Experience with Software
Watermarking

Jens Palsberg, Sowmya Krishnaswamy, Minseok Kwon, Di Ma,
Qiuyun Shao, Yi Zhang

Properties of Watermarks

' Easy to create
I Easy to verity
I Difhcult to remove

"1 Difhcult to alter

Static Software
Watermarks

Static data watermarks are easy to alter and
remove

Can be attacked by static code analyzers

Many semantics-preserving modifications
will automatically remove them.

Dynamic Software
Watermarks

Much more difficult to attack
Nearly impossible to statically analyze

Altering final runtime structure by
changing the program is very difhicult

Examples
“Easter Egg” watermarks

Watermarks which depend on the object
___graph

Graph based

watermarking

Inserting the watermark

Create a watermark graph

Insert it into the program’s object graph
Recovering the watermark

Create a copy of the runtime object graph

Find a subgraph isomorphic to the
watermark graph

Without prior knowledge, this is an NP
. Complete Problem

What are PPCTs?

| Stands for “Planted
Plane Cubic Tree

- A binary tree
structure, with an
extra “Origin” node

"I Origin node and leaf
nodes form a
circularly linked list

Figure 1. PPCT

What are PPCTs?

' | Each leaf node
points to itself

" Each node has two
pointers 1n 1t

. Note that from any
node, you can reach
the origin node. Figure 1. PPCT

How to represent a
watermark with a PPCT

Each PPCT with a
certain number of
nodes has an
enumerable set of
trees

Make a tree large
enough to represent
your number

c(h=1

c2)=1

C3)=2

C4)=5

7o

A
2
@\

How do we create the

object graph?

Find all the non-library classes

Can’t rely on names, because they may have

been obfuscated

Find all objects in memory of those classes

(nodes)

Find pointers/references between these

objects (edges)

How do we find the
PPCT?

In the object graph, find potential leaf nodes
(nodes which have edges to themselves)

Try to trace these nodes to find an origin node

From the origin, see if you can find the
watermark graph

You know the number of nodes in the
subgraph, so search is bounded

Results

Using a dual processor UltraSparc 200MHz

program code size wm time | retr time | execution time | heap space usage
before | after before after | before after
javac 192 201 18.8 s 7.1min | 794s | 825s | 6415 6,453
javadoc 187 191 19.9 s 89min | 26.7s | 27.4s | 9,770 10,000
JavaCup 362 373 5.6 4.6 min 4.3 s 4.6s | 4,041 4,080
JTB 810 815 5.2s 0.6 min 99s | 10.1s 440 475
JavaWiz 582 591 4.3 s 2.2 min 4.7 s 49s | 2,012 2,045
compress 24 32 4.6s 0.6min | 68.8s | 72.4s 477 514
BLOAT 1,415 | 1,427 7.0s 3.6 min: |© 35T s 5 5F9 s 43,322 3,362

How do we insert the
watermark?

We could just put the watermark generation
code at the beginning of the program

Easy to find and remove
Insert watermark creating in “Easter Egg”?
“Easter Egg” code may be discovered
Randomly insert watermark code?

[Can help avoid collusion attacks

Code Obfuscation

Many different ways to do it
Padding
Opaque predicates
renaming
Method inlining/outlining

-~ We will look at the first two

Code Obfuscation

Padding
Make a larger graph than necessary
Makes finding a graph much more difhicult

Relatively inexpensive runtime and
memory cost

Code Obfuscation

Opaque Predicates

Predicates which regularly evaluate to
either true or false

Come in Static and Dynamic flavors
Greatly hinders static code analysis

Can add significant runtime costs

Code Obfuscation

Dynamic opaque predicates
Most effective for preventing static analysis
Can use the PPCT itself to create one
This causes problems.
Leaves parts of programs unobfuscated

Randomly generated PPCT may be
attacked

Tamperproofing

What if someone is able to change the
watermark structure randomly?

Make the program behavior depend on

watermark structure

Can be done with dynamic opaque
predicates

Solves some of the problems with dynamic
~..opaque predicates

Benefits of PPCT

PPCTs have some properties which help
many of these approaches:

Stealthy heap structure
Easy to enumerate
Source of dynamic opaque predicates

Have easy to check properties that don’t
stand out

Any other watermark graph representations
should have these properties

Conclusion

' Dynamic software watermarks based on the
object graph can be very eftective

"I Must be combined with other obfuscation
and protection techniques to be secure

- Using the techniques in concert give the best
results

