
Learning-Based Localized Offloading with Resource-Constrained Data Centers

Jia Guo, James B. Wendt, Miodrag Potkonjak
Computer Science Department

University of California, Los Angeles
Email: {jia, jwendt, miodrag}@cs.ucla.edu

Abstract—Offloading has emerged as a new paradigm to save
energy for mobile devices in the context of cloud computing
systems. Unlike the traditional cloud computing, it offers the
flexibility of switching between local and remote execution,
and employs accurate profiling of tasks. Given a resource-
constrained data center, an interesting optimization question
is which tasks should be offloaded/run locally so that global
energy savings is maximized. The main technical difficulties are
related to the uncertainty and variability of congestion, as well
as the need for a real-time, low overhead and localized decision
procedure that are near optimal. We introduce a combination
of statistical and learning-based techniques that use the results
of offline centralized algorithms to create localized online
solutions that perform well under realistic workloads. The
procedures and algorithms are compared with upper bounds
to demonstrate their effectiveness.

Keywords-offloading; scheduling; online localized decision;
classification;

I. INTRODUCTION

Energy is one of the biggest constraints for the develop-
ment of mobile technologies. In recent years, researchers
have proposed various frameworks that enable offloading
applications to the cloud as a way of saving energy [1]
[2] [3]. These frameworks promise to drastically reduce
the energy consumption emerging scenarios like gaming,
context sensing [4], mobile health [5] and various computer
vision related applications. One difference from the tradi-
tional cloud computing is that offloading offers the flexibility
of switching between local and remote execution. Thanks to
the flexibility, data centers serving offloading frameworks
do not need to be over-provisioned to ensure the service for
every single task. Instead, it can select only the efficient tasks
based on the fine grained profiling employed by offloading
frameworks. Consider the utilization rate of only 10-50%
in today’s data centers [6], the reduction in the cost can be
huge.

The key in designing such a system involves solving an
optimization problem: given data center resource constraints,
how can we decide which tasks to offload such that the
global energy savings are maximized. The system is desired
to be localized, i.e., an optimal offloading decision should
be made by mobile devices without communicating with the
data center to avoid the unnecessary energy overhead. The
system also needs to be light weight to enable occasional
update, when major change in the workload happens. An-

Table I: Task Model

Parameter Explanation Example
τ l Local exec. time 300s
τc Cloud exec. time 20s
τ t Transmission time 20s
El Local exec. energy 300J
Ec Offload energy overhead 20J
tr Release time 36000s
td Deadline 36400s

other difficulty involves the uncertainty and variability of
congestion.

Our solution is able to satisfy all the aforementioned
requirements by learning online localized decisions from
offline centralized solutions. Contributions of this paper are
as follows. First, we are the first to propose a learning-
based localized solution to the resource allocation problem
in offloading systems. Second, we propose a novel time-
efficient offline scheduling algorithm that achieves near-
optimal results. Third, we use real life work load traces to
build realistic simulation of the offloading system.

II. PRELIMINARIES

Consider a scenario where various users offload tasks to
the cloud for remote execution. The users neither commu-
nicate nor interfere with each other. The data center has
a limited number C of machines, and we assume each
machine runs a single task in a non-preemptive fashion.
The tasks have a release time and a deadline, and are also
characterized by a set of parameters derived from established
computation, network, and energy models [7]. Table I shows
the parameters and exemplary values. We further define
benefit b of a task to be the energy savings per unit cloud
execution time.

Since no offloading systems exist in full production, there
is currently limited available real usage data. We can only
assume similarity between some aspects of existing systems
and the offloading system. We examined the traces of Google
computing clusters [8] and adopted power law and log
normal distribution for the amounts of computation and data
size of tasks respectively. We use real-life cellular network
traces for the arrival model of offloading tasks, with the
assumption that the variance and unpredictability of the
offloading workload can be characterized by the traces.

In offloading, the tasks can either run locally or be
executed remotely in the cloud. Define Dl

i ∈ {1, 0} to
be the local decision on whether task Ti is offloaded to
the cloud, and Dc

i ∈ {1, 0} to be whether the data center
executes Ti. The energy savings ∆Ei for the task will be
in the following three states depending on the decisions:
if successfully offloaded and executed in the data center,
∆Ei = Eli − Eci ; if offloaded yet not scheduled due to
resource limits ∆Ei = −Eci ; if locally executed (without
being offloaded) ∆Ei = 0. Our goal, therefore, is to find
an online localized decision process for Dl

i(t) and Dc
i (t) at

time slot t such that the overall energy savings
∑

∆Ei is
near-maximal. Notice that the time also plays an important
role in the decision, and thus we annotate the decision with
t as a parameter.

III. METHOD

To solve the optimization problem, we first examine
it in an offline environment. We formulate our problem
as a scheduling problem, and show upper bounds of the
solution to the problem. We then propose an algorithm that
achieves near-optimal results by using statistical techniques.
The information from offline scheduling is extracted by
classification, which enable local users to make localized
real-time online decision for offloading.

A. Offline Scheduling

1) The Scheduling Problem: The offline phase assumes
centralized control and the knowledge of all the tasks.
Despite the complicated models and procedures, the core
task of the offline phase is equivalent to the following: we
want to decide when and which tasks to be scheduled locally
or in the cloud, such that the energy is maximized. Thus the
offline problem can be simplified to a scheduling problem of
minimizing the number of weighted tardy jobs [9], where the
weight corresponds to the energy savings ∆Ei of the task.
The simplification is justified because the offload procedure
(Dl

i(t) and Dc
i (t)) no longer matters, as long as there’s one

final decision Di(t) for each task on whether and when it’s
executed in the data center. The scheduling problem is NP-
hard [9]. It is apparently not feasible to obtain the optimal
results even in the offline settings. Therefore, we propose a
polynomial near-optimal algorithm to tackle the problem.

2) Baselines and Upper Bound: We use two baseline
algorithms: Deadline and Greedy. Deadline refers to the
earliest deadline algorithm, which is proved to be optimal
in unweighted scheduling problems. The Greedy baseline
orders tasks according to their benefit b and schedules each
task at the earliest time slot available.

Based on the upper bound proposed by Bar-Noy et al.
[10], we propose a faster linear programming (LP) based
upper bound to show the effectiveness of our offline algo-
rithm. The LP relaxes the problem by a) allowing preemptive
scheduling; and b) allowing a fraction of a task to be

scheduled. The formulation of LP is as follows. Note that
xit is 0 for t 6∈ [tri , t

d
i).

maximize
xit

N∑
i=1

tdi−1∑
t=tri

bi · xit

subject to
tdi−1∑
t=tri

xit ≤ τ ci , for each i

N∑
i=0

xit ≤ C, for each t

0 ≤ xit ≤ 1

3) The Probabilistic Approach: The proposed offline
algorithm builds upon the greedy algorithm, but it takes a
step further by first “shifting” the tasks to less congested
area so as to optimally use the resources. Since there is no
prior knowledge about congestion at any time slot t, we
estimate it using the probability of a task being scheduled
at t. Between tr and td, each possible schedule the task
will share the same probability, and all of them contribute
to the probabilistic congestion. With this estimation, we can
smooth out congestion by shifting each task by just once,
thus achieving linear complexity.

Now we define our approach in more details. Let n be
the number of possible schedules for a task T , where n =
td − tr − τ c + 1, thus each schedule has a probability of
1/n. Figure 1 shows the probabilistic distribution of two
example tasks. Both tasks have tr = 0 and td = 6, while τ c

equals 3 and 4 respectively. Consider the first task, where
one schedule occupies slot 0, thus yielding a probability of
1/4; two schedules occupy slot 2, thus yielding a probability
of 2/4, etc. Let tt = min(tr+τ c−1, td−τ c). The probability
can be defined by Equation 1.

Pr(t) =

t−tr+1
n if tr ≤ t < tt

min(n,τc)
n if tt ≤ t < td − τ c

td−t
n if td − τ c ≤ t < td

0 otherwise

(1)

Algorithm 1 describes the procedure of probabilistic shift-
ing. The algorithm iteratively finds the least congested slot,
and shifts a task in the slot to a position with the minimum
average probabilistic congestion. With bounded tr − td and
bounded number of time slots, the algorithm execute in
O(N) time. After the shifting, we then apply the greedy
scheduling algorithm to obtain the final offline decision
Di(t) for each task Ti.

B. Classification

In the classification phase, we train local offload decision
Dl
i(t) based on the offline solution Di(t). The idea is to

Pr(t)
𝟏

𝟒

𝟐

𝟒

𝟑

𝟒

𝟑

𝟒

𝟐

𝟒

𝟏

𝟒
 0

t 0 1 2 3 4 5 6

Pr(t)
𝟏

𝟑

𝟐

𝟑

𝟑

𝟑

𝟑

𝟑

𝟐

𝟑

𝟏

𝟑
 0

t 0 1 2 3 4 5 6

Task

3
 P

o
s
s
ib

le

S
c
h
e
d
u
le

s

Figure 1: The probabilistic distribution of two example tasks

Algorithm 1 Probabilistic Shifting Algorithm

1: pc(t)← probabilistic congestion at time slot t
2: while not all t marked explored do
3: tmin ← argmin

t
pc(t)

4: T = {Ti|tri ≤ tmin < tdi , Ti is not explored }
5: if T == ∅ then
6: mark tmin as explored
7: else
8: select Ti ∈ T
9: remove Ti from pc

10: tr′i ← argmin
tr′i

1
tdi−tr′i

(
tdi∑

t=tr′i

pc(t) + τ ci · 1

)
11: mark Ti as explored
12: update pc(t) where t ∈ [tr′i , t

d
i)

13: end if
14: end while

enable local users to be able to assess the quality of tasks,
and thus avoid offloading inefficient tasks that are unlikely
to be scheduled by the data center. In short, if a similar task
is scheduled in the optimal solution, then it’s likely to be
offloaded to the data center.

1) Classifier: We use L1 regularized Logistic Regression
classifier for classification. We choose it for its simple repre-
sentation as a function (as apposed to instances in instance-
based learning), which enables cheap update. Further, regres-
sion model fits more conceptually with the problem. The
underlying relationships between features are continuous,
and that no causal relationship (i.e. Bayesian network) exists.
Thus we choose logistic regression over other classifiers.

2) Training: The training set is the offline solution
{(xi, Di(t)), i = 1, . . . , n}, where each task Ti has a feature
vector xi, and class label (1: scheduled , 0: not scheduled).
The logistic regression model estimates the probability of
Pr(D = 1|X = x) = 1/(1 + exp(−wTx)), where w refers
to the parameters of the model. L1 regularization penalizes
the model an additional term λ||w||, where λ is the strength.

Table II shows the list of features we found relevant
through regularization. Using different strengths λi, different
features are selected, and each contribute either positively

Table II: Feature Selection

Feature Explanation λ1 λ2 λ3

τc Cloud Exec. Time −
τs Slack + +
b Benefit + + +

or negatively to the selection decision (denoted by +/−).
The most relevant feature is benefit, which essentially
represents the energy efficiency of the task. Following it
is slack, defined by td − τ r − τ t − tr, which is another
positively weighted feature representing the flexibility of
the task. High flexibility grants more waiting time and thus
implies higher chance of being scheduled. Our final choice
for regularization strength is λ2, which selects benefit and
slack as features.

The traffic volume varies at different times of the day,
and thus the parameters w(t) should be a function of t.
For simplicity, we choose w(t) to be a discrete function,
where there is a set of parameters for each predefined period
(e.g. 1 hour). We refer the length of the period to be the
granularity of the model. The logistic regression classifier
is also susceptible to bias when the training set is unbalanced
(e.g. too many 0 class). Thus in selecting training sets Di(t)
from the offline solution, we use t = release time for
unscheduled tasks, t = scheduled start time for scheduled
tasks, and carefully keep number balanced.

C. Baselines

In the online scenario, the data center maintains a queue of
tasks to be executed. In Naive baseline, Dc

i (t) is based on
First-Come-First-Serve, while the Greedy baseline always
schedules the task with the largest benefit. Our Classified
approach differs from the greedy approach by enabling clas-
sified local decision Dl

i(t), instead of offloading everyone.

IV. EVAULATION

We simulate a system where the number of tasks is in the
scale of 10e5. We run various experiments at a granularity
of 10 seconds per time slot over the period of a day, and
obtain the results shown in this section.

A. System Performance

We conduct 10 runs of experiments using cellular net-
work traces on different days. The number of machines in
the data center is set such that around 70% of the tasks
can be scheduled. The classification model is built with
a granularity of 1 hour. Table III shows the results. We
observe that our offline algorithm is almost as good as the
upper bound, while the online algorithm performs close to
the offline algorithm while outperforming the baselines. The
results also demonstrate the stability of our algorithm.

Notice that among the earliest deadline, greedy, and
probabilistic algorithm, the number of tasks scheduled de-
creases yet the energy saved increases. This is due to the

Table III: System Performance

Offline Tasks Scheduled /% Energy Saved /% Ratio
All 100 90.6 ± 0.1 10.63x
Upperbnd N/A 78.0 ± 1.2 4.545x
Deadline 74.9 ± 1.8 73.3 ± 1.3 3.751x
Greedy 64.9 ± 2.1 76.7 ± 1.3 4.295x
Probabilistic 63.5 ± 2.2 77.2 ± 1.2 4.395x

Online Tasks Scheduled /% Energy Saved /% Ratio
Naive 75.5 ± 1.7 72.0 ± 1.4 3.566x
Greedy 62.7 ± 2.2 73.7 ± 1.4 3.803x
Classified 60.1 ± 2.2 75.7 ± 1.3 4.116x

0.20.40.60.81.01.21.41.61.82.0
Resource ratio

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
ta

g
e
 o

f
e
n
e
rg

y
 s

a
v
e
d

Offline

Naive

Greedy

Trained

(a)

100 101 102 103

Number of parameter sets

0.68

0.70

0.72

0.74

0.76

0.78

P
e
rc

e
n
ta

g
e
 o

f
e
n
e
rg

y
 s

a
v
e
d

Offline

Naive

Greedy

Trained

(b)

Figure 2: (a) shows the performance with different data
center resource ratio (b) shows performance with different
granularity of training

fact that energy savings of tasks with heavier computa-
tion can amortize the fixed components in the offloading
overhead, an observation in accordance with [2]. In our
power law distributed model, vast majority of tasks are less
computationally inexpensive. Thus, scheduling more of the
”beneficial” tasks in our proposed approach results in less
head counts but better performance.

B. Discussion

1) Data Center Provisioning: We use the ratio of the
total amount of resources to the total demand to denote
the relative amount resources the data center has. Figure
2(a) demonstrate the energy total energy savings of the
system when we provide data center with different amount
of resources. Since there are fluctuations in the demand over
a day, the resource can be under utilized in most of the time.
We observe that a ratio of 1.6 would be sufficient to satisfy
the resource requests, a number way below the peak demand.
As the amount of resources increases, the increase in energy
saved does not grow linearly. It should provide a reference
to system designers on how to design the trade-off between
energy savings and data center provisioning.

2) Granularity of Classification Model: Figure 2(b)
demonstrates performance when using classifier models w(t)
with different granularity in t (number different sets of
w(t)). If the model is shared among large intervals, the
model is too coarse-grained and the performance is close

to greedy; if intervals are too small, the system will over-fit
and thus performance begins to drop again. We see a huge
increase from 2 to 3 sets (8 to 12 hour period), and it starts
to become steady around using 8 sets (3 hour period).

V. CONCLUSION

In this paper, we introduce a learning based localized
solution to the resource allocation problem in offloading
system. We propose a novel time-efficient statistical offline
scheduling algorithm that achieves near-optimal solution
compared to upper bounds. The classifier-based online algo-
rithm shown performance close to offline algorithms under
simulation using realistic workload traces.

ACKNOWLEDGEMENTS

This work was supported in part by the NSF under
award CNS-0958369, award CNS-1059435, and award CCF-
0926127, and by Samsung under award GRO-20130123.

REFERENCES

[1] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl, “MAUI: making smart-
phones last longer with code offload,” in Proceedings of the
8th International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys, 2010, pp. 49–62.

[2] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: elastic execution between mobile device and
cloud,” in European Conference on Computer Systems, Pro-
ceedings of the Sixth European conference on Computer
systems, EuroSys, 2011, pp. 301–314.

[3] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang,
“Thinkair: Dynamic resource allocation and parallel execution
in the cloud for mobile code offloading,” in Proceedings of
the IEEE INFOCOM 2012, 2012, pp. 945–953.

[4] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park,
and J. Song, “Seemon: scalable and energy-efficient context
monitoring framework for sensor-rich mobile environments,”
in Proceedings of the 6th International Conference on Mobile
Systems, Applications, and Services, MobiSys, 2008, pp. 267–
280.

[5] J. H. Ahnn and M. Potkonjak, “mhealthmon: Toward energy-
efficient and distributed mobile health monitoring using par-
allel offloading,” J. Medical Systems, vol. 37, no. 5, p. 9957,
2013.

[6] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter
as a Computer: An Introduction to the Design of Warehouse-
Scale Machines, Second Edition, ser. Synthesis Lectures on
Computer Architecture. Morgan & Claypool Publishers,
2013.

[7] K. Kumar and Y. Lu, “Cloud computing for mobile users:
Can offloading computation save energy?” IEEE Computer,
vol. 43, no. 4, pp. 51–56, 2010.

[8] J. Wilkes, “More Google cluster data,” Google research
blog, Nov. 2011, posted at http://googleresearch.blogspot.
com/2011/11/more-google-cluster-data.html.

[9] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan,
“Optimization and approximation in deterministic sequencing
and scheduling: a survey,” Annals of Discrete Mathematics,
vol. 5, pp. 287–326, 1979.

[10] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber, “Approx-
imating the throughput of multiple machines in real-time
scheduling,” SIAM J. Comput., vol. 31, no. 2, pp. 331–352,
2001.

