
Experience with Software 
Watermarking

Jens Palsberg, Sowmya Krishnaswamy, Minseok Kwon, Di Ma, 
Qiuyun Shao, Yi Zhang



Properties of Watermarks

Easy to create

Easy to verify

Difficult to remove

Difficult to alter



Static Software 
Watermarks

Static data watermarks are easy to alter and 
remove

Can be attacked by static code analyzers

Many semantics-preserving modifications 
will automatically remove them.



Dynamic Software 
Watermarks

Much more difficult to attack
Nearly impossible to statically analyze
Altering final runtime structure by 
changing the program is very difficult

Examples
“Easter Egg” watermarks
Watermarks which depend on the object 
graph



Graph based 
watermarking

Inserting the watermark
Create a watermark graph
Insert it into the program’s object graph

Recovering the watermark
Create a copy of the runtime object graph
Find a subgraph isomorphic to the 
watermark graph
Without prior knowledge, this is an NP 
Complete Problem



What are PPCTs?

Stands for “Planted 
Plane Cubic Tree

A binary tree 
structure, with an 
extra “Origin” node

Origin node and leaf 
nodes form a 
circularly linked list

Origin

Figure 1. PPCT

C(1) = 1

C(2) = 1

C(3) = 2

C(4) = 5

00

00

00 11

00 11

22
... ...

Figure 2. Enumeration of PPCT

represented integer by . Then

where function gives the number of

leaves of the tree rooted by .

2.2 Watermark Embedding

To watermark a Java program with a given number, we

first determine its PPCT representation. Next we choose a

base class from the original program and convert it into a

node class by adding some fields. Each additional field will

hold an outgoing edge to another node object. The node

class is now a building block for constructing the PPCT,

and off-line we generate straight-line code that constructs

the PPCT. The graph construction code is then merged with

the original program. We do this in a particularly simple

way to illustrate the idea without getting into implementing

full-fledged randomization, obfuscation, and tamperproof-

ing. We view these other protection techniques as building

blocks that can be added on top of our approach. In our

implementation only the “new” expressions in the original

code will be changed. Intuitively if there is an expression

”new A()”, then we may change it to ”new A1()”, and add

a class A1 which extends A and place some watermarking

code in its constructor.

For example, suppose we have the following code for

class A:

class A{

A(){

a1 = 0;

}

int a1;

}

We can change the code into:

class A1{

A1(){

a1 = 0;

<code for building

watermark>// produced offline

}

int a1;

}

While this may seem simple, bordering on trivial,

it is sufficient to protect against a variety of program-

transformation attacks, as we will show later.

4



What are PPCTs?

Each leaf node 
points to itself

Each node has two 
pointers in it

Note that from any 
node, you can reach 
the origin node.

Origin

Figure 1. PPCT

C(1) = 1

C(2) = 1

C(3) = 2

C(4) = 5

00

00

00 11

00 11

22
... ...

Figure 2. Enumeration of PPCT

represented integer by . Then

where function gives the number of

leaves of the tree rooted by .

2.2 Watermark Embedding

To watermark a Java program with a given number, we

first determine its PPCT representation. Next we choose a

base class from the original program and convert it into a

node class by adding some fields. Each additional field will

hold an outgoing edge to another node object. The node

class is now a building block for constructing the PPCT,

and off-line we generate straight-line code that constructs

the PPCT. The graph construction code is then merged with

the original program. We do this in a particularly simple

way to illustrate the idea without getting into implementing

full-fledged randomization, obfuscation, and tamperproof-

ing. We view these other protection techniques as building

blocks that can be added on top of our approach. In our

implementation only the “new” expressions in the original

code will be changed. Intuitively if there is an expression

”new A()”, then we may change it to ”new A1()”, and add

a class A1 which extends A and place some watermarking

code in its constructor.

For example, suppose we have the following code for

class A:

class A{

A(){

a1 = 0;

}

int a1;

}

We can change the code into:

class A1{

A1(){

a1 = 0;

<code for building

watermark>// produced offline

}

int a1;

}

While this may seem simple, bordering on trivial,

it is sufficient to protect against a variety of program-

transformation attacks, as we will show later.

4



How to represent a 
watermark with a PPCT

Each PPCT with a 
certain number of 
nodes has an 
enumerable set of 
trees

Make a tree large 
enough to represent 
your number

Origin

Figure 1. PPCT

C(1) = 1

C(2) = 1

C(3) = 2

C(4) = 5

00

00

00 11

00 11

22
... ...

Figure 2. Enumeration of PPCT

represented integer by . Then

where function gives the number of

leaves of the tree rooted by .

2.2 Watermark Embedding

To watermark a Java program with a given number, we

first determine its PPCT representation. Next we choose a

base class from the original program and convert it into a

node class by adding some fields. Each additional field will

hold an outgoing edge to another node object. The node

class is now a building block for constructing the PPCT,

and off-line we generate straight-line code that constructs

the PPCT. The graph construction code is then merged with

the original program. We do this in a particularly simple

way to illustrate the idea without getting into implementing

full-fledged randomization, obfuscation, and tamperproof-

ing. We view these other protection techniques as building

blocks that can be added on top of our approach. In our

implementation only the “new” expressions in the original

code will be changed. Intuitively if there is an expression

”new A()”, then we may change it to ”new A1()”, and add

a class A1 which extends A and place some watermarking

code in its constructor.

For example, suppose we have the following code for

class A:

class A{

A(){

a1 = 0;

}

int a1;

}

We can change the code into:

class A1{

A1(){

a1 = 0;

<code for building

watermark>// produced offline

}

int a1;

}

While this may seem simple, bordering on trivial,

it is sufficient to protect against a variety of program-

transformation attacks, as we will show later.

4



How do we create the 
object graph?

Find all the non-library classes

Can’t rely on names, because they may have 
been obfuscated

Find all objects in memory of those classes 
(nodes)

Find pointers/references between these 
objects (edges)



How do we find the 
PPCT?

In the object graph, find potential leaf nodes 
(nodes which have edges to themselves)

Try to trace these nodes to find an origin node

From the origin, see if you can find the 
watermark graph

You know the number of nodes in the 
subgraph, so search is bounded



Results

Using a dual processor UltraSparc 200MHz

program description test input

javac a compiler for Java the JavaCup source code

javadoc a Java API documentation generator the JavaCup source code

JavaCup an LALR parser generator for Java the CORBA grammar

JTB JTB [16] is a frontend for The Java the Java 1.2 grammar

Compiler Compiler from Sun Microsystems

JavaWiz the watermarking system reported in this paper the JavaCup source code

compress a java virtual machine spec benchmark some tar files shipped with compress

BLOAT BLOAT [9] is a Java bytecode optimization tool the JavaCup source code

Table 2. Programs on which we have experimented

program code size wm time retr time execution time heap space usage

before after before after before after

javac 192 201 18.8 s 7.1 min 79.4 s 82.5 s 6,415 6,453

javadoc 187 191 19.9 s 8.9 min 26.7 s 27.4 s 9,770 10,000

JavaCup 362 373 5.6 s 4.6 min 4.3 s 4.6 s 4,041 4,080

JTB 810 815 5.2 s 0.6 min 9.9 s 10.1 s 440 475

JavaWiz 582 591 4.3 s 2.2 min 4.7 s 4.9 s 2,012 2,045

compress 24 32 4.6 s 0.6 min 68.8 s 72.4 s 477 514

BLOAT 1,415 1,427 7.0 s 3.6 min 55.7 s 57.9 s 3,322 3,362

Table 3. Experimental Results

though it should be noted that the increase depends on the

size of the objects of the class which is chosen as node class,

and 5) watermark retrieval is done in about 1 minute per 1

megabytes of heap.

We have tried to attack the watermarked programs with

the Java bytecode obfuscator WingGuard [5] and the Java

packaging tool JAX [17]. We can view obfuscation and

packaging as attacks because they are semantics-preserving

program transformations. JAX is particularly interesting as

an attack because it attempts to eliminate dead code. In all

cases, we found that the watermark was intact after the at-

tacks.

3 Integration of Protection Techniques

Our experience shows that a watermarking system can

greatly benefit from the protection mechanisms of random-

ization, obfuscation, and tamperproofing. In the following,

we give a summary and a critique of the current best prac-

tices, and we discuss how they can be integrated with our

other techniques into a full-fledged watermarking system.

We will assume a worst-case scenario where the attacker

has access to:

1. the watermarked code,

2. a graphical display of the heap during a run of the wa-

termarked code, and

3. the source code for the watermarking system (but not

necessarily the form of data structures used to repre-

sent watermarks.)

Henceforthwe will refer to such an attacker as an “expert at-

tacker.” Of course, one could adopt a business model where

anybodywho wants their software to be watermarked has to

send it in, and get it watermarked by the owner of the water-

marking software. Still, the watermarking software may be

stolen or simply handed over via bribery. Moreover, one

might be interested in selling the watermarking software

and let the buyers do the watermarking themselves. If the

watermarking software is sold, then it is difficult to prevent

that an attacker gets access to it.

Throughout the this section, we use to denote the pro-

gram to be watermarked, to denote the watermark it-

self, and to denote a piece of straight-line code (generated

off-line) which, when executed, will produce a watermark

graph. Each of the techniques discussed in this section con-

cern the question of producing a merger of and which

is resilient to attacks.

3.1 Randomization

To merge and , one possibility is to insert right at

the beginning of the main program of . This would ensure

6



How do we insert the 
watermark?

We could just put the watermark generation 
code at the beginning of the program

Easy to find and remove

Insert watermark creating in “Easter Egg”?

“Easter Egg” code may be discovered

Randomly insert watermark code?

Can help avoid collusion attacks



Code Obfuscation
Many different ways to do it

Padding

Opaque predicates

renaming

Method inlining/outlining

We will look at the first two



Code Obfuscation

Padding

Make a larger graph than necessary

Makes finding a graph much more difficult

Relatively inexpensive runtime and 
memory cost



Code Obfuscation

Opaque Predicates

Predicates which regularly evaluate to 
either true or false

Come in Static and Dynamic flavors

Greatly hinders static code analysis

Can add significant runtime costs



Code Obfuscation

Dynamic opaque predicates

Most effective for preventing static analysis

Can use the PPCT itself to create one

This causes problems.

Leaves parts of programs unobfuscated

Randomly generated PPCT may be 
attacked



Tamperproofing
What if someone is able to change the 
watermark structure randomly?

Make the program behavior depend on 
watermark structure

Can be done with dynamic opaque 
predicates

Solves some of the problems with dynamic 
opaque predicates



Benefits of PPCT
PPCTs have some properties which help 
many of these approaches:

Stealthy heap structure
Easy to enumerate
Source of dynamic opaque predicates
Have easy to check properties that don’t 
stand out

Any other watermark graph representations 
should have these properties



Conclusion

Dynamic software watermarks based on the 
object graph can be very effective

Must be combined with other obfuscation 
and protection techniques to be secure

Using the techniques in concert give the best 
results


