the application of the E-method in a given problém pf
order n and preciglon m. ILet n denote the mmber of available elementary
units of precision m. When n < n and m <m, clearly, no problem exists
in achieving a varisble precision mode of operation: the given value of E,
declared by the user, can control the number of steps to be executed by

the elementary units and, hence, the precision.
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If, however, m >m, each elementary ﬁnit should be asugmented with
additional storage to accommodate the extra precision of the operands,
The control of the elementary units should be modified éo as to allow
multiple precision addition, with the selection process carried only when
the most significant word of the sum has been generated. As shown in
Figure 3.9, the additional storage could be convenlently implemented; for
exgmple, whew m = fm, as a circular array of f parallel-in, parallel-out
registers, connected to a corresponding operand register in the elementary
unit via alveady existing bus (Figure 3.1).

The seme solution is applicable in the case when n >n, i.,e., when
the mumber of elementary units is insufficient. Now each array row of
the additional storage would contain the dataAcorresponding to one recursion,
Also, storage for the digit vector d must be provided in the same way.
Again, the control modiflications are minor.

Finally, one can congider the case where the elementary unit itself
hag a restriction on the number s of operands it can handle simultaneously.
it is easily seen that the same approach as above will suffice to accommodate

the necessary number S of operands, Let

w- |
- [

SIE!J 33I332J

(3.11)

-
7

i
—_
mlu:ulJ

then the computation time is affected as follows:

TE(f) ~k K ks(m+l) , . (3.12)
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e ¢ 8 @ RK dii

Figure 3.5 Multiple Precision Scheme



62

where n, m,‘s, and to are the parameters of the availeble elementary units
and 5, E, and B are paremeters of the given problem.

The previous discussion reveals the flexibility of the Be-method: it
can be implemented under a wide range of speed/cost constraints in a simple
way. The cost change in precision, in the mmber of elementary units or
in their complexity, affects the speed of camputation lineariy., In éddition,
the EAmethod‘is clearly amenable to a modular implementation. ¥or example,
the basic module, implementated in a ISI technique, could be a 16 bit unit
with a 4-operand adder, Ut registers and a selection and carry block which
can be by-passed so that a larger precigion eleméntary unit could be simply
constructed by concabenating the required mumber of basic modules, An
additional module could be a 8 X 16 bits circular register array. By
combining these two types of modules one could easily achleve a desired
computing structure to support.the E-method.

Tt is of certain interest to discuss the modes of operation of a
computing structure from ancther point of view. Since Algoritim E always
generates the results in a digit fashion, the most significant digit
generated first, an "on-line" mode of operation seems to be a natural way
to provide for a faster execution of sequences of interrelated ccmputations.
Tn other words, if Algorithm E can be made to satisfy the "on-line"
property (cf. p. 1ﬁ) with réspect to all operands appearing in the bagic
recursion, a significant overlap and, hence the speed-up in computing can
be easglly achieved. In general, the "on-line" mode of operation implies
that the j-th digit of the result can be generated before the {§+8)-th
digits of the operands are available.- Algoritlm E already aatigfies the

"on-line" property with respect to the digit vector d and it is a rather
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straightforward modification of the basic recursilon which is required in
order to extend the same property to all operands. We mention algo that

the "on-line™ capsbility of the E~method can be particularly important in

& possible real-time appiication,
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L, ON APPLICATIONS OF THE E-METHOD

4,1 Introduction

In this chapter several L—reduciblé problems are described as the
representative examples of some applications of the F-method. The selected
applications are, we believe, important and illustrative of the many aspects
of the proposed method: its computational power, versatility, gimplicity
of implementation as well as certain limitations, resulting mainly from
the number range resgbrictions.

We begin by describing the evaluation of polynomial and rational
polynomial functions of a single variamble. As will be seen, any polynomial 1s
IL-reducible, which is not true for rational functions. However, L-reducibility
of a rational function can be assured by taking into account the appropriate
conditions when the coefficients of the rational function are being defined.
The results of these considerations are then used to provide a table of
some elementary functions in.order to illustrate the time and complexity
regquirements of the E-method in such applicatioﬁs. While a partiéular
function or a limited set of functions can be evaluated more efficlently
in some o%hef technigues [VOLS9, DEL70, WAL71] the E-method provides a
fast and a reasonsbly efficient (in a sense that a regquired computing
structure in a particular application is obtained by repetition of the
same simple basic part) techniqﬁe of evaluation for practically an

unlimited number of functions. The compatibility of the basic aritimetics
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with the proposed method 1s alsc considered with an emphasis on division,
By locking at division as an L-reducible problem, an algorithm was derived
which has a desirable way of generating the quotient digits deterministically
and which can also use redundantly represented partial remeinders. This
algorifhm appears functionally equivalent to the division algoritlm
degeribed by Svoboda [SV063]. After giving some examples of the appiication
of the E-method in evalusiing certain srithmetic expressions, such as
muitiple preducts or sums, inner products etc., this chapter is concluded
with a brief consideration of the E-methoed as a linear solver.

We have made no atbempbts presently to cénsi&er the implications
the I-method may have in fields like digital signal prbcessing cr linear
control systems. It may be expected that the‘proposed computational technique
can be efficiently wtilized in many special purpose computing systems or
devices.

In Chapter 3 it was indicated that the basic performance factors,
i.e., the speed and the cost can be easily deduced from the computatiocnal
graph for a particular aspplication of the E-method. While considering
problemg of evaluabing polynqmials and rational functions, we will attempt
to provide relative measures of performance with respect to a conventional
sequential or S-method and a parallel or PJmethéd of canputation., We will
use the speedup 5, effidiencj E and cost C factors as defined by
Kuck [KUCTL], but under different assumptions. Namely, as a mabter of
hardware implementation complexity standardization, we will assume that
a processor used by 8-, or P-method is equivalent in its capability and
complexity to an elementary unif of the E-method. We will also consider

all three methcods in a domain of operations on a hardware level go that
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the usual assumption that each aritimetic operation takes the same unit
time doeg not hold here. The relative performance measures for the other

application examples can be derived in a similar way and are omitted here.

I,2 Eysluation of Polynomials

Let

Dy X l(h.l)

I ME

P (x) =
K 1=0
be a p-degree polynomial with real-valued coefficients {pi} and the

argument x € [a,b]. Define the coefficient and the argument norms as

follows:
ol = mex o, - | (.2)
=zl = max  [x] (4.3)
' xe[a,b]

assuming that p and x are vectors with pi's and all representable values
of x € [a,b] as the components, respectively.
ir

lell < ¢
and ' . (. h)
Izl <o

then the problem of evaluating the polynomial PM(X) ig immediately reducible

to the system L: A(x) y = b of order n = u+l according £0 the following

N\
correspondence rule CP:
1 for i=j;
a,. = -X for j=i+l, i <p ~ (h.5)

0 otherwise
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Py1 for i=1,2,...,ut+l
b = (4.6)

0 otherwise
as illustrated in Figure k,1. The system L is then solved usging the
Algorithm E- so that after m+l steps

m+1 (.)

y = 5 ad e ()
J=1 ,
satisfies
* o 1
P (x) - vy <= (4.8)
and
H kei+l ¥ -1
| = p x -yl <r (%.9)
. k i
K=i=1

for i= 2,3,..-;M+1-
The computational graph G is shown in Figure 4.2, All the

elementary units EUi, i=1,2,...,n are identical: each one requires al

(3) (3)

adder with one redundant (wi ) and one nonredundant (X'di+l) operand,

or, effectively, a conventional adder, where r=2.

Tn general the conditions on norms (4.4) may not be satisfied and
an appropriate scaling of pius and x must be done prior to the evaluation.
The required scaling in this case presents no problens,

et 8 = (s..) be a scaling matrix, defined as follows:

1j‘nXn
-(1—21.)%L o
r for i=j

= _ (4,10)

O otherwise

8. .
iJ
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I P
e Y2 Py
1 =X y3 P2
. . e =
1 =X
l e yn—. — pp’..l

Figure 4.1 Correspondence Rule Cp

1 dg@. d3®._...fl‘_@

Figure 4,2 Computational Graph Gp
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where o, is a positive integer or zero when no scaling is required., Then

A
S » (i-l)qA
its inverse § =~ is also a diagonal matrix with 85477 for i=j.
Congider
stam gsty=-8"0 (4.11)
Let
A(x) = §fl A(x) 8
-8y (k12)
and
B-5"1
If
-0
xl-r * <o
l.e.,
Iz _
by . if |zl £o
o, = (4.13)
0 otherwise
then
E)| <o
as desgired, However, since .
o~ HC)
Bl <= Aol | (1 1)

additional scaling must be performed, ag described in Section 2.9, if

HEH £ t. It can be seen that this right-hand side scaling requires

Bl y
oy, if o £ ¢
o, = ' ' (k.15)

0 otherwise
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Note that the scaling of the matrix A does not introduce change in the
¥ *

prescribed number of steps since ¥y = ¥qys by definition of the scaling

matrix §. However, to satisfy ¢ bound, Uﬁ extra digits may be necessary

and therefore the time to evaluate a polynomial PH(X) ig, in general,

TE(PM) = (m+lto, ) &

L 7(&.16)

0
Tt is interegting to observe that if no scéling is required, the time of
evaluation is independent of the degree of a given polynomial.

After QA and Gb are determined, the scaling is performed by

ghifting, i.e.,

ai,i+l = = KT for i = 1,2,.404,1

(4. 17)

'T for i = 1,2,...,0+1

Example 4.1:

Congider the scaling requirements for the polynomial approximation
%gg(x) ~ Pg(x), xc[1/2,1] with a precision of eight decimal
digits. Using the coefficients {pi} from [HARG8, IOGR 2508, p. 110,

p. 225], and assuming that r =2, m = 27, { = 3/h, a = 1/8 we

obtalin:
o, =3  since izl <1
o, =29 since [ < 3.2°7

b
Therefore, the required number of steps to evaluate given

polynomial becomes

‘m'=m+1l+a =57
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Example 4.2:

Evaluation of a polynomial as an approximation to 2x, x¢[0, 1],
with a precigion of 7 decimal digits for x = 0.5 is illustrated
in Figure 4.3. 'The coefficients of P5(x) are from [HARGS,

EXPB 1042, p. 102, p. 204]:

pg = 0.999999925
by = 0.693153073
P, = 0,240153617
Py = 0.558263130% 10"+
Py, = o.898931+003*10'2
Py = 0.187757667*10'2

The parameters are r =2, n = 6, ¢ = 3/, a = 1/8, o, =3
=7, m=2L +1+7=732, For x = 0.5

N2 - yj_l < 2‘2”,

%

O

We now consider the performance of the E-method in polynomial
evaluation relative to the S, and P-methods, as defined in Section 4.1.
Both these methods aré assumed to be using an iterative multiplication
algorithm go that the basic processing unit in ail.three methods can be
considered equivalent in complexity and speed. Furthermore, we assume &

fixed-point representation domain with no scaling requirements. Denoting

addition time as to, we have the evaluation times and the number of

processors for E-, 8-, and P-method as follows:
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TE(Ph) = (m+1) fop By =B+ 1
Ts(rh) =pmtb, ng =1 | (4,18)
TL(B) = (g, b+ (Olbg, 1)7%Im) b, ny = 2

We have assumed that the P-method uses Maruyama-Munro-Paterson slgoritim for
parallel poljnomial evaluation as given in [KUNT7L].
Following Kuck [KUCTH], the E-method algorithm for polynomial

evaluation has the speedup factor SE:

TS m l
Sy = = R ~H (4.19)
E
the efficlency factor EE:
SE L m
EE = h—-E" = (m)(m) > 0,5 for p >1, m >3 (h.EO)
and the cost factor CE:
Cq=npTp = (p+1) (m+1) 5 (4,21)

Similarly for the P-method algorithm:

P eemems  p e—r—— 0 —

(h,22)

Cp = 2n (M + ~Mem) tg

where M = %geu. As a reasonable measure of performanqe, Kuck suggests the
rgtio of effectiveness, given by speedup, and cost of the method so that

the A-method 1s betber in performance than the B-method if




>

s 2 8
max (—%"‘- , —'i) = Ei (4.23)

Tt can be easily seen that

. SE m 1
Hm 7= = 5 Y m
s "B {m+l) tO 0

while | (h.2h)

1im =0

!J,—)OO

le
vl v}

8
With respect to the precision, both Lim —CE - 0 and lim —£ = 0 but
m-s= . mse P

w2

CP Ep%ggu
S A1

lim > 1 for p>1 (4.25)

M»00

Ol ¢z}
e §oa
Hd

This indicates that the E-method algorithm is better in performance
noticeably than any P-method algorithm for the evaluation of polynomials
under the previously statedconditions. Furthermore, the E-method algoritim
hag a behavior of performance measure gqualitatively different from the
considered P-method algorithm, as illustrated in Teble 4,1 and Figure .k,
In this example it is assumed that m = 56, r = 2 and, for presentation
convenience, that t, = 107° units.

The conclusion that the E-method offers better performance in
terms of speed and cost'thaﬁ a P-method in polynomial evaluation could be
made even gtronger if the rather complex control and communication
requirements of a P-method were compared with those of the E-method. To
emphasize again, these conclusions are limited by the imposed assumptions,
mentioned earlier. The gpeed of a ?-ﬁethod algorithmrcould certainly be

increased, by using sophisticated multipliers beyond the speed of the



Table L.1 Performance Factors
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Sg Sp
H By Ep i/t | Tp/e| Sp ¢, GR
2 0.65 0.59 57 57 1.96 | 1.96 1.14 | 0.86
it 0.78 | 0.35 81 | 3.92 2.77 1.38 | 0.62
8 0.87 0.28 102 7.84 4,38 1.53 0.49
16 0.92 | 0.24 118 3_5.68 7.58 | 1.61 | 0.2
32 0.95 0.21 133 }31.36 | 13.k6 1.67 0.38
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Figure 4.4 Evaluation of Polynomials:
Performance Measzures
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E-method, but at the expense of highly increased cost. The similar
conclugions about the relative performance of the E-method with respect
to the P-method of polynomial evaluation with combinational arithmetic

nets, as proposed by Tung and Avizienis [TUN70], were found to apply.

k.3 Evaluation of Rational Functions

The corregpondence rule CR which defines a linear system
L: A(x) y = b for a given I-reducible rational function Ru v(x) has
, v
already been given in Section 2.2. Algorithm E can be carried out on a

configuration represented by the graph Gy with n = max (w,v) + 1, as

illustrated in Figure 4.,5. The basic recursion (2.50) becomes

() _ ), ) _ L, 8-1) (3-1) (3-1)
LA A ) * 8599y v gy sadh )
(4,26)
with 81 = " %1 and gi,i+l =X ,
i = 2,440l
trivially modified for i=1 (gil:O) and for i=n (gn, 0e1=0 dn+l:0). The

adder structure of the elementary unit needs to accommodate at most two
nonredundant and one redundent operand and that, for radix 2, can be easily
achieved with a two-level conventional adder.

The conditions under which a rational fﬁnction is Lereducible

will be considered in same detall. Let

b i
)
P (x) R
Hs Q'V . qi %

i=0
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be a rational function with real-valued coefficients {pi] and {qi} and the
argument xe¢(a,b], assuming without loss of generality that dg = 1. Define

the following norms:

ol = wasx [, |

= max |q. | L2
gl pe la; | (h.27)
Izl = max [x}

xe[a,b]

Then by the conditiong of Theorem 2.3, the following must hold:

1) g+l <

(4.28)
Gi) el <t
The condition (i) appears as
<o (4.29)
for the first row of A(x) and as
la,} <@ (%.30)

for the (v+l)-st row if p < v.
The scaling implications of the condition (ii) have already been
discussed in Section 2.9 and will not be reconsidered here. The condition

(1), for practical purposes, can be expressed as

(1) lall ga(i-e), 0<e <1
| (k.31)
@) =l < e o
Supposing that (1'') is satisfied and utilizing any Ru V(X) with
2

Ay = 1, such that
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ol <E2a, 1=1,2.., (4.32)
i c
ig L-reducible and can be evaluated in O(m) steps according to Algoritim E.
While a given rational function may or may not satisfy (i'') and
(&.32), these conditions can certainly be ftaken as additional constraints
when the coefficients {qi} of a rational function are being determined.
This is, in garticular, applicable when the coefficients of the rational

function sre cbbained using linear programming techniques. It may be

noted that certain specilal cages may arise such fhat one can always ﬁake
advantage of their presence., For example, whenever 9 = Q, all qj, Jj>1,
can be reduced by factor ¢, The multiple reductions are alsé possible for
each 9 if g, = O for more than one i < j. Similarly, if [qi| <, the
pange of arguwment x can be increased. If |[x| >, one can consider
evaluating Bd’v(i/x) where, hopefully, p! =p, _;» 4 =9, ;3 forv >,
satisfy the required conditions, ete.

Example 2,3, given at the end of Chapter 2, with Figure 2.4,
illustrates the evaluation of & rational function,

Let us consider the performance of the E-method in evaluatbing
rational functions under the same assumptions as in the previous section,

The sequential S-method has

T, (R

m
g ) ~ (I"L+V+l) § to 2

%
agsuming that two digits of a multiplier, or quotient at the end of the

evaluation, can be retired at each step. Since

TE(RM-,V) = (m+1) b
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the speed-up of the E-method is

with an efficiency

8
7 = E o wAy4-1

E- " 2(max(i,v)+Ll)

For p=v, B > 0.75. We know of no P-method algoritim for which

To(Ryy) < To(Brar ()

and

EP(Ru,v) = EP(Bmax(H,v))

g0, on the basis of the conclusions made in the previous section, we may
again conclude that the E-methed is faster and more efficlent than a

P-method, under the stated assumptions.

L. b Evaluation of Elementary Functions

With a capability to efficiently evaluate polynomial and rational
functions, the E-method can certainly be used for the evalustion of
arbitrary fuﬁctions for which sultable polynomial or ratiocnal approximations
exist. Hence, the evaluation of a given function would be characterized
mainly by the corresponding get of coefficients, which can be kept in a
local storage area of the computing configuration, or on any other
convenient level in the awvallable storage hierafchy. Furthermore, the
evaluabtion could be performed easily in a variable precision. In general,

given a sufficient number of the two-input elementary units, an evaluation
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would take TE(f) = 0(10m) tg, where tg is a gate delay and the radix is
binary. Since the relationship between the speed and cost of the E-method
is linear, a wide range of evaluation requirements can be easily
accommodated.

‘ The E-method, as described before, imposes cerbain conditions on
the size of the operands which, in general, prevent the use of an arbitrary
ratbional approximation. However, one can define desired rational
approximations under those conditions to be optimal with regpect to the
E-method. We have not attempted here to derive such optimal approximations,
Rather, we have decided to provide an overview of the E-method parameters
for several previously specified approximations of certain functions [HARGS]
go that the performance could be estimated, Table 4.2 displays these
examples. The precision of the approximations, given as m radix 2 digits,
is based on the relative error criterion except for the last four examples.
The effects of scaling appear in the actual number of steps m'. The
variations in overlap A, defined in Section 2.4, are sometimes necessary
to accommodate given coefficients or the argument range but have no
significant effect on the stgp time to. The required number of elementary
units is given in column n, A computational configuration consisting of
elementary units does not preciude the existencé of a separate faét _

multiplication unit so that in place of Ru v(x), a more efficient form
P

2
Rp v(xe) can be used. Note that for the form R(x) = x Eiﬁ%g., which
i) _ Q(x")

sometimes appears, the correspondence rule C_ can be easily modified as

R
follows:




Table 4,2 Ixamples of Function Evaluation Requirements

8l

Argument

Approxi-

Fuanction mation Index Range m m' A
2* By ), (x) s [0, 72251 e | 8 | %
2* Py (x) Tobe (0,11 yo | ¥ | 3
10™ P, (x) ?ﬁgﬁ [0, 551 ¥ os0 | 3
e* Ry oG | Mo [0, 5] wo| 3| =
e* Ry G | Mlgon [0, 5221 | |

simnx) | Ry, 6) | Do [0, 31 s | w6 | 2
e R I I e o | w2
iy (1) 5,6 | aees i:g?;’] o | w3 | &

Sin(%{ x) By y (%) ggilf [O,%g] 43 52 %

sin(% x) - XPM(XE) 3gﬂ - [0,1] 37 43 -;-




Table 4,2

Examples of Function Evaluation Reguirements (continued)

85

: Approxi- Argument
Function mation Index Range n m m! A
cos (i %) Bs,g(xe) S8l [0, 331 | 7 T R
tan(l% x) le’g(xe) hﬁg [0,1] I Iee) )-1-5. %
arcsin(x) | xR ) | Mg | [0,singpl | 39 | mo| g
arcten(x) | Ry (1) | S [o,m%] 5 wo|ous | 2
r(x) Py (x) “So8 SN
r(x) Rg, 3 (%) Géggi [o,%] 7 38 Lo i%
%F%) P (x) gﬁ% [1073,27311 6 37 38 %
@af(i) Ry p (%) LGAM [10‘3,§%] 4 L2 43 %

5460
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r—l : -X O ) O-ﬁ [ O h
...O.._r ______
t
: r = |2
A
LO i - b -

while y, = Rgx), as before.

It.may be of interest to mention here that Algorithm E can be
easily adapted for the evaluation of a given function on a set of aréument
values, which is of practical importance in many numerical problemg, Let
us consider the cage where s function f(x) is to be evalusted on a set of
equidistent argument values Xk = {XjIXj=Xj_l+¢x, o < r”k}, using n
elementary units. Assume further that the set Xk is such that the first
f < k dlgits of the argument rgmain invariant., Since Algoritim E generates
the result in & left-to-right, digit-by-digit fashion, it is.sufficient

(£)

to providé 2n additionsal registers to presérve W for continuation as
well ag a Ffacility Ffor updating the argument by Ax, These modifications
are compatible with those required for a variable precision mode of
operation, as discussed in Section 3.4. For an m digit precision, the

time to evaluate f(x), x € X , after the first evaluation, would be

k

.TE(f) ~ (m-4) t,

go that the total time for the evaluation over Xk is reduced by m/(m-ﬂ) times.

4.5 On Performing the Basic Arithmetics

The generic algorithm, Section 2.6, by definition of the recursive

gtep can clearly be used for additions/subtractions and multiplications.
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The results obtained will be in a redundant form g0 that the conversion to
a conventional representation, when necessary, wouwld require a carry
propagation facility, By considering division as an L—feducible problem,
the quotient and the remsinder can be generated by using the general
algorithm of the E-method in a deterministic fashion, with basic recursive
step executable in time independent of the;length of the operands.

Consider the division problem
B = AQm & Rm
where

A is the divisor, 1 - @ < |A] <1 +a; | (k.33)
B is the dividend, |B| < |al <3
Qm is m digit quotient and
Rm is the corresponding remainder.
Congider a degenerate system L: Ay = b of order 1, defined by the division

correspondence rule CD :

Iet g = 1 = a so that
¥y =D+ gy (4.34)

where

g
B
g oz




can be generated using Algorithm E.

(m+1)

and w satisfy

o -] <«

and

R
m

_ W{m&l) ram—l

*
It is eagily shown that y =

88

m .
3=1

(4.35)

The conditions (4.33) require, in general, an initial transformation

of the given divigor A' and the dividend B'.

For example, assuming

r=2, A=0and 1/2 < |A'| < 1 as usual, the simplest transformation of

the divisor could possibly be

)
2 |at]

lal = { 2 a1
|8t

N

for lA'|e

{

3, 8)
3, 2 (+.36)
(2, 1)

This transformation would become slightly more complicated when the

selection overlap A # 0. For A= f%? o = é%

be carried according to:

~

2|ar]

2 ar

ar]
\

for |A']e

the transformation could

~

(=2 (4.37)

i9 22)
32 ? 3P
2

=

which ig not a serious complication in exchange for a carry-propagation

free division algorithm, indeed.
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As shown in Figure 4.6, both division and multiplication require
one single input elementary unit., In the case of division there is a

cyclic graph representation.

Example k,3:

Compute the quotient Q. and the remainder R. using Algorithm E,

2 P

with r = 2, m = 5, the dividend B = 3/l and the divisor
A = 5/4 (g=-1/h) _
(3) S8 (3)

J W Z
1.1 1 0.1
2 O.1 1 -0.1
-1.1 1 -0, 1
b -0,1 il 0.1
5 1.1 1 0.1
6 0.1
5 (3) 3 _ ' .
Qg = = d J/ 27 = 0,11T11=0.10011 (B/A = 3/5 = 0.1001)
J=1
35 = w(6) 2‘6 = 0,0000001 so that
= A +
B = QA+ Ry

4,6 Evaluation of Cerbain Arithmetic Expressions

A set of elementary units can be conveniently applied in evaluating
certain expressions in O(m) recursive steps according to the algorithm of

the E-method. We consider first two basic nontrivial arithmetic expressions

o
P = I c. 7 (4.38)
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a1

and

)
S = 5 C. (L{.. 39)

Being a degenerate case of a polynomial, the multiple'product Pc can
be easily evaluated in (m+1) steps with p elementary units according to the

following correspondence rule:

1 for i=J;
aij = -Cs for j=i+l, i=l,...,p-1
0 otherwise
{(k,h0)
c for i=p
b, = { P
0 otherwise
Clearly,
P * -m .
l II Ck‘YiIA<I' 3 i=1,2,4..45P
k=1

so that for e, =% V i, the E-method generates the positive lntegral
2 ]

powers of x @ X ,xs,xu,...,xp in (m+l) steps on p elementary units. As

before, it ig assumed that factors c, satisfy the range conditions.

‘The multiple sum Sc can be evalusted by the E-method as illustrated

by the following example,

Iixample L. b:

>
To evaluate Sc = % ¢,, consider the following L system:
R :

1 - af2 - af2 ' 7 "yl“ —b a

L

1 ) _ Yo b2

1 -af2 -afelx v3 | = | b3

b

- L L s L
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For o = 1/8, yy=by * 2'”(*@2%3) + 2_8(bh+b )}, which indicates
2
the neceSsary relations between bi's and given ci's. Ef necessary, scaling
on b vector can be performed as before, | ' O

Although fully consistent with the E-method, this approach is not
a veryAefficient way of forming sums, since a k-input elementary unlt alone
has, by definition, a capability to add (k+1) operands, and it would-be
desirable to exploit this more efficiently. Let us briefly consider the
alternate ways of evaluating multiple operand sums. For the sake of :
simplicity, it will be assumed that the available elementary units have k
or more inputs, so that (k+l) operands can be reduced o & redundantly
represented sum in one step, i.e., in time to. et there be at least
n = (k’g—l)/ (k-1) available elementaryunits. fhen the elementary units can
be arranged as an f-level, radix-k tree, illustrated as thé graph GS in
Figure L,7. If the links betwéen1ﬂuanodes of GS were capable of carrying
in parallel the full precision results, then s = (k+1)n operands could be
sdded together in £ steps, assuming that no additional operands are
allowed to enter camputing scheme once the evaluation has started.

However, if only single digit intercomnections between elementary
units are available, as we assume %0 be the case for the E-method, then
the same number of s operands would.require (f+m+1) steps. With the.
displacements of operands, rélative to a level of the tree (Figure L.7),
it can be assured that the most significant digit of the sum appears on
the top level after [ steps, followed by one more digit for each ‘
additional step.

The evaluation ofrthe inner pfoducts can be made compatible to the

F~method as follows., ILet




Figure 4.7 Computational Graph for Multi~Operand
Summation .
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M

= (ul,uz,...,up) (4.41)

3=
t

and
_Y. = (Vl,ve,...,vp) (M'L['z)

be two real-valued vectors with

P .
We={wv)= % u v, (4, 43)

as their inner product, Define a (p+1l) order system L as follows:

1 for i=j]
aj_j = _uj-l for i=1 and j“-:e’---;p"'l
O otherwise
(4. b )
0 for i=1
bi = .
vi fOI‘ i=2,-o¢,P+l
Then
yp =W
gince
1 ‘ 1
R R (1.45)
& T i )
9! I

|
If one p-input élementary unit is available, the imner product W
can be evaluated in (m+l) steps where the remaining p elementary units
can be shift registers. However, when only k < p input elementary units
are available, modifications to the aboVe given correspondence rule are

required. One obvious way would be to form independently [p/k] partially
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accumulated inner products Wj and then perform the final summation using
one of the previously described approaches, as indicated in Figure 4.8,
The other possible approach, more in the gpirit of the Eamethod,:isanalogous

to Example 4,4, and it is illustrated by the next example:

Example 4,5:
> _
Evaluate W = X u, vi assuming that available elementary units
i=1 .

have no more than three inputs. A corresponding system L may

appear as follows:

~ _ ~ - _ 5
L -y - u, - a/S vy 0
1 Yo v
1 y3 Vé
1 - u3 - uh - u5 x yh - 0
3
* Vs a3
1 3 v
Y a Tk
1 Y, 3 v,
T a 5
L -t - - - b

Then ¥y = W.  Only two 3-input elementary units are reguired; the

remzining five need ﬁot he more complex than shift registers. []

The previous example can be‘readihygenefalized for a p-diﬁensional
inner product evalvation on k-input elementary units. The scaling may,

however, introduce a tolerable mumber of extra steps. For example, let
a
luil SE.’ lvil <

For p > k it is eaglly seen that



Figure 4,8 Computational Graph for Inner
Product Evaluation
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o /L, (1. 46)

so that an extension of

o = [lpkltg , 7]

may be required., For & = 1/8, k =8, r =2, p = 64, o = L8 while for k = L,

v = 80, still of the order of commonly used precision for ui's and'vi,'s.
We. conelude this section with a remark that, in general, any.

arithmetic expression which can be put inbto correspondence with a system L,

can be evaluated in O(m) steps. For example, to evaluate

f = a(cd + be)

the following system L is solved

(1 -a B [ 0]
1 . -b d
1 =
1 -C e
. L L O
where ¥y = f. Or, to compute
9 _a(f+ge) + e(l+ed)
. 1+ ab + cd
one may solve
' B -
1 -8, 0 e
b 1 =c ¥y = f
0 d 1 g

where ¥y = h,
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4.7 On Solving the Systems of Linear Equations

Some general implications of the E-method on the problem of solving
the systems of linear equations are briefly consldered here. By definition,
the proposed Algorithm E is a linear solver which can be applied for

golving an n-th order nonhcmogeneous System of linesr equations

Ay=5b
with the nonsingular coefficient matrix A in O(m) additive steps if

la - I <
(4, b7)

oll < ¢

and each of n elementary units, implementing Algorithm E, has at least (n-1)
inputs, in general (Figure 4.9 (a}).

When the conditions {L.47) are not satisfied, a scaling, as discussed
in Section 2.9, must be congidered. Whether scaling can be achieved in a
practical way, depends also on the type of the coefficient matrix A. It
can be easily seen, for example, that for an upper (lower) unit triangular
matrix A, scaling procedure, analogous to that defined for polynomisals,
can be applied in a practical way. Consider a unit upper triangular
matriz A = (aij) with a, . .= 1 and B = 0 for i < j. Define the scaling

matrix S8 as s diagonal matrix

8 = diag(l, 7, reg, .. .,r(n—l)d)

where r is the radix and ¢ a positive integer, Then

K=sas™



Figure 4.9 Computational Graphs for Dense and Tridiagonal
Systems of linear Equations
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can be made to satisfy the required conditions by cheoosing an approﬁriate
value for o. Consedquently, the mumber of steps, required to generate the
first m correct digits of the solution y is increased by no more than (n-1)0
steps.

‘ For practical reasons, the number of inputs to the elementary unit
may be expected to be small, The E-method remains applicable with a-linear
degradation of the performance as considered in Section 3.4, Under input
restrictions, of particwlar interest are certainly sparse systems of :linear
equations. For example, s configuration of two-input elementary units,
represented by the graph G D in Figure 1.9 (b) éam.be used to efficiently

T
).

solve tridiagonal systems for which 1aii] < h(]ai,i_ll + lai,i+l
The E-method has an interesting property with implications on the

number of cperabtions, required %o solve g linear system by an iterative

gcheme, Congider an n~th order linear systen
I-8y=>b (4,48)

solvable by the E-method, The system (4,48) could certainly be solved by

a classical Jacobi algorithm, with the basic computational step defined as

¢ p a0, s, (h.19)

Recall that the basic computational step of the E-method is

- '} N I-l ‘,,,..
_@(J) + E(J) — r(E(J ) + E _d'_(;] l)), j=1)2)--- (J‘I'.BO)
where & is a single digit vector. Then, the recursion (4.49) requires (n-1)
full precision miltiplications and {n-1) additions per row per step, while

for the same the recursion (4.50) performs (n-1} single digit multiplications

and (n-1) additions, which for radix 2 becomes (n-1) additionms.
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The mmber of operations in (4.49) can be considered redundant in
the sense that the parts of the generated solution are repeatedly utilized
although once correctly determined and used the digits of the solution ¥
do not contribute any critical information in the subsequent steps. In
other Qords, one could reduce the overall complexity of an algoritim by
conveniently removing the correctly cumputéd regult digits from furﬁhér
involvment in‘the algorithm. This can be easlly achieved by a left-to-right
processing and, interestingly enough, by introducing the redundancy in a
number system representation, as is being done in the E-method. Since the
correctly generated diglts are used only once, i.e., digit vector Q(j)
appears in the recursion only at the step (j+1), we magy think of Algorithm E
as a minimally redundant algorithm for solviné a system of linear equations
with respect to the required number of operations. Thus, the redundancy
removing principles of the Emméthod may have an application even in
programming iterative linear solvers on machines with a slow multiplication
algorithn,

However, as a consequence of the minimized redundancy on the
algorithmic level, the convergence of the algoritim becomes fixed,

" e,g., linear for Algorithm E., This must be considered when evalu@ting
the merits of reducing the redundancy in number of operations of an .

iterative scheme,
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5. CONCLUSIONS

5,1 Summary of the Results

In th;s dissertation a recently discovered general evaluation
method, amenable to an efficient hardware-level implementation, is pﬁesented.
The proposed evaluation methed, referred to as the E-method, is charécterized
by several important performance features and appears applicable in many
common computational problems. |

Briefly, the E-method conglsts of i) a correspondence rule Cf which
reduces a given computational problem feF. into an n-th order linear system

L

L, F being the class of problems which are reducible to L, and ii) an
algorithm with convenient implementation characteristics, which generates
the solution to the system L and, consequeﬁtly, to the original problem £,
in O(m) recursive steps, where m ig the desired number of digites of the
result precision. The recursive steps are invariant and each of them is
executable in time independerit of the operand length.,

The class FL ig illustrated in a sufficient number of problems to
justify the claim of generality for the E-method, It includes, as the
most practical examples, the evaluation of polynomials and rational functions
so that all functions, for which corresponding approximatidns satisfying
the conditions of the E-method exist, can be efficiently evaluated. The
other problems, for example solving certaln tridiagonal (sparse, in general)

systems of linear equations, or the evaluation of certain types of

aritimetic expressions or bagic arithmetics, can be seen to belong to the

clasgs FL.
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The E-method requires, for the fastest evaluation, a configuration
of n identical elementary units, but allows, in a straighiforward manner,
exploitation of its flexibility in tradeoffs between the speéd and cost.
The elementary unit, basically, is an s-pperand adder with a corresponding
numberlof registers. In many applications, s remains very small, The
interconnections among the elementary units require only single digif
links which can be conveniently specified and controlled by a connection
matrix corresponding to the particualar coefficient matrix of the system L.
The control part of the proposed algoritlm is simple and deterministic in
the sense that there are no convergence tests té be performed even though
the method ig iterative, The result is always generated in a digit-by-digit
fashion, the most significant digits Tirst, b& applying a simple invariant
selection procedure. Thus there exists a posgibility for an overlapped
node of operation in a sequencé of dependent computations as well as for a
variable precision. A variable precision and a multi~point evaluation
facility can be incorporated in a straightforward manner, The E-method has
favorable ervor properties: it ig never ill-conditioned and no round-off
errors are generated, by definition. In its present form, the E-method is
restricted to fixed~point or block floating-point number representation
formats,

In applications, like polynomial evaluation, the E-method generates
the result in one carry propagation free multiplication time, unless
excessive scaling is involved, requiring an application dependent number
of elementary units, For elementary function evaluations, 4-7 identical
2~input elementary units would suffice; The elementa:y unit has a simple

and essily implementable structure.
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5.2 Comments

While the proposed method provides efficlent, technology-compatible
solutions te many computabtional problems, like the evaluatioﬁ of elementary
functions, it also brings together the following issues which, we belleve,
are of‘fundamental importance in the design of algoritims:

i) the choice of algorithmic representation compatible

with the implementaticn environmehtg
ii) +the problem of redundancy on the algorithmic level;
iii) +the problem of redundsncy in a number representation system,

The first issue is concerned with the pfoblem of minimizing the
number of algorithlms to be implemented in order to solve a set of different
problems. As ls demonstrated here, the replaéement of a given set of
problems by a unique, isomorphic problem gives rise to a single algoritim
to be implemented, The algoriﬁhm can, hopefully, satlisfy the speed and
cost objectives, among the other properties, And this, in general, would
imply a small number of different primitive operators, simple enough to be
efficiently implementable. In the E-method, addition appears as the only
required primitive operator. The corresponding algorithmic representation,
considered as a way in which the computations are to be performed, has
direct implications on the available parallelism and hence, the achievable
speed. In a traditional approach, with four basic arithmetics as the
primitive, indivisible operators, the parallelism is exposed or introduced
by btransformations of the original computation sequence so that the time
dependencies between the required operations are minimized., The Li-method
demonstrates ancther apprqach in paralielism exposition: a systematic

left-to-right, digit-wise processing minimizes the necesgsary delay between
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dependent computations and can achieve a parallelism up to one digit delay,
having important properties like a simple, deterministig control, etc,
Furthermore, this approach is related to the second issue. Namely, it

can effectively reduce the required complexity of an iteratively defined
algoritﬁm, by reducing the number of necessary operations. It also affects
the choice of the primitive operators. It is of interest to remark'that
in many paraliel algorithms [KUCT4], it is, on the conirary, necessary to
introduce redundant operations in order to achileve parallelism,

The problem of redundancy in number representation systems has long
been recognized ag a central issue in achieving éfficiently fast
algorithms [ROB58, AVI6L] and it will suffice here just to note that
the E-method is another example where the redﬁndancy in muber representation
hag an essential role.

The thecorefical basis df the E-method is simple yet, we believe,
extendable to obher interesting spplications, Certainly, Algorithm E
itself can be considered as a primitive operator which can be utilized in
fast parallel schemes, not necessarily of the type defined by the E-method.

Among the problems of an immediate interest would be the development
of polynomial and rational approximations to various functions, optimal
with respect to the conditions of the E-method, It may be of some
imporbance to note that the EAmethod in these applications utilizes the
generated solution in a degenerate sense since only one, usually the first,
compenent of the solution is of practical interest., Thus, it may be

convenlent to start with an approximation to the given function in the form

f(x) = (P(.Vl(x)ﬁ yE(X)’ srey Yk(x)): k<n
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such that ¢ is a computationally simple function. This approach could
possibly provide for more compatible properties of the coefficients which
are affecting the scaling at an acceptable cost, all solution components
v., j = 1,... n being generated at the same time, The problem of automatic

J
scaling, i.e., an extension of the E-method to a floating-point number

representation domain, a more systematic account of pogsible applications,

s detailed design and implementation study of an elementary unit are some

other subjects of practical interest. The E-method can be incorporated
in a computing system in two obvious ways: as an autonomous arithmetic
procegsor with several elementary units, or, bylproviding the processors
in a multiprocessor systenm with the capabilities of an elementary unit.

Finally, it would be of interest to consider the changes in an instruction

set which could make the E-method efficient for use on a software level,
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