Tracing Traitors*

Benny Chor* Amos Fiat! Moni Naor! Benny Pinkas?

Abstract

We give cryptographic schemes that help trace the source of leaks when sensitive or pro-
prietary data is made available to a large set of parties. A very relevant application is in
the context of pay television, where only paying customers should be able to view certain
programs. In this application the programs are normally encrypted and then the sensitive
data is the decryption keys that are given to paying customers. If a pirate decoder is found
it is desirable to reveal the source of its decryption keys.

We describe fully resilient schemes which can be used against any decoder which de-
crypts with non-negligible probability. Since there is typically little demand for decoders
which decrypt only a small fraction of the transmissions (even if it is non-negligible), we
further introduce threshold tracing schemes which can only be used against decoders which
succeed in decryption with probability greater than some threshold. Threshold schemes are
considerably more efficient than fully resilient schemes.

Keywords: Encryption, tracing, watermarking.

*Preliminary versions of this paper appeared in the proceedings of Crypto 94 and Crypto *98.

*Dept. of Computer Science, Technion, Haifa 32000, Israel. E-mail: benny@cs.technion.ac.il. Supported
by the Fund for Promotion of Research at the Technion.

tDept. of Computer Science, School of Mathematics, Tel Aviv University, Tel Aviv, Israel, and Algorith-
mic Research Ltd. E-mail: fiat@math.tau.ac.il.

fIncumbent of the Morris and Rose Goldman Career Development Chair, Dept. of Applied Mathematics
and Computer Science, Weizmann Institute of Science, Rehovot 76100, Israel. Research supported by an
Alon Fellowship and a grant from the Israel Science Foundation administered by the Israeli Academy of
Sciences. E-mail: naor@wisdom.weizmann.ac.il.

$Dept. of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 76100,
Israel. Research supported by an Eshkol Fellowship from the Israeli Ministry of Science. E-mail:
bennyp@wisdom.weizmann.ac.il.

1 Introduction

If only one person knows some secret, and this next appears on the evening news, then the
guilty party is evident. A more complex situation arises if the set of people that have access
to the secret is large. The problem of determining guilt or innocence is (mathematically)
insurmountable if all people get the exact same data and one of them behaves treacherously
and reveals the secret.

Any data that is to be available to some while it should not be available to others
can obviously be protected by encryption. The data supplier may give authorized parties
cryptographic keys allowing them to decrypt the data. This does not solve the problem
above because it does not prevent one of those authorized to view the message (say, Alice)
from transferring the cleartezt message to some unauthorized party (say, Bob). Once this
is done then there are no (cryptographic) means to trace the source of the leak. We call all
such unauthorized access to data piracy. The traitor or traitors is the (set of) authorized
user(s) who allow other, non-authorized parties, to obtain the data. These non-authorized
parties are called pirate users.

In many interesting cases piracy is somewhat ineffective if the relevant cleartext messages
must be transmitted by the “traitor” to the “enemy”. Typical cases where this is true
include

e Pay-per-view or subscription television broadcasts. It is simply too expensive and
risky to start a pirate broadcast station.

e Online databases, publicly accessible (say on the Internet) where a charge may be
levied for access to all or certain records.

e Distribution of data in an encrypted form where a surcharge is charged for the de-
cryption keys for different parts of the data. The encrypted data is often distributed
on a CD-ROM or DVD and it is assumed that cleartext data can only be distributed
on a similar storage device whose production involves relatively high setup costs (this
assumption might be not be currently justified for CD-ROMs but it might be reason-
able for other types of media, such as DVDs. We use the term CD-ROM in order to
use a concrete example and simplify the presentation).

In all these cases, transmitting the cleartext from a traitor, Alice, to a pirate-user, Bob,
is rather expensive compared to the mass distribution channels the legal data supplier
uses. It might also be the case, as with on-line databases or newspapers, that the data is
continuously changing and therefore it is very hard for the pirate to keep an updated copy
of the data. As piracy in all these cases is a criminal commercial enterprise, the risk/benefit
ratio becomes very unattractive. These three examples can be considered generic examples
covering a wide range of data services.

In this paper we concentrate on preventing traitors from distributing the keys that enable
the decryption of the encrypted content. Consider a ciphertext that may be decrypted
by a large set of parties, but each and every party is assigned a different personal key
for decrypting the ciphertext. (We use the term personal key rather than private key to
avoid confusion with public key terminology). Should the key used in a pirate decoder be

discovered (by examining the pirate decoder or by counter-espionage), it will be linked to
a personal key of a traitor and this traitor will be identified.

Clearly, a possible solution is to encrypt the data separately under different personal
keys. This means that the total length of the ciphertext is at least n times the length of
the cleartext, where n is the number of authorized parties. Such overhead is certainly im-
possible in any broadcast environment. It is also very problematic in the context of content
distributed on a DVD because this means that every copy must be different. An encrypted
online database, publicly accessible as above, must store an individually encrypted copy of
the database for each and every authorized user.

In practice today it is often considered sufficient to prevent piracy by supplying the
authorized parties with so-called secure hardware solutions that are designed to prevent
interference and access to enclosed cryptographic keys (smartcards and their like). The
assumptions about the security of these hardware mechanisms are not always correct. There
are several methods that use hardware faults in the “secure hardware solutions” in order to
find the keys that are enclosed inside [3, 5, 4, 18]. Our schemes obtain their claimed security
without any secure hardware requirements. Should such devices be used to store the keys,
they will undoubtedly make the attack even more expensive, but this is not a requirement.

1.0.1 Our approach

Fighting piracy in general has the following components:

1. Identifying that piracy is going on and preventing the transmittal of information to
pirate users, while harming no legitimate users.

2. Taking measures against the source of such piracy, supplying legal evidence of the
pirate identity.

The goal of this paper is to deal with traitor tracing (item 1 above), i.e. identify the
source of the problem. Methods that can be taken in order to eliminate pirate decryption
of the content are described in section 1.1.

We devise k-resilient traceability schemes which, loosely speaking, have the following
properties:

e Either the cleartext information itself is transmitted to the pirate users by a traitor,
or

e Any captured pirate decoder (which decrypts with success probability which is better
than the probability of breaking the encryption scheme that is used) will correctly
identify a traitor and will protect the innocent even if up to k traitors collude and
combine their keys.

We note that in fact our schemes have the very desirable property that the identity
of the traitor can be established by considering the pirate decryption process as a black
box. In order to identify a traitor it suffices to capture one pirate decoder and examine its
behavior, there is no need to “break it open” or read any data stored inside. (We use the
term ‘pirate decoder’ to represent the pirate decryption process, this may or may not be a
physical box, and may simply be some code on a computer).

The underlying security assumption of our schemes is either information theoretic se-
curity (where the length of the personal keys grows with the length of the messages to
be transmitted) or it may be based on the security of any symmetric encryption scheme.
In both cases, security depends on a parameter k, denoting the largest group of colliding
traitors.

The security of the scheme depends on a cryptographic security parameter which is
the length of the key in the symmetric encryption system that is used. We measure the
efficiency of the solutions to fighting piracy in terms of several performance parameters.
The memory and communication parameters are measured in multiples of the size of the
security parameter. The efficiency parameters are:

(a) The memory and computation requirements for an authorized user. These parameters
are of special importance if the user has limited computation and storage capabilities,
as is the case with smartcards.

(b) The memory and computation requirements for the data supplier. These parameters
are typically less important, since the data supplier can perform its computations
off-line and can use large storage space.

(c) The data redundancy overhead, i.e. the increase in data size that is needed in order
to enable the tracing. This refers to the communication overhead (in broadcast or
online systems) or the additional “wasted” storage in CD-ROM type systems.

We deal with schemes of the following general form: The data supplier generates a
meta-key which contains a base set A of random keys and assigns subsets of these keys
to users, m keys per user (the parameters will be specified later). These m keys jointly
form the user personal key. Different personal keys may have a nonempty intersection. We
denote the personal key for user u by P(u), which is a subset of the base set A.

A message in a traitor tracing scheme consists of pairs of the form (enabling block, cipher
block). The cipher block is the symmetric encryption of the actual data (say a few seconds
of a video clip), under some secret random key s. Alternately, it could be the exclusive-or of
the message with s and we would get an information theoretic secure version of the scheme
(although a very inefficient one, since as with any one-time-pad the size of the key should
be as long as the encrypted data). The enabling block allows authorized users to obtain s.
The enabling block consists of encrypted values under some or all of the keys of the base
set A. Every authorized user will be able to compute s by decrypting the values for which
he has keys and then computing the actual key from these values. The computation on the
user end, for all schemes we present, is simply taking the exclusive or of values that the
user is able to decrypt.

Figure 1 describes a high level view of our traitor tracing schemes. Figure 2 describes a
high level view of a single decoding box.

Traitors may conspire and give an unauthorized user (or users) a subset of their keys
so that the unauthorized user will also be able to compute the real message key from the
values he has been able to decrypt. The goal of the system designer is to assign keys to the
users such that when a pirate decoder is captured it should be possible to detect at least
one traitor, subject to the limitation that the number of traitors is at most k. (We cannot

User 1

Enabling Cipher User 2
Blocks Blocks personal key
[1 -
ET
[] -
-

User n

Cleartext block i

Figure 1: A high level view of the traitor tracing scheme.

EB i CBi
User j personal k
Decrypt O O 1P el
(@]

Process = o o

Enabling (@)

Block

Decryption key for CB i

Symmetric Decrypt

Cleartext block i

Figure 2: The operation of a single decoding box.

hope to detect all traitors as one traitor may simply provide his personal key and others
may provide nothing).

We remark that in many cases it is preferable to predetermine a fixed number of users
n, and to assign them personal keys, even if the actual number of users is smaller. Users
who join the system later (e.g., by purchasing a subscription to a television station or an
online database) are assigned personal keys from those pre-installed.

1.0.2 Threshold tracing

We further distinguish between two kinds of tracing schemes. Fully resilient schemes guar-
antee the tracing of the source of any pirate decoder which decrypts with non-negligible
success probability (more accurately, which performs better than breaking the underlying
encryption system that is used to encrypt the data). However, in many applications such
security is not needed and it is enough to fight pirate decoders which have a considerable
success probability. For example, in pay-TV applications pirate decoders which decrypt
only part of the content are probably useless. We therefore also demonstrate threshold
schemes which only trace the source of the keys of decoders which decrypt with probability
greater than some threshold g, which is a parameter of the scheme. These schemes are
considerably more efficient than fully resilient schemes.

In general, it is always useful to recognize what is a “success” of the adversary, and design
schemes which prevent such a success. This process may lead to very efficient constructions,
with an overhead that is proportional to the severity of the “attack” to which they are
immune (this is the case with the threshold tracing schemes we present, whose overhead
is an inverse function of ¢). Such constructions can also serve to price the security by
presenting the overhead incurred by requiring a certain amount of security.

A demonstration of the efficiency of threshold tracing schemes compared to that of the
best fully-resilient tracing scheme appears in Table 1. This table presents the exact overhead
of the schemes, for a system of typical size. A comparison of the asymptotic behavior of
the overheads of all our schemes appears in Table 2.

1.1 Eliminating Piracy

Traitor tracing schemes help in three aspects of piracy prevention: they deter users from
cooperating with pirates, they identify the pirates and enable to take legal actions against
them, and they can be used to disable active pirate users.

The usage of traitor tracing schemes discourages users from helping pirates and especially
from submitting their keys to be used in pirate decoders. In particular, if the process of a
user obtaining a personal key requires some sort of registration and physical identification
then it should be hard for pirates to obtain a large number of personal keys. Consequently,
a tracing traitor scheme can identify the source of keys which are used in pirate decoders
and this mere fact should deter users from helping pirates.

When a pirate decoder is found and the source of its keys is identified, legal activities
should be taken against this source. Indeed, as was pointed by Pfitzmann in [22] a corrupt
data provider that wishes to incriminate an honest user might construct a “dummy” pirate
decoder containing this user’s keys, “reveal” it and claim that the user is a pirate. Note
however that similar misbehavior is possible with many (maybe even all) current types of

PROPERTY SECTION | PERSONAL DATA DECRYPTION
KEY REDUN. OPERATIONS
Trivial 1 1,000,000 1
Secret two-level | best fully-res. | 5.2 493 11,300,000 493
Threshold one-level, min. | 6.1 26,500 2000 1
data redun.
Threshold two-level 6.2.1 1,570 82,000 8
min. key w=1/2
Threshold two-level 6.2.2 370 574,000 12
min. key a— oo
Threshold tradeoff 6.2.1 6,300 27,500 3
w=1/8

Table 1: Examples of the complexity of different Tracing Traitors schemes, using n =
10%,k = 500,p = 1073,q = 3/4.

services, and yet there is little evidence that service providers have performed such illegal
activities. However, even if this possibility would weaken the legal status of evidences found
using tracing traitors schemes, the data provider itself can use this evidence to identify the
pirates and then try to obtain other types of legal proofs about their activities. There
has also been some work in suggesting tracing traitors schemes which do not enable the
data provider to fabricate evidence against honest users, but they are still far from being
applicable. See subsection 1.2 for details.

If a pirate user has obtained content in encrypted form and all the keys that are required
to decrypt it, there is little one can technically do to prevent her from continuing to use
the content. In this case the only remedy is legal. The situation is somewhat different if
the system requires some action on behalf of the data supplier, as with television broadcast
or online database. We call such cases “active data”. Such systems might allow to disable
identified pirate users from further receiving content.

The broadcast encryption schemes of Fiat and Naor [14] deal very efficiently with dis-
abling active pirate users, i.e. preventing them from further decryption. These schemes
allow one to broadcast messages to any dynamic subset of the user set and are specifically
suitable for pay-per-view TV applications. The schemes require a single short transmission
to disable all pirate decoders if they were manufactured via a collaborative effort of no more
than k traitors. Another broadcast encryption scheme was suggested by Wallner et al [25]
(and improved in [8]), and is secure against any number of corrupt users. When used for
n receivers it requires each receiver to store only logn keys. There is no data redundancy
in regular transmission of data, and whenever a user should be deleted from the set of
legitimate receivers the scheme sends a single message of length O(logn) which generates a
new key which is unknown to the deleted user. The communication overhead is therefore
O(logn) times the number of users which are removed from the set of receivers. Since we
assume that there would be a modest number of traitors (at most k), this scheme is well
suited to efficiently handle their deletion from the privileged set of receivers (whereas the

scheme of [14] has better performance for deleting a large group of receivers).

A combination of a traitor tracing scheme and a broadcast encryption scheme is a very
powerful tool. When a traitor is traced the dynamic subset of users authorized to receive the
broadcast should be changed by simply dropping the traced traitor from it. This procedure
should be repeated until the pirate box is rendered useless. Since no innocent user is
labeled as a traitor (at least with high probability), the operation of legitimate users is not
interrupted. Such a combination, however, cannot be constructed by simply taking each
session key as the bit-wise exclusive-or of keys transmitted by the traitor tracing scheme
and the broadcast encryption scheme. The drawback of such a simple solution is that a
pirate can use different sets of keys in the parts of the decryption box that decrypt the
tracing traitors and the broadcast encryption schemes. The data provider can only identify
the keys that are used for the tracing traitors scheme, but cannot render them useless since
this operation is only possible for keys used in the broadcast encryption scheme.

It is possible to combine the tracing traitors and the broadcast encryption schemes in a
different way: The tracing schemes we describe operate by distributing the secret into many
shares and encrypting each share with several keys. Every legitimate user u receives a set
of keys P(u) which enable it to decrypt enough shares to reveal the secret, and the scheme
ensures that the keys of a pirate decoder identify at least one of the traitors who contributed
these keys. In order to combine broadcast encryption each share should be encrypted by
a different broadcast encryption scheme. For every key which was previously in P(u), the
combined scheme should provide the user u with decryption keys for the corresponding
broadcast encryption scheme. When a traitor ¢ is revealed it should be deleted from the
sets of receivers in the broadcast encryption schemes corresponding to P(t). The length
of a personal key of a user is, therefore, the product of the lengths of the personal keys
in the tracing traitors and broadcast encryption schemes. Similarly, the data redundancy
overhead is the product of the data redundancy overheads in the two schemes. Note that
the broadcast encryption schemes of [25, 8] requires a personal key of length logn, and
during normal operation the data redundancy is O(1). Therefore combining this scheme
with our schemes requires each user to store log n as many keys, does not increase the data
redundancy during normal operation, and requires a special message of length O(logn)
times the size of the personal key whenever a traitor is revealed and deleted from the
system.

1.2 Related Work

The current work appeared in a preliminary form in [10] and in [21]. Some related work
followed the initial publication of our traitor tracing schemes in [10].

Boneh and Shaw [7] have suggested a scheme for fingerprinting different copies of an
electronic document by inserting a different watermark into each copy. Their scheme has
the property that using up to k copies it is impossible (with some probability) to generate
a new copy whose fingerprint does not reveal at least one of the k copies that were used.
The scheme offers better security in the sense that it enables to trace the leaked content
itself (and not just the key which enables its decryption). However, it is based on a marking
assumption'. It can also be used as a tracing traitors scheme but it is much less efficient

!See for instance [11] for a method of inserting marks into a document.

than our schemes: the number of keys that each user should have is k* times greater than
in our two-level secret scheme.

Another solution for copyright protection is through self enforcement schemes, which
were suggested by Dwork, Lotspiech and Naor [12]. In these schemes the content is en-
crypted and each legitimate user receives a different decryption key which includes some
sensitive information related to the user (e.g. his credit card number). Users will be re-
luctant to hand their keys to others since the keys contain this sensitive information. The
self enforcement schemes suggested in [12] use the same type of security as we use in this
paper. Namely, the system is secure against coalitions of less than k£ corrupt users, and
the system’s complexity depends on k. The signets scheme of [12] is less efficient than our
tracing schemes. The lengths of the personal key and of the data redundancy in the signets
scheme are k times the total size of secrets which are sent using the scheme.

Pfitzmann [22] has suggested a tracing traitors method which yields a proof for the
liability of the traced traitors. In this scheme the issuing of keys from the center to the
users is performed by an interactive protocol. At the end of the protocol the center is not
able to construct a “pirate decoder” that frames a user, but if a real pirate decoder is found
the center is able to trace the source of the keys that the decoder contains. However, as
this construction uses a relatively complex primitive (general secure multi party protocols)
which is rather inefficient (e.g. it operates on the circuit which evaluates the function), its
overall complexity is high.

The combinatorial properties of tracing schemes were investigated by Stinson and Wei
in [23], and Staddon [24] investigated the relations between combinatorial tracing schemes
and broadcast encryption schemes. Boneh and Franklin [6] presented public key tracing
schemes, which enable public key encryption and, being based on a number theoretic as-
sumption, are more efficient than combinatorial tracing schemes (including those presented
in this paper). Finally, Fiat and Tassa [15] introduced dynamic tracing schemes, in which,
in order to locate the traitor, the tracing algorithm dynamically changes the content that
is being broadcast to different subsets of the users. These schemes enable tracing even if
the traitor is revealing the content itself, and not only the keys that encrypt it.

1.3 An Example

Let us consider the following example in order to demonstrate the performance of the
different tracing schemes. Suppose that we would like to create a traitor tracing scheme
for up to one million authorized users, so that for at most & = 500 traitors, the probability
of false identification is at most 270, Table 1 describes the length of the personal key
of each user and the data redundancy overhead, both measured by the number of basic
keys they contain, and also the number of decryption operations that are performed by the
receiver. Since we describe both fully resilient and threshold tracing schemes, we compare
the performance of threshold schemes to the performance of the best fully-resilient scheme
— the two-level secret scheme described in Section 5.2. The table refers to the section in
which each of the schemes is described. The first row describes the overhead of the trivial
solution of independently encrypting the secret to every user.The second row describes the
most efficient two-level, fully resilient, secret scheme. The other results are of threshold
schemes which were designed to trace only the source of keys of decoders which can decrypt

with probability greater than 3/4. This type of schemes allows for a tradeoff between the
length of the personal key and the data redundancy, as is demonstrated in the table.

The fully resilient scheme has a short key length but the data redundancy overhead is
quite large. In fact, for the example described in Table 1 the data redundancy is larger
than in the trivial scheme in which each user has a different independent key. However,
this scheme is not too bad if it is used for a high bandwidth channel, and parameters
for which it performs better than the trivial scheme (namely, smaller values of k). The
threshold schemes feature a tradeoff between the length of the personal key and the data
redundancy overhead. It is possible to make one parameter very small by increasing the
other parameter, and it is also possible to achieve very reasonable results for both measures,
as in the last entry. The scheme of Section 6.2.1 is superior to the secret two-level scheme
in all the complexity parameters. It should also be noted that if we are only concerned
with decoders which decrypt with probability closer to 1 it is possible to obtain even more
efficient schemes.

2 Definitions

A traitor tracing scheme consists of three components:

o A user initialization scheme, used by the data supplier to add new users. The data
supplier has a meta-key « that defines a mapping P, : U — {0,1}* where U is the
set of possible users and s is the number of bits in the personal key that each users
gets. When user u; € U joins, she receives her personal key P,(u;). In all of our
constructions P, (u;) consists of a subset of m decryption keys out of a larger set A of
keys.

e An encryption scheme Eq : {0,1}* — {0,1}* used by the data supplier to encrypt
messages and a decryption scheme Dg : {0,1}* — {0,1}* used by every user to decrypt
those messages. Let the personal key of user u; be 8 = P,(u;), then for any message
m € {0,1}* we have m = Dg(E4(m)). In our schemes, the messages are encrypted
block by block where every encrypted block contains an enabling block and a cipher
block. The decryption process consists of a preliminary decryption of encrypted keys
in the enabling block, combining the results to obtain a common key, and finally a
decryption of the cipher block.

o A traitor tracing algorithm, used upon confiscation of a pirate decoder, to determine
the identity of a traitor. We do not assume that the contents of a pirate decoder can
be viewed by the traitor tracing algorithm, but rather that it can be accessed as a
black box and test how it decrypts an input ciphertext. (We do assume however that
the pirate decoder can be reset to its original state, i.e. we assume that there is no
self-destruction mechanism when it detects a traitor tracing algorithm.)

The encryption of plaintext blocks results in a message which consists of an enabling
block and a cipher block. The cipher block contains the plaintext block encrypted by some
encryption algorithm keyed by a random block key, which is unique to this block. The
enabling block contains encryptions of “shares” of the block key, such that every legitimate

user can use his personal key to decrypt enough shares to reconstruct the block key. An
adversary who wants to decrypt the message can either break the encryption scheme that
was used in the cipher block (without using any information from the enabling block), or
try to learn some information from the enabling block that might help in the decryption
process. In this paper we assume that it is hard to break the underlying encryption scheme
so we are only interested in preventing attacks of the latter kind.

Fully resilient tracing: Assume that an adversary has the cooperation of a coalition of
at most k users, and he uses their keys to construct a decoder. We would like to be able to
trace at least one of the coalition members. Intuitively, we call a scheme fully resilient if
we can trace (with high certainty) at least one of the traitors that helped build a decoder
which does not break the underlying encryption algorithms. More accurately, we say that a
system is fully resilient if for every pirate decoder which runs in time ¢ it either holds that
we can trace at least one of the traitors which helped building it, or that the decoder can
break one of the underlying encryption algorithms in time ¢.

Threshold tracing: There are many applications for which the pirate decoder must
decrypt with probability close to 1. For example, if a TV broadcast is partitioned into short
segments and these segments are encrypted independently, then customers would not buy
a decoder which decrypts only 90% of the segments. In such scenarios we can concentrate
on decoders which can decrypt with probability greater than some threshold. A scheme
is called a g-threshold scheme if for every decoder which does not break the underlying
encryption algorithms and decrypts with probability greater than ¢, we can trace at least
one of the traitors that helped building it.

An obvious and preliminary requirement from tracing traitors schemes is that they
supply secure encryption. That is, an adversary which has no information on the keys that
are used should not be able to decrypt the encrypted content. Intuitively, our security
definitions claim that if an adversary (who might have some of the keys) is able to decrypt
and escape being traced, then the scheme is insecure as an encryption scheme, even against
an adversary who has no keys.

Definition 1 (fully (p, k)-resilient tracing scheme) Let T' be a coalition of at most k
users. Let A be an adversary that has a subset F' of the keys of the users in T, and that is
able to decrypt the content sent in the tracing traitors scheme, in time t and with probability
greater than q' .
The scheme is called fully (p, k)-resilient if it satisfies the following security assumption.
The Security assumption: one of the following two statements holds.

o Given F the data supplier is able to trace with probability at least 1 — p at least one
of the users in T.

e There exists an adversary A’ which uses A as a black box and whose input is only
an enabling block and a cipher block of the tracing traitors scheme. A’ can reveal the
content that is encrypted in the cipher block in time which is linear in the length of
its input and in t, and with probability at least q" = q'.

10

The probability is taken over the random choices of the data supplier, and when appropriate
over the random choices of the adversary or of the tracing algorithm.

Definition 2 (fully k-resilient tracing scheme) A scheme is called fully k-resilient if it
satisfies definition 1, and it further holds that p = 0.

Definition 3 (¢g-threshold (p, k)-resilient tracing scheme) A scheme is called g-threshold
(p, k)-resilient if it satisfies definition 1 with ¢" = ¢ —q.

Since we assume the underlying encryption algorithms to be secure, we can assume that
the probability ¢” (with which an adversary A’ which knows nothing but the ciphertext can
break the encryption of the content) is negligible. Therefore in a fully resilient scheme the
data supplier can trace at least one traitor if it finds a pirate decoder (adversary .A) which
decrypts with non-negligible probability. In a threshold scheme the data supplier is able
to do so if it finds a decoder which decrypts with probability which is greater than ¢ by a
non-negligible difference.

We further distinguish between two types of schemes: the first type, called open schemes,
treats circumstances where the decryption schemes used by all users are in the public
domain, and the decryption keys themselves are the only information that is kept secret.
The second type is where the actual decryption scheme as well as the keys are kept secret,
and it is called secret schemes. In particular in open schemes it is publicly known which
keys (from the base set of keys A) is contained in each decoder, whereas in secret schemes
this information is kept secret.

Since the goal of an adversary is to prevent the traitors from being identified, one way
to ensure this is to incriminate someone else. Clearly, the adversary’s task is no harder
with an open scheme compared to a secret scheme. On the other hand, secret schemes pose
additional security requirements at the data supplier site.

We present efficient fully resilient schemes of both types. The open schemes are fully
k-resilient (that is, they always trace at least one of the traitors). However, our construc-
tions give much more efficient schemes for secret schemes. We also present g-threshold
schemes which fall into the category of secret schemes, and these schemes have even better
performance. It is clearly advantageous to use secret schemes in practice, and any real im-
plementation will do so. In addition, whenever the application enables us to use threshold
schemes it is preferable to use them since they provide even better performance.

3 Overview of the Results

Throughout the paper, we denote by k an upper bound on the number of traitors. Every
enabling block consists of r encryptions, and m denotes the number of keys comprising a
user’s personal key.

We describe six k-resilient traceability schemes. A concise listing of the personal key
length and the data redundancy overhead required by each scheme appears in table 2.
All the schemes are based on the usage of hash functions combined with any private key
cryptosystem, and do not require the use of public key operations. For more information on
hash functions and their applications see [19, 9, 26, 16]. The basic usage of hash functions

11

SCHEME KEY DATA REDUNDANCY DECRYPTION
trivial 1 n 1

open one-level O(k? logn) O(k*logn) O(k? logn)

open two-level O(k?log” klog(n/k)) O(k31og* klog(n/k)) O(k?log” k log(n/k))
secret one-level O(k log(n/p)) O(k? log(n/p)) O(klog(n/p))
secret. two-level Ollog(n/p) og(1/)) | OUklog(n/p) oa(1/p)) | Ollog(n/p) 1oa(1/p))
threshold one-level O(klog(n/p)) O(k) 0(1)
threshold two-level O(log(m) log(n/p)) | O(klog(k/ log(m))) O(log(k/log(-=2")))

Table 2: A comparison of the different tracing schemes. The parameters include n - the
number of copies, k£ - the maximum number of copies known to pirates, p - the probability
that pirates cannot be traced. The threshold schemes are designed for a constant threshold.

is to assign decryption keys to authorized users. The assignment guarantees that any
combination of keys, taken from the personal keys of any coalition of traitors, has the
following property: If this combination enables decryption then it is “far” from the personal
key of any innocent (non-traitor) user.

The first four schemes are fully resilient and trace the sources of the keys of any pirate
decoder which is able to decrypt with non-negligible probability. Note that in these scheme
the length of the personal key stored by the user is the same as the number of operations
that a user should perform in order to reveal the transmitted secret. The last two are
threshold schemes and as such are useful only against decoders which can decrypt with
probability greater than ¢, where ¢ is a parameter.

The first scheme is the simplest one. It is an open scheme, based on “one level” hash
functions. Each hash function maps the n users into a set of 2k? decryption keys. The keys
themselves are kept secret, but the mapping (which user is mapped to what key) is publicly
known. The personal key of every user consists of O(k?logn) decryption keys and this is
also the number of decryptions that a user should perform in order to reveal the secret.
The enabling block consists of O(k*logn) encrypted keys.

The second scheme is an open “two level” scheme. This scheme is more complicated,
but reduces the size of the enabling block by an O(k/log®(k)) factor. Here, a set of first
level hash functions maps the n users into a set of size k. Each function thereby induces a
partition of the n users to k subsets. FEach of these subsets is mapped separately by “second
level” hash functions into log? k decryption keys. This scheme requires O(k? log? k log(n/k))
keys and decryption operations per user, and an enabling block of O(k3log? klog(n/k))
encrypted keys.

The third scheme is a “one level” secret scheme. Here, we assume that the hash func-
tions, as well as the decryption keys, are kept secret. Being a secret scheme implies that the
adversary does not know which keys correspond to any innocent user. There is a positive
probability p (0 < p < 1) that the adversary will be able to produce a pirate decoder which
prevents the identification of any traitor. However, even if the keys known to the k collab-
orators enable the construction of such “wrongly incriminating” pirate decoders, choosing
such set is improbable. Furthermore, even if this unlikely event occurs, the adversary will
not know that this is the case. The personal key in this scheme consists of O(klog(n/p))

12

ai a1

ag | ay

0 1
a’logn a’logn

Figure 3: Keys for the 1-resilient scheme

decryption keys (and the user should perform this number of decryptions). The enabling
block has O(k?log(n/p)) encrypted keys.

Our fourth scheme is a secret two-level scheme. Again, the saving in going from one
level to two levels is in the size of the enabling blocks: The personal key and the number
of required decryption operations are O(log(1/p)log(n/p)), and the enabling block contains
O(klog(1/p)log(n/p)) encrypted keys. Compared to the previous scheme, the performance
parameters are smaller by a factor of k/log(1/p), so this scheme is more efficient if & >
log(1/p).

The last two schemes are threshold schemes, and as such are only good against pirate
decoders which decrypt with probability greater than some pre-defined parameter q. The
fifth scheme is a one-level threshold scheme. The personal key contains m = % log(n/p)
decryption keys, which is of the same order as the key length in the one-level secret scheme
(if ¢ is constant, which is sufficient for most applications). The main improvement is in the
data redundancy overhead which is only 4k encrypted keys and does not depend on n, and
in requiring a user to perform only a single basic decryption operation in order to decrypt
the secret.

The sixth scheme is a two-level threshold scheme, and it reduces the personal key length
in the expense of slightly increasing the data redundancy overhead. The complexity depends

on a parameter w. Define b = log(%/p)). When w is constant (then the key length is

lo
minimal), the personal key is compogedgg)f m = O(blog(2n/p)) decryption keys, the enabling
block contains O(klog(k/gb)) basic encryptions, and the user should perform O(log(k/b)
decryptions.

All schemes are constructed by choosing hash functions at random, and using proba-
bilistic arguments to assert that the desired properties hold with overwhelming probability.
These schemes are, therefore, not constructive (although the properties of the simplest
scheme can be verified). We note, however, that there is no need to represent or store
the whole function. It is only required that each user stores the outcome of the function,
evaluated at the user’s ID.

4 Open Fully Resilient Schemes

4.1 A Simple Open One-Level Scheme

We describe in detail the first tracing scheme, starting with the simple case of a single traitor,
k = 1. In this case the data supplier generates 7 = 2logn keys, {a?,a}, a9, a3, ... a?ogn, allogn}.
It is convenient to view these keys as organized in a matrix with logn rows and two columns

(see figure 3).

13

ail | 812 | --- | Qg 0k2
a1 | @22 | --- | Qg op2
g1 | Qg2 | --- | Qpok2

Figure 4: Keys for the simple k-resilient scheme

Each user has a logn bit identity, and the personal key for user 7 is the set of m = logn
keys {ali1 , ag2, et ,afé‘;gg; , where b; is the ¢-th bit in «’s identity. Think of each personal key
as selecting one key per row. Different users have at least one row where they differ in the
selected keys

The tracing scheme is used to encrypt a secret s. We always regard s as the key with
which the cipher block can be decrypted. The data supplier encrypts s in the enabling
block. A decoder typically first decrypts s from the enabling block and then uses s to
decrypt the cipher block.

The secret s is encrypted in the enabling block as follows: It is split into logn secrets
51,82, -+, Slogn, I-€., the data supplier chooses random s1, s2,. .., Sjogp, such that s is the
bit wise XOR of the s;’s. The value s; is encrypted under the two keys of the i-th row, a?
and a;. Both encryptions are added to the enabling block. Every user u can reconstruct
all the s;’s and hence can decrypt s. On the other hand, any pirate decoder must contain a
key for every row 7, 1 < i < logn (otherwise s; would remain unknown and consequently s
could not be obtained). Since at most one traitor is involved, the keys stored in the pirate
decoder must be identical to the keys in the traitor’s decoder. Therefore the pirate decoder
uniquely identifies the single traitor.

When dealing with larger coalitions, we generalize the above scheme. We will now use
matrices of keys with ¢ rows and 2k? columns, where £ is a parameter to be specified later
(see figure 4) . The personal key of every user contains £ keys, one key per row. Again, a
secret s is expressed as the bit wise XOR of £ random s;’s. Each s; is encrypted under all
keys from the i-th row. Therefore, to be able to find s with non-negligible probability, a
pirate decoder must contain one key from each row. So far the description is very similar to
the previous 1-resilient scheme. The major difficulty we encounter is in the procedure for
detecting traitors. Unlike the case k = 1, the pirate decoder might now contain keys from
k different members of the coalition. It is, therefore, required to arrange the personal keys
in such way that the keys selected by each user are different from those selected by other
users not only in a few rows, but in the vast majority of the rows. The best way we know
of to achieve this goal is to assign keys to users in each row independently at random. In
other words, each row is associated with a random hash function which chooses which entry
(or column) is assigned to every user, and hash functions associated with different rows are
independent. A detailed description of the scheme is given below.

Initialization: A set of £ hash functions hi, hs,...,hy is chosen at random by the data
supplier. Each hash function h; maps {1,...,n} into the set {1,...,2k%}. A set of 2k?
random keys is chosen for each row. The set A; = {ai,1,0;2,...,a; 9,2} is assigned to the
i-th row. The personal key of user u is the set P(u) = {a1 4, () 2,hs(u)s - - - » G,hy(u) }-

Distributing a secret key: For each i (i = 1,2,...,£) the data supplier encrypts a key s;

14

under each of the 2k? keys in A;. The final secret key s is the bit-wise exclusive-or of the
“shares” s;. Each authorized user has one key from every A;, and can decrypt every s;, and
thus compute s.

Parameters: The memory required per user is m = £ keys. An enabling block to encode
the secret key s consists of 2k2 encryptions of each s;, totaling = 2k2¢ encrypted keys.

Tracing: Assume that a pirate decoder A decrypts the content with probability ¢'. Let
F be the set of locations in the matrix containing the keys which are known to the pirate
who created A. We can consider the keys in F' as being part of the input to A. If F' contains
at least one key from every row then it is possible to perform the “detection of traitors”
process that is described in the sequel. Otherwise, we claim that that the encryption scheme
which is used is insecure against a simple decoder A’ which does not contain any key, uses
A as a black box, and can also decrypt the content with probability ¢’. We were only able
to prove the reduction from A’ to A for a tracing scheme which is very similar to the scheme
we presented: the only difference is that the scheme does not directly encrypt the cipher
block with the secret s, but rather with a value s @ s’, where s’ is sent (in the clear) in
the enabling block. The receiver decrypts the value s from the enabling block, calculates
its exclusive-or with s’, and uses the result to decrypt the cipher block. For simplicity we
present throughout the paper schemes which do not use the parameter s’. However these
schemes can be replaced by schemes which use s’, for which we can prove a reduction. The
overhead of these schemes is only negligibly greater than the overhead of the presented
schemes.

The reduction: Given a decoder A which operates against a scheme with £ rows while
containing keys from a set F' of locations at at most £ — ¢ rows, we construct a decoder A’
which operates against a scheme with ¢ rows and does not contain any key. The input to A’
is an enabling block (containing a value s') and a cipher block. The decoder chooses £ — ¢
random values rq,...,ry_p. For each value r; it chooses 2k? random keys and generates a
row which contains 2k? encryptions of r;, one with each of the keys. It generates an enabling
block which contains these rows, the rows of the enabling block which it received as input,
and a value s = §' ® (eaf:f’ri). The decoder A’ inputs to A this enabling block, the cipher
block, and the keys that A expects to receive (taken from a set F' in the £ — £’ rows that
A’ generated). The input to A is a valid encryption of the content that is encrypted in the
cipher block (with the same distribution of keys as an original input to A). Therefore A
(and hence A’) will succeed in decrypting it with probability ¢'.

From here on we assume that the decoder contains at least one key from every row.
Upon confiscation of a pirate decoder, at least one key from every set A; (row) is exposed.
We claim that it suffices to experiment with the decoder for this purpose, and it is not
necessary to take the decoder apart (“reverse-engineer it”). The only assumption we should
make is that it is possible to experiment with the decoder box and then reset it to its initial
configuration. The proceudre that extracts the keys operates as follows. For all 1 < </
and 0 < j < 2k? perform the experiment E;j: Prepare a normal encryption session, but
instead of encrypting the key s; with keys {a;1,...a;;} provide j random strings. Let f; ;
be the fraction of times the box decrypts correctly on experiment E;;. By assumption f;
is non-negligible (or the box is useless, since Ej is its “normal” execution), and f; o52 is
negligible since the key s; is completely missing. There must be a 1 < j < 2k? such that
fij — fij—1 > (fio — fiox2)/2Kk%. For this j it can be deduced that a;; € F.

15

The set F' contains at least £ keys (at least one key per set A;). For each i, denote by
ai ;) the key with minimal second subscript in A4; N F. The users in h; L(¢(:)) are those
who could contribute this key to the pirate decoder. All the users in this set are identified
and marked. This set includes at least one traitor, and possibly some innocent users. A
count of all marks per user (for i =1,2,...,¢) is carried out. The user who has the largest
number of marks (and this number must be at least £/k) is declared to be the suspected
traitor.

Goal: We show that there is a choice of the hash functions, such that for all coalitions of
size k and all pirate decoders they construct, the suspect is never an innocent user. Clearly,
at least one of the traitors contributes at least £/k of the keys a; ;). We will show that the
probability (over all choices of hash functions) that an innocent user is marked £/k times is
negligible. This will prove the existence of hash functions with the desired properties.

Consider a specific user, say user 1, and a specific coalition T" of k traitors (which does
not include user 1). As hash functions are chosen at random, the value h;(1) is uniformly
distributed in {1,...,2k?}, and so the key a;p,(1) is uniformly distributed in A;. The
coalition gets at most k keys in A; (out of the total 2k2). The probability that @i pi(1) 18
among these keys is at most 1/2k.

Let X; be a zero-one random variable, where X; = 1 if 3u € T s.t. h;(u) = hi(1).
The mean value of Zle X; is £/2k, and Zle X; is not smaller than the number of marks
user 1 gets. If Ele X; < £/k, then user 1 is not exposed as a suspect, since at least one
traitor gets at least £/k marks. We use the following version of Chernoff bound (see [2],
Theorem A.12) to bound the probability that Ele X; > £/k. Let Xq,...,X,; be mutually
independent random variables, with

PriX;=1 = p
PT'[X]':O] = 1—p
Then, for all g > 1

Pr

1 ¢ ef-1 pt

¢ 2 X2 fp| < (Tﬂ) -
j=1

In our case, substituting p = 1/2k and 8 = 2, we have

1< 1 e\ Y/
Pr|=N"X,> - el 2~ t/4k
T[Eﬁzl P> <<) <

4
The last bound considers one specific coalition and one specific innocent user. We
demand that for a random scheme the expected number of pairs of a coalition and an
innocent user, for which the coalition might frame the user, is less than 1. Then there exists
a scheme in which no coalition can frame a user. We should take ¢ satisfying

n- (Z) L9tk g,

It suffices to take £ > 4k?logn. With this parameter, there is a choice of £ hash functions
such that for every coalition and every authorized user not in the coalition, the innocent
user is not incriminated by the tracing algorithm. We summarize the result in the next
theorem:

16

Theorem 1 There is an open fully k-resilient traceability scheme, where a user’s personal
key consists of m = 4k*logn decryption keys, an enabling block consists of r = 8k*logn key
encryptions, and a user should perform 4k*logn decryptions in order to reveal the secret.

The discussion above shows the existence of open k resilient traceability schemes, and
provides us with a randomized method for constructing a scheme that works with high
probability. Although the theorem does not suggest an explicit construction, the desired
properties of a given construction can be verified efficiently. The idea is to examine all the
pairs of users (u,v) and check the number of functions h; such that h;(v) = h;(u). If this
number is smaller than £/k? than we can conclude that no coalition 7' of at most k users
“covers” more than a 1/k fraction of the keys of u, and hence cannot incriminate u (this
property is stronger than the property required for the scheme).

By considering pairwise differences, we can phrase the construction problem as a problem
in coding theory (see [20]): construct a code with n codewords with length £, over an
alphabet of size 2k2, such that the distance between every two codewords is at least £—£/k>.
The goal is to construct such a code with as small £ as possible. There are no known
explicit constructions that match the probabilistic bound. For the best known construction
see [1] and references therein. For small k the constructions of [1] yield a scheme with
m = O(k%logn) and r = O(k®logn).

4.2 An Open Two-Level Scheme

The “two level” traceability scheme, described in this subsection, can be thought of as
iterating the previous construction two times. While it is more complicated than the simple
scheme, it saves about a factor of k in the broadcast overhead.

Theorem 2 There is an open fully k-resilient traceability scheme, where a user’s personal
key consists of m = %kQ longlog(en/k) decryption keys, and an enabling block consists
of r = %ek?’ log* klog(en/k) key encryptions. A user should perform gkz log? k log(en/k)
decryptions in order to decrypt the secret.

Proof: As in the simple scheme, the proof is existential (but here we do not know how to
efficiently verify that a given scheme is “good”). It will be convenient to view the keys as
organized in £ blocks. Each block is a d-by-[ek| matrix, where £ and d are parameters that
will be specified later. Tt is important to note that each entry in the matrix contains 4 log? k
keys (see figure 5). For each block, every user gets one key per row. All these d keys are
taken from the same column.

The secret key s is constructed in a way that forces any decoder to satisfy the following
constraint: For each block, there exists a column, such that for every row, the decoder
contains a key from the entry at the intersection of these column and row. In other words,
the decoder contains d keys from a certain column in every block. We now describe the
system in detail.

Initialization: A set of £ “first level” hash functions hy, he, . .., hy, each mapping {1,...,n}
to {1,...,[ek]}, is chosen independently at random. The function h; is used to map the
users into the columns of the ith block. For each block i (i = 1,2,...,£) and each row j
(1 <j <d), a “second level” hash function g; j, which maps {1,...,n} to {1,...,4log® k},

17

01,1,1,15- - 581 1 141082k | @1,1,215---9@1 1241082k | - | @1,1,[ek],1r - =1 Q1.1 [ek] 4log? k
41,2,1,15- - - 581 9141082k | 91,2,2,1 5---5» @1 29410g%k | - | ¥1,2,[ek],15 - -1 @12 [ek] 4log? k
01,d,1,15 - 581 d1.410g2k | @1,d,2,15---5 814241062k | -+ | 1,d,[ek],1s- - -»@1 d [ek] 4log? k
2,1,1,15 - -+ G 1 1410g%k | 92,1,2,15 ---5 Q21 9410g2k | - | 92,1,[ek],1s- - <2921 [ek] 4log2k
02,2,1,15- - -89 9 1 410g2 k 42,2,2,15-- -89 92 4102k | - -+ | 32,2,[ek], 15" - -5 @22 [ek],4l0g2 k
02,d,1,1 5---3 Q241 410g%k | #2,d,2,1 5= --5 B2 g2410g2k | -+ | 42,d,[ek],1> - -5 Q2 d [ek] 4log? k
Q1,115 5801 1 410g2k | B41,2,10- -5 Qp12410g2k | - | Be1,[ek], 1o - - » 1 [ek] 4log? k
2,115 -5 01 410g2k | 442,215 --»0p 22 410g2k | - | Be2,[ek], 15" - - »3¢ 2 [ek] 4log? k
Ald, 1,150 58 41 410g%k | ¥6d2,15- - <500 g2 4l0g2k | - | W,d,[ek], 1o - - Qe d [ek] dlog? k

Figure 5: Keys for the two level scheme

is chosen independently at random. The function g; ; is used to map users into specific
elements in the entries of the jth row of the ith block (a user is assigned to a certain
column of a block and is always mapped to elements in this column).

Every user u € {1,...,n} receives ¢d keys, d keys per block. The keys are

a’l,l,hl(u),gl,l(u)a a1,2,h1(u),g1,2(u)a v aa'l,d,hl(u),gl,d(u)

(these d keys are all from column hq(u) of the first block) through

Ql,1,h0(u),g0,1 (w) C,2,hp(w),ge 2(w)s - = = 2 Bl,d,hy(u),ge q(u)

(these d keys are all from column hy(u) of the £—th block).

Distributing a secret key: The data supplier chooses at random ¢ independent keys
(shares) si,...,sp. The secret key is s = XORY_s;.

Each s; is divided into d - [ek] shares that correspond to the entries in the ith block,
one share per an intersection of a row and a column. These shares are random subject to
the constraint that the exclusive-or of the shares of each column is equal to s;. That is, if
we denote the share of the entry in row j (j = 1,...,d) and column ¢ (¢ = 1,...,[ek]) in
block i (i =1,2,...£) as s; ¢, the shares satisfy

S = XOR(Si,l,la IO Si,d,l)
= XOR(Si,l,Za ety Si,d,2)

= XOR(si1,[ek]-- - > Si,d,[ek])

18

The encryptions of the share s; ; . under each of the 4log? k keys in the entry (j,c) of the
i-th block are added to the enabling block. To find the key s one needs all the shares s;.
Therefore, for every block ¢ there should be one column ¢ such that for each row j at least
one key from the entry (j,c) is in the decoder.

User u has the d keys

@i,1,hi (), gi,1 () D6,2,hi(u),gi,2(u) > -« Ciydyhi(),9,a(w)
in his personal key. They enable him to decrypt and find s; 1 p;(u)s - - - » Si,d,hi(u)>» Which makes
it possible to reconstruct each s; and then compute the secret key s.

Parameters: The personal key consists of m = /d keys. The total number of key encryp-
tions in an enabling block is 4ekld log? k.

Tracing: Assume that a pirate decoder A decrypts the content with probability ¢'. If
it holds for every block 1 < ¢ < £ that there exists a column ¢ such that A contains a key
from the intersection of ¢ with each of the rows, then the detection of traitors process that
is described in the next paragraph detects at least one of the traitors. Otherwise, the bit
sensitivity of the XOR operation guarantees that it is possible to construct a decoder A’
which uses A and is able to decrypt the content with probability ¢', even without knowing
any of the keys.

Upon confiscation of a pirate decoder, we assume here that it stores a subset F' of the
keys which for every block contains keys from the intersection of one column with all the
rows. The subset is exposed using the following procedure for every block i and column c:
Let My be an enabling block in which the encryptions with the keys of all the columns of
block 4, except column c, are replaced with random data. For every row 1 < j < d and every
entry 1 < s < 4log? k build M s from Mg by replacing with random data the encryptions
in block ¢ which are in the first s positions in the entry (4,c). There is at least one ¢ such
that Mé o enables decryption with non-negligible probability, whereas for every row j the

enabling block M; "¢ allows correct decryption with negligible probability. Let tZ “ be the
location of the key that caused the maximum decrease in the decryption probablhty for the

J’th row in a column c of block i. Then mark the users u s.t. h;j(u) = ¢ and g; j(u) = t;c.
All users who are marked at least d/logk times for block ¢, are suspects for s;. The user
who is a suspect for the largest number of s;’s is identified as a potential traitor.?

Goal: We want to show that there is a choice of hash functions such that for all coalitions,
an innocent user is never identified as a traitor.

Consider a specific user, say user 1, and a specific coalition T of & traitors (which does
not include user 1). We first bound the probability that user 1 will be a suspect for s;. The
first level hash function h; partitions the users to [ek] subsets {h;'(1),...,h™"([ek])}
The expected maximum number of traitors in these [ek] subsets is logk/loglogk. The
probability that user 1 is hashed to a subset together with more than logk traitors is at

most lon k lon k
k ~logk (ek)Og —logk (1 >°g 1
: < (= gk — — .
<log k) (k) " < \iogk) (eF) log ,ffgs 16k

2Note that this procedure relies on the fact that for each block there is a column ¢ such that the pirate
decoder continues to decrypt even if we corrupt all the entries in the enabling block, that correspond to all
the keys from the block which does not come from column ¢. However, even if it is not the case we can search
for a minimum set of columns for which this property holds, and then the following analysis still holds.

19

Denote h;(1) = c. Consider the conditional probability space where TN h; L(c) indeed
contains at most log k traitors. In this conditional space, the d keys

aiﬂlyhi(ul),gi,l(ul)’ ali,27hi(u2)agi,2(u2)’ st ’ai;dahi(ud),gi,d(ud)

in the pirate decoder come from the personal keys of T'Nh; ! (c). The tracing algorithm can
mark user 1 with respect to the j-th row in the block 4 if there is some u € T'Nh; *(c) such
that g; ;(1) = gij(u). The range of g; ; contains 4log? k elements. At most log k of these are

in g; ; (T Nh; 1(c)). So the probability that user 1 is marked with respect to the j-th row
in block i is at most 1/(41og k). The expected number of times user 1 will be marked, with
respect to the d functions g;1,...,giq, is at most d/(4log k). We use the Chernoff bound
to estimate the probability that user 1 is a suspect for s;.

Set X; = 1 if user 1 is marked with respect to the jth row in block 7, and X; = 0
otherwise. Then Pr[X; = 1] < 1/(4logk). By the Chernoff bound, with p = 1/(4log k)
and f =4,

3\ d/(4logk)
€) < 9—3d/(41ogk)

ZX] - logk] < (4_4

Setting d = (8/3) log? k, the conditional probability that user 1 is a suspect for s; is at most
2721k < 1/16k (when k > 16). The probability of the condition (at most logk traitors
mapped together with 1 by the function h;) not happening is at most 1/16k. So overall,
the total (unconditional) probability that user 1 is the suspect for s; is at most 1/(8k).
Let us check the probability that user 1 is the suspect for at least % of the blocks. For
1=1,...,4, 1let Y; =1 if user 1 is the suspect for s;, and Y; = 0 otherwise. Then

(ZG) < 27tk

So with probability at least 1 — 2=t/k user 1 is a suspect for fewer than 3¢ /4k of the s;.
Denote a block as bad if it contains a column into which log k or more traitors have
been mapped, and good otherwise. In a good block at least one of the traitors is declared a
suspect. Denote by # the number of good blocks. Next we show that the probability that
U< 3% is small. We previously showed that the probability that log k or more traitors are
mapped to the same column is at most 1/16k, namely the probability that a block is bad is
at most 1/16. For ¢ = 1,...,¢ let Z; = 1 if block 4 is bad. Then the probability that there

are £/4 bad blocks is at most
1 ¢ 1 3 £/16
-NZi> - — 2745
fzezi<(5) <

For every good block i, at least one member of T is a suspect for s; because in each
row at least one of them is marked. T contains k traitors, and so there must be one or
more traitors who is a suspect for at least ¢'/k > % s;’s. Therefore the probability that

APNEE

user 1 is mistakenly identified as a traitor in this case is smaller than 2~¢*%. Note that the
definition of a good or a bad block does not depend on the user’s identity (but of course does

20

depend on T'). Therefore the probability that for one of the (2) possible coalitions of size k,
and given that there are at least 3//4 good blocks, some good user is mistakenly identified,
is smaller than n - (}) - 2-¢/k. The probability that for some coalition there are less than
3¢/4 good blocks is at most (}) -27t/5. Setting ¢ = k?log(en/k), the total probability is
smaller than 1. This means that there exists a choice of hash functions h; and g; ; such that
a good user is never mistakenly identified as a traitor. The resulting open k-traceability
scheme (which is good for any k > 16) has parameters m = ¢d = $k?log® klog(en/k) and
r = 4ekldlog® k = %ek?’ log* klog(en/k). O

5 Secret Fully Resilient Schemes

Secret schemes can be made more efficient than open schemes since the traitors do not
know which keys the other users received. Therefore, even if the set of keys of a coalition
of traitors includes a large part of the keys of an innocent user, the traitors do not know
which keys these are and cannot install in a pirate decoder keys that incriminate a specific
user.

5.1 A Secret One-Level Scheme

The first proposed scheme is one-level. The major source of saving is that it suffices to
map the n users into a set of 4k keys (rather than the set of size 2k? of the open one-
level scheme). A coalition of size k will contain the key of any specific user with constant
probability. However, as the traitors do not know which key this is, any key they choose
to insert into the pirate decoder will miss (with high probability) the key of the authorized
user.

Initialization: There are n users, each with a unique identity v € {1,2,...,n}. Let
£ be a parameter. A set of £ hash functions hq, ho,...,hy are chosen independently at
random. Each hash function h; maps {1,...,n} into a set of 4k random keys A; =
{@i1,a;2,-..,a;4r}. The hash functions are kept secret as well. User u receives, upon
initialization, the indices and values of £ keys {hi(u), ho(u), ..., he(u)}.

Distributing a Key: For each ¢ (i = 1,2,...,£) the data supplier encrypts a random s;
under each of the 4k keys in A;. The final key is the bit wise exclusive-or of the s;’s. Each
authorized user has one key from A;, so he can decrypt every s; and compute s.

Parameters: The memory required per user is m = £ keys. The data redundancy over-
head used in distributing the key s, is r = 4k£.

Tracing: As was shown for the one-level open scheme, a pirate decoder must contain a
key from every row if the encryption schemes that are used are secure. We show next how
to trace the traitors given a decoder which contains a key from every row.

Upon confiscation of a pirate decoder, a set of keys contained in it, F, is extracted using
the methods we have described for the one-level open scheme. F' contains £ keys, one per
set A;. Denote by f; € A; the key in F N A; . The tracing algorithm knows the values of
the functions h; and, therefore, can identify and mark for each 7 the users in h; 1(fi). The
user with largest number of marks is exposed.

Goal: We want to show that for all coalitions, the probability of exposing a user who
is not a traitor is negligible. Clearly, at least one of the traitors contributes at least £/k of

21

the keys to the pirate decoder. It should be shown that the probability that a good user
is marked £/k times is negligible. Consider a specific user, say 1, and a specific coalition T’
of k traitors (which does not include user 1). As the hash functions are random the value
a; = h;i(1) is uniformly distributed in A;, even given the k values hashed by h; from the
names of the coalition members. The probability that the value f; extracted from the pirate
decoder equals a; is therefore 1/4k. Let X; be a zero-one random variable, where X; = 1
if a; = f;. The mean value of Zle X; is £/4k. By the version of Chernoff bound used in

Section 4.1 (see [2], Theorem A.12)
3\ 4/4k
< (6) < 9-3/4k

44

Pr léX~>4 i
C&=T T 4k

We choose £ satisfying n - 273¢/4k < p. That is, £ > 4klog(n/p)/3. Then for every
coalition it holds that the probability that it can frame an innocent user is at most p. The
following theorem sums the construction.

Theorem 3 There is a fully (p,k)-resilient secret traceability scheme, where a user’s per-
sonal key consists of m = 4/3 - klog(n/p) decryption keys, and an enabling block consists
of 16/3 - k?log(n/p) key encryptions. A user should perform 4/3 - klog(n/p) decryptions in
order to decrypt the secret.

5.2 A Secret Two-Level Scheme

A two-level scheme improves the performance of the one-level scheme of the previous section
whenever k > log1/p. The difference between this scheme and the open two-level scheme
in Section 4.2 is that here it is sufficient to use only one mapping at the first level and
hope that it was successful (which happens with good probability), whereas the two-level
open scheme used two mappings. In the Appendix we present a somewhat simpler two-level
secret scheme, which achieves slightly less efficient performance.

The basic idea of the construction is to randomly map the users into a small range, such
that the probability of mapping together more than a small threshold b of traitors is smaller
than p/2. An independent tracing scheme (secure with probability p/2 against b traitors)
is employed for every value in the range. The overall error probability is, therefore, at most
p.

The construction uses a random mapping h from the domain {1,...,n} to a range of
size 2ek /b, where b' = b— 2 In(ek/b). Then for any fixed set of k traitors the probability
that b or more traitors are mapped together by & is at most

L N o ([b (b — 52 In(ek/b) -
b <ﬂ) = (7> 2¢ek
ek (ln(ek/b)>b_1~ ek inersmy L

-1 " p—1

Setting b = log(4/p) implies that this probability is at most p/2. Once such a mapping
is chosen we continue by constructing the secret (b, p/2)-resilient one-level scheme of Section

22

5.1 for each set of preimages h=1(i) for 1 < i < 2ek/b'. In the initialization phase each user
u receives his personal key for the subscheme h(u), and the secret s is distributed by each
of the 2ek /b’ subschemes.

The detection of traitors is performed as follows: Assume that a pirate decoder A
contains keys from all the rows of a certain subscheme (otherwise it is possible to build a
decoder A’ which contains no key and can decrypt the content with the same probability as
A). First, it is required to identify a block for which the decoder contains a key from every
row. Then these keys have to be identified, and the source of these keys can be found in
the same methods that were used for the one-level scheme. To perform this, prepare a valid
encrypted message M, and choose a random order of the subschemes. In step ¢ construct
the message M; by replacing with random data, the parts of the message M;_; which are
encrypted by the keys of the ith subscheme (in the chosen order). Feed the message M;
into the pirate decoder. The message M is a valid message and a pirate decoder should
decrypt it with high probability, whereas the message Moy contains only random data
and therefore cannot be decrypted with non-negligible probability. Let M; be the message
that caused the maximum decrease in the decryption probability (which should be about
b'/2ek). The decryption keys of subscheme 7 must be stored in the decoder. Now, start
from the message M;_; and change the keys of the ith subscheme according to the key
extraction procedure that was described for the one-level scheme, and find a set containing
one key from every row of ith subscheme, which is contained in the pirate decoder.

Assume that there is no subscheme into which more than b traitors are mapped together
(an event which happens with probability at least 1—p/2). Then the conditional probability
of incriminating any of the innocent users in subscheme % (in which we search for traitors in
the process we described), is the probability that the subset of traitors that is mapped to
i (and by assumption is of size at most b) manages to incriminate an innocent user. Since
each subscheme is (b,p/2)-resilient, this probability is at most p/2. The unconditional
probability that there is a user who is wrongly incriminated is therefore at most p.

The number of keys a user gets in this scheme is simply the number of keys a user gets
in the (b, p/2)-resilient scheme, that is m = 5 log(4/p) log(2n/p). The size of the enabling
block is 2ek/b’ times the size of the enabling block in the (b, p/2)-resilient scheme, i.e.

2 32 1

32 B In(ek/b)
3 ek log(2n/p) ¥ =3 ekblog(2n/p)1

b—1—1In(ek/d))

32
— 22 ckblog(2n/p)(1
T ln(ekyp) 3 Crvlos(@n/p)(1t

We thus obtain the following theorem:

Theorem 4 There is a fully (p, k)-resilient secret traceability scheme, where a user’s per-
sonal key consists of m = %blog(?n/p) decryption keys, and an enabling block consists of

at most 3Zekblog(2n/p)(1 + %) encryptions, where b = log(4/p). A user should

erform 2blog(2n decryptions in order to decrypt the secret.
perform 3blog(2n/p Yp Yp

Note that unless k is very large compared to 1/p, the last multiplicand, (1 + %),

is small. For example, it is smaller than 4 if p = 1/100 and k£ < 1000, or if p = 1/1000 and
k < 16500.

We can get slightly better results if we consider the fact the each subscheme should
handle less users. The expected number of users that are mapped to a certain subscheme is

23

about n/ = %, and the probability that the number of users that are mapped to a certain

subscheme is much larger than n’, is small. Therefore the subschemes can be planned for
O(n') users only, resulting in a lower complexity.

6 Threshold Schemes

The performance guarantee of fully resilient tracing schemes might be an overkill for many
applications. Fully resilient schemes trace the source of keys of any decoder which uses a se-
cure encryption function and decrypts with non-negligible probability. In many applications
it is obvious that pirates cannot sell pirate decoders which do not decrypt with probability
which is very close to 1 (e.g., decoders for tv transmissions). For such applications it is
possible to design tracing schemes which only trace the source of keys of decoders which
decrypt with high probability (and do not necessarily perform well against decoders which
decrypt with lower probability). This section introduces such schemes which are more effi-
cient than fully resilient schemes (refer to Table 1 for a comparison between the complexity
of different threshold schemes and the most efficient fully resilient scheme).

Recall definition 1. It is assumed that the basic encryption scheme cannot be decrypted
with probability better than ¢” without using the decryption keys. Fully resilient schemes
are designed to trace the source of keys of any decoder which decrypts with probability
better than ¢’ = ¢”. The target of g-threshold schemes is to trace the source of keys of
any decoder which decrypts with probability better than ¢’ = ¢ + ¢”. The parameter q is
the advantage of a pirate decoder A in decrypting messages, over the success probability
of a decoder A’ which does not contain any of the decryption keys. Fully resilient schemes
are designed to trace for any ¢ > 0. However, since the probability ¢” is assumed to be
negligible, it can be assumed that ¢ must be large in order for a pirate decoder to be useful.

The complexity of g-threshold schemes depends on the value of the parameter ¢q: They
are more efficient for larger values of q. The schemes are secret in the sense that the set of
keys that each user receives is unknown to a other users.

The benefit of using threshold tracing schemes is a reduction in the data redundancy
overhead and in the number of decryptions that the receiver should perform, whereas the
length of the personal key is almost as short as in secret fully resilient schemes. A one-level
threshold scheme results in a very short data redundancy overhead, and requires the receiver
to perform a single decryption operation. The key is only marginally longer than in the
secret one-level scheme of Section 5.1. This is also the case with two-level threshold schemes,
although compared to to one-level threshold schemes the key is longer. In particular, the
two-level threshold scheme of Section 6.2.2 achieves better efficiency than the best fully-
resilient scheme (of Section 5.2) in all complexity parameters.

The data redundancy overhead and the personal key length are parameterized, and there
is a tradeoff between them. It is possible to set the parameter to a value which obtains the
best tradeoff between these two complexity measures (for instance the last entry of table 1
demonstrates a reasonable such tradeoff).

24

6.1 A One-Level Threshold Scheme

The basic scheme is similar to the one-level secret scheme with the following exception: the
secret s is not divided into £ shares but rather into ¢ shares (where (¢ < ¢) is a parameter)
which are encrypted using ¢ rows chosen uniformly at random. These rows are chosen inde-
pendently for every enabling block, and their indices are sent at the beginning of the block
so that the decoder can know which keys to use. A legitimate user has a key from every row
and can therefore recover s. However, if a pirate decoder does not contain a key from each
of the ¢ rows it cannot obtain s. The data redundancy overhead is composed of encryptions
with the keys of the ¢ rows, and in addition the names of the ¢ rows which were chosen. Note
that the decryption process now requires less operations from the receivers: they should
perform only ¢ decryptions, instead of £ decryptions in the fully-resilient schemes.

In the one-level secret fully resilient scheme of Section 5.1 each row contained 4k keys
and setting the number of rows to be £ = % log(n/p) suffices to get a probability of at least
1 —p for tracing the traitors. The threshold scheme depends on a parameter w (in the range
0 < w < 1) such that it is possible to trace the source of keys if the pirate decoder contains
keys from a fraction of at least w of the rows. The number of shares into which the secret
is divided (the parameter t) is set such that if a decoder contains keys from a fraction of
less than w of the rows it cannot gain an advantage better than ¢ in finding s. Therefore,
a pirate decoder which gains an advantage which is better than g should contain a set with
one key from at least wf of the rows. In this case at least one traitor contributes at least “’Te
of the keys in this set, and in comparison an innocent user is expected to have only ’i’—,f keys
which are included in this set. The probability of tracing a traitor can be calculated using
the same analysis as in the secret fully resilient one-level scheme, substituting w/ instead of
£ for the number of rows for which there is information. To obtain a (k, p)-resilient system
it is enough to set the number of rows to 1/w the number of rows in the fully resilient
scheme, that is £ = % log(n/p).

Fix w, the fraction of rows that enables to trace a pirate. The parameter ¢ is set to
ensure that the probability that ¢ random rows are all contained in a subset of wf rows, is
at most ¢q. Therefore, in order to achieve decryption probability which is greater than ¢, the
decoder must have keys from at least a fraction w of the rows. To set the value of ¢, based
on the parameters w and ¢, observe that the probability that a pirate decoder which has
keys from w/ rows, contains keys from ¢ random rows is at most w?, and therefore setting
t =log, q= %%/%% suffices to make this probability at most ¢. For example, it is possible
to set w = g, fix the number of rows accordingly, and then set £ = 1. The broadcast center
would only have to broadcast the secret s encrypted by the keys of a single row which it
chooses randomly. The data redundancy overhead is then only O(4k).

Detection of Traitors: It can be assumed that A contains keys from at least w# rows,
since otherwise it can be used to generate a decoder which does not contain any key and
decrypts with probability at least g. It is possible to expose the keys which are contained
in a confiscated decoder A by treating it as a black box, like with fully resilient schemes:
Choose a random order of the entries of the matrix. Start with a valid message M. In step ¢
take the message M;_; and create the message M; by replacing the data encrypted with the
key of the ith entry (according to the chosen order) by random data. Feed the message M;
into the decoder. Let the set G; contain the keys in the entries numbered ¢ 4+ 1 and higher.

25

Let M; be the first message for which the pirate decoder contains keys from G in less than
a w fraction of the rows. Then step j can be identified since in this step the probability with
which the decoder can correctly decrypt reaches below ¢ (and decreases there by a factor
of at least (1 — 1/w)!). When this happens, conclude that the key corresponding to entry
4§ is contained in the pirate decoder®. Repeat this procedure until you find a key from w¢
rows. Choose one key from each row. Announce the user who contributed the maximum
number of keys to this set (and this number should be at least wf/k) to be a traitor.

For any practical purpose the parameter ¢ can be set to be a constant. However one-
level schemes are used in the next subsection as building blocks for two-level schemes and
there ¢ should be a function of other parameters. The results regarding one-level threshold
schemes are summed up in the following theorem. We first state the results for w which is
a parameter. As w increases the key length decreases and the data redundancy overhead
increases. Then we state the results for w = q.

Theorem 5 There is a g-threshold (p, k)-resilient scheme, with a parameter w taking values

in [g,1), in which a personal key consists of 2Elog(n/p) keys and the data redundancy

3w
overhead is of 4klog,, q = 4k11§gg((11//3) keys. A user should perform llggg((ll//g)) in order to

decrypt the secret.

If we set w = q then a personal key consists of % log(n/p) keys, the data redundancy
overhead is of only 4k keys, and a receiver should perform only a single decryption in order
to reveal the secret.

The scheme we presented displays a tremendous improvement in the data redundancy over-
head, but the personal key is quite long, its length is a little larger than in the fully resilient
one-level secret scheme. The next subsection presents two-level threshold schemes which
balance the two complexity parameters through a tradeoff between the key length and the
data redundancy overhead.

6.2 Two-Level Threshold Schemes

Two-level threshold schemes are constructed from one-level threshold schemes in the same
way as fully resilient two-level secret schemes were constructed. We first present a basic
construction which displays a tradeoff between the personal key length and the data redun-
dancy overhead, and which can have shorter key length than the one-level threshold scheme.
Then we change the parameters of the construction to obtain schemes with an even shorter
key length, in the price of increasing a little the data redundancy.

6.2.1 The basic construction

The construction uses a random mapping k : {1,...,n} — {1,..., 2£} Tt constructs 2ek/b
one-level subschemes secure against coalitions of b traitors and uses h to map each user to

3Note that in the detection process it is not sufficient to change the entries of just a single row r; and
check in which one of these entries the probability decreases, since the decoder might contain more rows than
are needed for the probability of decryption to be g, but still output the correct decryption result only with
probability g. Then even when the data encrypted with the keys of row r; is random, the decoder can still
have a correct output with probability ¢ by using the keys it has from the other rows, and it is impossible
to decide which of the keys of row r; in contained in the decoder.

26

a subscheme. As with the fully resilient schemes, it is required that the probability that b
or more of the k traitors are mapped together is less than p/2, namely that

D) () < () () =L <
b/ \2ek b 2ek op 21 T2

dek
plog(1/p)
the following property against b traitors: either the success probability of the traitors in

decrypting the secret is greater by less than ¢ = % from the success probability of an
adversary who does not have any of the keys, or they can be traced with probability at
least 1 — p/2. If in no subscheme the traitors have an advantage greater than ¢, then the
pirate decoder cannot decrypt with an advantage better than q.

The stages of the initialization and the distribution of the secrets are straightforward.
The subschemes are built in the same way as the one-level schemes of the previous sub-
section. As before w is a parameter that defines the minimal number of rows that enable
decryption with probability better than §. If a pirate decoder decrypts with probability
greater than ¢ it must contain keys from a w fraction of the rows in one or more of sub-
schemes.

The tracing procedure that extracts keys from a pirate decoder is performed in two
stages. First, to find a suspicious subscheme, it starts with a valid message My, and as with
the fully resilient secret two-level scheme, repeatedly changes all the information encrypted
with the keys of the ith subscheme into random data. Let subscheme i be the subscheme
for which the decryption success probability dropped the most. subscheme ¢ will be checked
in the next stage: Start with the message M; 1 and apply to subscheme 7 the method used
for tracing the sources of the keys of the one-level threshold scheme. If no more than b
traitors are mapped together, then the suspect that is finally announced is a traitor with
probability at least 1 — p/2. We therefore obtain the following theorem:

The inequality is satisfied when b = log () It is required that each subscheme has

Theorem 6 There is a q-threshold (p,k)-resilient scheme, with the parameter w taking
values in [%, 1), where b= log(lﬁlf/p)), in which:

e The length of the personal key is m = %blog@n/p) basic keys.

e The data redundancy overhead is 8ek log(%k)/log(l/w) basic encryptions.
o A receiver should perform log(2ek/(gb))/log(1/w) decryptions in order to decrypt the
secret.

The key is longer than the key in the fully resilient secret two-level scheme by a factor
of only 1/w, and the data redundancy overhead is substantially shorter. Comparing with
the one-level threshold scheme, then for the same value of the parameter w the personal
key changes by a factor of b/k, and the data redundancy overhead changes by a factor of
2e-(1+log(2ek/b)/log(1/q)). Therefore the key is shorter and the data redundancy overhead
is larger. However, the increase in the data redundancy overhead is relatively moderate: if
we denote the ratio between the key length in this scheme and in the one-level scheme as 1/«,
then the data redundancy overhead increases by a factor of only 2e(1 + log(2ec)/log(1/q)).

Note that the minimum value for w is § = ﬁ which is smaller than the minimum value

27

for w in the one-level scheme. When w is set to this value, the data redundancy overhead
is minimized to 8ek encryptions, whereas the key length is maximal, m = % log(2n/p).
Both are longer than the values for the one-level scheme by a factor of exactly 2e.

The two-level scheme features a tradeoff between the length of the personal key and the
data redundancy overhead. At one extreme there is a short key but a longer data redundancy
overhead, and in the other end the key length is maximal and the data redundancy overhead
is minimal, and both are equal up to a constant factor to the performance of the one-level
threshold scheme for minimal data redundancy overhead. Note that as with the two-level
secret scheme, the expected number of users that are mapped to each subscheme is smaller
than n by a factor of b/2ek. The subschemes can be defined for a smaller set of users and
then the length of the personal key is smaller.

6.2.2 Shorter personal keys

This section presents a threshold scheme which improves all the complexity parameters of
the most efficient fully-resilient scheme (whereas the previous tracing scheme had a great
improvement in the data redundancy and decryption overheads, but increased a bit the
length of the personal key).

The decrease in the length of the personal keys is enabled as follows: The same con-
struction as before is used, with 2ek/b; subschemes, and it is required that the probability
that more than by users are mapped together is at most p/2 (previously the values b; and
by were equal). The personal key is now composed of %bz log(2n/p) keys, and the data
redundancy overhead is of Sekg—f log(z%“) /log(1/w) basic encryptions.
The values b1, by should satisfy the following inequality:

k (1)”*2(%)”2 (1)”2‘1_@ (b_1>”2<13
by 2¢k = \ by 2¢k o 2by 2

Assume by = bf = b* (a > 1). The previous inequality is satisfied if b > ‘\"/ e k)lg%g%’}%.

We therefore obtain the following theorem:

Theorem 7 For every a > 1 there is a g-threshold (p, k)-resilient scheme, with the param-

eter w taking values in [%, 1), where b= ‘(/% . %, in which:

e The length of the personal key is m = % -b* -log(2n/p) basic keys.

2ek

)/ 10g(1/w) basic encryptions.

e The data redundancy overhead is 8ekb®~! log(

o A receiver should perform log(2ek/(gb))/log(1/w) decryptions in order to decrypt the
secret.

As « increases the personal key length decreases and the data redundancy overhead increases.
The limits of these values as @ — 0o are

e The length of the personal key is m = % - % -log(2n/p) basic keys.
e The data redundancy overhead is Sek% log(2ek/q)/ log(1/w) basic encryptions.

28

e The number of decryptions that a receiver should perform is log(2ek/q)/log(1/w).

This scheme has the shortest personal key among all the schemes we presented, but the
data redundancy overhead is longer than in the basic two-level threshold scheme. However,
the data redundancy is still shorter than in the fully resilient schemes.

7 Lower Bounds for Open Schemes

In this section we derive lower bounds on the total number of keys, r, and on the number
of keys per user, m, in any scheme that has the properties of our open schemes. Namely,
schemes where the set of all keys is S = {s1, $2,... s}, and each user ¢ gets a subset U; C S
of size m. We require that no coalition of k users (“traitors”) {i1,42,...7;} should be able
to incriminate a user by constructing a subset of the coalition keys which is equal to the
user’s subset, U;. Every k-resilient scheme must have this property (in fact, it has to have
a stronger property, that the intersection between the user’s subset and the union of the
coalition subsets is at most 1/k the size of a subset). The requirement implies that for all
k + 1 different indices 49,1, %2, ... % it should hold that U;, ¢ UleU,'j. In other words,
there is a system of n subsets of a universe S with r elements. Each subset contains m
elements. These subsets have the property that none of them is contained in the union of
k different subsets. Set systems with this “k union property” were investigated by Frdos,
Frankl and Firedi [13]. From Theorem 3.3 and Proposition 3.4 of their work, it follows that
r is at least Q(min{n, k?logn/loglogn}). From Proposition 2.1 of their work, it follows
that m > klogn/logr. These lower bounds imply the following:

Theorem 8 In any open k-resilient traceability scheme, providing every one of the n users
with m keys out of r, in a manner which satisfies the “k union property”, it holds that
r = Q(min{n, k% logn/loglogn}) and m > klogn/logr.

The lower bounds on both r and m are roughly a factor of k£ smaller than the best
construction we presented for an open traceability system.

8 Conclusions

We presented several schemes for tracing users who leak a set of keys, which are good against
coalitions of at most k corrupt users. Fully resilient schemes trace the source of keys of any
decoder which can decrypt with better probability than breaking the underlying encryption
algorithms. The most efficient fully resilient scheme was presented in Section 5.2 and
has an enabling block of length O(klogn/p). We also presented threshold schemes which
trace the source of keys of decoders whose advantage in decryption, over the probability
of just breaking the underlying encryption algorithms, is greater than some lower bound.
The threshold scheme which was most efficient in terms of data redundancy overhead was
presented in Section 6.1. It has an enabling block which contains only 4k basic encryptions,
regardless of the number of users (n) or the error probability (p). Therefore the linear
dependency on k allows for resiliency against rather large coalitions.

29

References

[1] N. Alon, J. Bruck, J. Naor, M. Naor and R. Roth, Construction of Asymptotically Good
Low-Rate Error-Correcting Codes through Pseudo-Random Graphs, IEEE Transactions
on Information Theory, vol. 38 (1992), 509-516.

[2] N. Alon and J. Spencer, The Probabilistic Method, Wiley, 1992.

[3] R. Anderson and M. Kuhn, Tamper Resistance — A Cautionary Note, Usenix Electronic
Commerce Workshop, Oakland (1996), 1-11.

[4] E. Biham and A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems, Proc.
Advances in Cryptology — Crypto 97, Springr-Verlag LNCS 1294 (1997), 513-525.

[5] D.Boneh, R. A. Demillo and R. J. Lipton, On the Importance of Checking Computations,
Proc. Advances in Cryptology — Eurocrypt ’97 (1997), 37-51.

[6] D. Boneh and M. Franklin, An efficient public key tracing scheme, Proc. Advances in
Cryptology - Crypto 99, Springer Verlag LNCS 1666 (1999), 338-353.

[7] D. Boneh and J. Shaw, Collusion-Secure Fingerprinting for Digital date, IEEE Trans-
actions on Information Theory, Vol 44, No. 5, pp. 1897-1905, 1998.

[8] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor and B. Pinkas, Multicast Security:
A Tazonomy and Some Efficient Constructions, In Proc. INFOCOM ’99. Vol. 2, pp. 708-
716, New York, NY, March 1999.

[9] J. L. Carter and M. N. Wegman, Universal Classes of Hash Functions, Journal of Com-
puter and System Sciences 18 (1979), 143-154.

[10] B. Chor, A. Fiat and M. Naor, Tracing Traitors, Proc. Advances in Cryptology —
Crypto ’94, Springr-Verlag LNCS 839 (1994), 257-270.

[11] 1.J. Cox, J. Kilian, T. Leighton and T. Shamoon, Secure Spread Spectrum Watermark-
ing for Multimedia, IEEE Trans. on Image Processing, 6, 12, 1673-1687, (1997).

[12] C. Dwork, J. Lotspiech and M. Naor, Digital Signets: Self-Enforcing Protection of
Digital Information, 28th Symposium on the Theory of Computation (1996), 489-498.

[13] P. Erdos, P. Frankl, Z. Furedi, Families of finite sets in which no set is covered by the
union of r others, Israel J. of math. 51 (1985), 79-89.

[14] A. Fiat and M. Naor, Broadcast Encryption, Proc. Advances in Cryptology - Crypto
'93 (1994), 480-491.

[15] A. Fiat and T. Tassa, Dynamic traitor tracing, Proc. Advances in Cryptology - Crypto
’99, Springer Verlag LNCS 1666 (1999), 388-397.

[16] M.L. Fredman, J. Komlés and E. Szemerédi, Storing a Sparse Table with O(1) Worst
Case Access Time, Journal of the ACM, Vol 31 (1984), 538-544.

30

[17] O. Goldreich, S. Goldwasser and S. Micali, How to construct random functions, J. of
the ACM, 33 (1986), 792-807.

[18] P. Kocher, J. Jaffe and B. Jun, Differential power analysis, Proc. Advances in Cryp-
tology - Crypto ’99, Springer Verlag LNCS 1666 (1999), 388-397.

[19] K. Mehlhorn, Data Structures and Algorithms: Sorting and Searching,
Springer-Verlag (1984).

[20] F. J. MacWilliams and N. J. A. Sloane, The theory of error correcting codes,
North Holland, Amsterdam, (1977).

[21] M. Naor and B. Pinkas, Threshold Traitor Tracing, Proc. Advances in Cryptology —
Crypto 98, Springer-Verlag LNCS 1462 (1998), 502-517.

[22] B. Pfitzmann, Trials of Traced Traitors, Workshop on Information Hiding, Cambridge,
UK, LNCS 1174, Springer-Verlag (1996), 49-64.

[23] D.R. Stinson and R. Wei, Combinatorial properties and constructions of traceability
schemes and frameproof codes, SIAm J. Discrete Math, 11 (1998), 41-53.

[24] J.N. Staddon, A combinatorial study of communication, storage and traceability in
broadcast encryption systems, Ph.D. these, University of California at Berkeley, 1997.

[25] D.M. Wallner, E.J. Harder, R.C. Agee, Key Management for Multicast: Issues and
Architectures, RFC 2627, June 1999.

[26] M. N. Wegman and J. L. Carter, New Hash Functions and Their Use in Authentication
and Set Equality, Journal of Computer and System Sciences 22 (1981), 265-279.

31

Appendix

A A Secret Two Level Scheme — A Simpler Version

This appendix contains an alternative proof for the security of the two-level secret scheme.
The main difference between this proof and the proof of Section 5.2 is that users are mapped
to 2ek/b (and not 2ek/b') subschemes. The proof presented here might be simpler since it
does not use the extra parameter b'. However, the overhead of the scheme is slightly larger.

The construction uses a random mapping h from the domain {1,...,n} to a range of
size 2ek/b. For any fixed set of k traitors it holds that the probability that b or more traitors
are mapped together by A is at most

(k) (b)b—l (ek)b (b)b—l ek 1

_— < (= S == .-
b) \2ek —\b 2ek b 201
Setting b = log(1/p) + 2 + log(ek/log(1/p)) = log(zﬁ) implies that this probability is
smaller than p/2. Once such a mapping is chosen the construction uses the (b, p/2)-resilient
construction of Section 5.1 for each set of preimages h (i) for 1 < i < 2ek/b.

The detection of traitors is performed as in the two-level scheme of Section 5.2. The
resiliency of the scheme is based on the fact that if no more than b traitors are mapped
together (which happens with probability p/2), then the probability of incriminating any
user (say 1), is the probability that the subset of traitors that is mapped to h(1) (and by
assumption is of size at most b) succeeds in incriminating him.

The number of keys a user gets in this scheme is simply the number of keys a user gets
in the (b, p/2)-resilient scheme. The size of the enabling block is 2ek/b times the size of the
enabling block in the (b, p/2)-resilient scheme.

We thus obtain the following theorem:

Theorem 9 There is a (p,k)-resilient secret traceability scheme, where a user’s personal
key contains %blog(Zn/p) decryption keys, and an enabling block consists of %ekblog(?n/p)

encryptions, where b = log(zﬁ).

32

