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Abstract

This paper addresses an optimal technique for throughput optimiza-
tion of general non-linear data flow computations using a set of
transformations. Throughput is widely recognized as the most im-
portant design metric of the modern DSP and communication appli-
cations. Numerous approaches have been proposed for throughput
optimization, but most was restricted to limited classes of com-
putations. They have limited effectiveness when applied to large
complex non-linear DSP and communication computations. The
new technique is used as an optimization engine in a divide-and-
conquer global approach for throughput optimization. We demon-
strate the effectiveness of the new technique on numerous real-life
non-linear designs.

1 Introduction
Throughput is widely recognized as the most important design met-
ric of modern DSP and communication applications [7]. Tech-
niques for optimizing throughput are also widely used during the
optimization of other design metrics such as area and power. For
example, one of the most effective techniques to optimize power
is voltage scaling which is enabled by throughput optimization [1].
Iteration bound, and control and data dependencies impose funda-
mental limits on achievable performance. Transformations are one
of the most effective ways to overcome these limitations [10, 1].
Transformations alter the structure of a computation in such a way
that the user specified input/output relationship is maintained. Nu-
merous approaches have been proposed for throughput optimiza-
tion using transformations, but most was restricted to limited classes
of computations such as linear computations and even more re-
stricted instances of linear computations [8, 9]. They are inappli-
cable or ineffective when applied to large complex non-linear DSP
and communication computations. Guerra et al. [2] recently pro-
posed a divide-and-conquer approach for general non-linear com-
putations which leverages upon existing techniques for limited com-
putation types by enabling more effective and coordinated use of
the techniques. The approach logically divides the whole compu-
tation into subparts which may fall into special computation types
that can be optimized effectively by existing techniques. However,
the approach is ineffective when subparts are classified as general
non-linear computation for which there are few existing effective
techniques for throughput optimization.

To overcome these limits, this paper addresses an optimal tech-
nique for throughput optimization of general non-linear computa-
tions using a set of transformations (distributivity, associativity, in-
verse and zero element law, common subexpression replication and
elimination, constant propagation, pipelining and unfolding). The
target applications are large complex non-linear DSP and commu-
nication data-flow intensive computations.

To illustrate the key ideas behind the new approach and show its
effectiveness, consider the control data flow graph (CDFG) of 2nd
order Volterra filter, shown in Figure 1(a). The 2nd order Volterra
filter is non-linear. The critical path of the computation is 12 clock
cycles, assuming each operator takes one clock cycle. The critical
path occurs when the next state of the delayD3 is computed. A
number of known techniques can be used to improve the through-
put, but only by limited amounts. For example, pipelining may
reduce the critical path to at best 9 clock cycles. Using the tech-
nique proposed in this paper, the critical path can be reduced to 6,
as shown in Figure 1(b).
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Figure 1: Motivational example: 2nd order Volterra filter

2 Related Work
Numerous techniques for throughput optimization have been pro-
posed. The first set of techniques is based on transformations [6,
8, 9]. For control-flow intensive computations, Lakshminarayana
and Jha [4] proposed a set of techniques for throughput and power
optimization. Most was restricted to limited classes of compu-
tations such as linear computations and even more restricted in-
stances of linear computations. Guerra et al. [2] proposed a divide-
and-conquer approach for general non-linear computations which
logically divides the computation into subparts and applies sets of
individual techniques for limited computation types to subparts.
This technique has limited effectiveness when subparts are clas-
sified as general non-linear computation for which there are few
existing effective optimization techniques. In this research, we de-
velop an optimal technique for throughput optimization of general
non-linear computations using a set of transformations. In general,
arbitrary speed-up is not known to be achievable for some classes
of non-linear computation [3].

3 Preliminaries
We assume that an arbitrary non-linear computation is given. We
do not impose any restrictions on considered non-linear computa-
tion. We use as computational model homogeneous synchronous
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data flow model [5], which is widely used in many application do-
mains such as DSP, video and image processing, communications,
control, and information theory applications. Under this model, the
operations consume a single sample from each input and produce
a single sample on each output, on every execution. Operation de-
lays are given as an integral number of clock cycles. An important
ramification of the semantics of the selected computation model is
that it lends itself to efficient static scheduling. Furthermore, un-
der this model, throughput is the relevant metric of performance,
where throughput is the maximum rate at which a design can ac-
cept and process incoming samples. The inverse of the throughput
is the critical path length, which is the maximum length of all paths
which start at any of the primary inputs or states and finish at any
of the primary outputs or states.

Non-recursive computations, either linear or non-linear, can be
maximally sped up by pipelining. The critical path length of the
computations can be reduced to the maximum delay of the longest
operator in the computation. LetDmax denote the maximum delay
of the longest operator in the computation. Combined with time-
loop unfolding, this type of computations can be arbitrarily sped up
since the effective critical path length is reduced toDmax=(k+ 1)
when the unfolding factor isk. Based on these results, the parts of
the general non-linear computation which do not belong to feed-
back cycles can be optimized separately from those which belong
to feedback cycles. Thus, we concentrate on the parts which belong
to feedback cycles in our study to develop a technique for through-
put optimization of general non-linear computation.

In linear computations, the next state (delay) and the outputs are
linear functions of the previous states and inputs. A system exhibits
linearity when using as computational elements only addition, sub-
traction and multiplication with constants. A system can also ex-
hibit linearity over eithermin or max in place of the addition, and
addition in place of the multiplication with constants. Given arbi-
trary linear computations, the maximally fast technique [9], which
combines several algebraic and redundancy manipulation transfor-
mations, reduces the critical path length toC = dlog2(N)+1e+1,
whereN is the number of states. Combined with time-loop un-
folding, the technique arbitrarily speeds up the linear computations
such that the effective critical path length is reduced toC=(k+ 1),
wherek is the unfolding factor.

The class of feedback linear computations is a special class of
general non-linear computations such that there are no multiplica-
tions or divisions between variables in feedback cycles. These com-
putations may have multiplications and divisions between primary
inputs, between primary inputs and algorithmic delays in feedback
cycles, or between algorithmic delays, not in feedback cycles. The
maximally fast approach for linear computation can be applied to
this class of computations to result in arbitrary speed-up of through-
put [2, 9].

A limited subset of general non-linear computations can be
translated into a form in which all non-linear operations are moved
outside of feedback cycles. A computation containing only variable
multiplications is such a computation [2].

4 Global Approach
Our strategy for optimizing throughput of general non-linear com-
putations is based on the divide-and-conquer paradigm [2]. The
divide-and-conquer approach is based on an observation that while
a given computation may overall be difficult to optimize, some of
its subparts can be optimized more easily. The divide-and-conquer
approach divides a computation into subparts, which are separately
optimized and thus enables more effective use of existing tech-
niques for special classes of computations. This approach has lim-
ited effectiveness when subparts do not fall into one of the spe-
cial classes of computations for which effective techniques exist.
We develop an optimal technique to optimize throughput of gen-
eral non-linear computation using a set of transformations. This

new technique is used as an optimization engine when subparts are
classified as general non-linear computation.

The divide step partitions the computation by identifying mu-
tually exclusive subparts. This involves identifying operations in-
side feedback cycles, and those outside of feedback cycles. Since
all operations outside of feedback cycles can be pipelined to any
requested level, we only need to consider the subparts of the com-
putation inside feedback cycles for throughput optimization. The
identification of operations inside feedback cycles is done by iden-
tifying the computation’s strongly connected components(SCCs),
using the standard depth-first search-based algorithm [11]. For any
pair of operations A and B within a SCC, there exist both a path
from A to B, and one from B to A. All operations in non-trivial
SCCs (those with more than one operation) are part of a feedback
cycle. The non-trivial SCCs are isolated from each other and from
parts outside of feedback cycles using pipeline delays, which al-
lows independent optimization. During subpart optimization, the
inserted pipeline delays are treated like a subpart primary input or
primary output, depending on whether the subpart reads from or
writes to the delay. The non-trivial SCCs are classified as being ei-
ther linear or non-linear. Non-linear computations are further clas-
sified as being either feedback linear, being transformable to a form
in which all non-linearities are moved outside of the SCC, or being
neither.

Depending on the class in which an SCC belongs to, differ-
ent optimal techniques are used to optimize throughput. The global
throughput of the whole computation is the minimum of the through-
puts for all SCCs. For each class of computations except the last
class, the general non-linear computation, there exist optimal tech-
niques for throughput optimization. We develop an optimal tech-
nique for throughput optimization of general non-linear computa-
tions, which is described in Section 5.

5 Throughput Optimization of General Non-Linear
Computations

In this Section, we describe a new technique to optimize throughput
of general non-linear computations.
5.1 Enabling Steps
Unfolding the computation by a factor ofk results in the simultane-
ous computation ofk+1 iterations of the computation. For general
non-linear computations, the throughput will continue to improve
with larger factors of unfolding up to some point and then level
off with larger factors. The search to find an optimal unfolding
factor starts with an unfolding factor of 1. As long as the through-
put continues to improve, the factor is doubled and the throughput
optimization is performed. Once no improvement is achieved, a
binary search between the current factork and previously tried fac-
tor, k=2, is performed to find the smallest optimal factor for which
improvement will cease.

For the computation, unfolded by any factor, we apply the same
technique to optimize throughput. First, we group and pipeline
all primary inputs so that each next state depends on only one
new pipeline delay. This step is an enabling transformation which
greatly reduces the influence of the primary inputs. This step is
most effective when a computation has a large number of primary
inputs and relatively few states in feedback cycles. Next, we iden-
tify dependencies between delays (both algorithmic and pipeline
delays) and non-linear operations. The dependencies can be repre-
sented in a directed acyclic graph. Finally, using the dependency
information obtained in the last step, we arrange all output cones
for next states using the fastest tree structure as described in the
next subsections. The global throughput is the minimum of the
throughputs for all output cones.
5.2 General Output Cone
Given a general output cone, the dependencies between delays and
non-linear operations can be represented in a tree. If there are
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only linear operations between delays, between nonlinear opera-
tions, and between delays and non-linear operations, we connect a
directed edge between them. At the top level, an output may be de-
pendent on some independent non-linear operations and some de-
lays. Each of these independent non-linear operations may depend
on some other independent non-linear operations and some delays.
In the base of the tree, non-linear operations depend on only some
delays.

We note that the output of the parts can be of the following
two types:linear output- the output does not depend on any non-
linear operations,non-linear output- the output depends on some
non-linear operations. We can further classify the non-linear output
into one with only one non-linear operation and one with more than
one non-linear operations. The first case is interesting to consider
because it gives us some insights on the effect of the non-linear
operations on the critical path length (CPL) of the output cone.
5.2.1 Linear Output
If an output does not depend on any non-linear operations, the out-
put can be represented as linear combination of the delays which it
depends on. The throughput of the output cone can be optimized
using the maximally-fast approach in [9].
5.2.2 Output with One Non-Linear Operation
We consider an output cone which includes only one non-linear
operation and a number of linear operations. This special case is
interesting to consider because it gives us some insights on the ef-
fect of the non-linear operations on the critical path length (CPL) of
the computation. Suppose that the CPL of the output cone by the
maximally fast technique isl + 1, assuming all linear operations
in the output cone. Letn be the number of delays for the output
cone. It follows that2l�1 < n � 2l. Letx be the maximum num-
ber of delays that the inputs of the non-linear operation depend on.
The fastest way to compute the output of the non-linear operation
is that all the inputs are computed by the maximally fast technique
and then the non-linear operation is performed. Thus, the CPL for
the non-linear part isdlogx + 2e. We treat this output as an addi-
tional input to the maximally fast tree for the whole output cone.
Of course, the available time of this input depends on the CPL for
the non-linear part. There are four cases to consider in terms of the
CPL of the non-linear output cone comparing with that of the cor-
responding linear output cone. The worst case arises whenx is the
same asn. In this case, the CPL for the non-linear output cone in-
creases by three from that of the corresponding linear output cone.

1. no increase in CPL:This case happens whenp + n � 2l,
wherep = 2m andm is the smallest integer such that2m �
4x.

2. increase in CPL by one: This case happens when there is
nop that satisfies the case 1 andx � 2l�2.

3. increase in CPL by two: This case happens when2l�2 <
x � 2l�2 + 2l�1.

4. increase in CPL by three: This case happens when2l�2 +
2l�1 < x � n

From this analysis, we note that the maximum number of de-
lays that the inputs of a non-linear operation depend on should be
minimized to optimize the critical path length of the computation.

5.2.3 Output with k Independent Non-Linear Op-
erations

We assume that the output cone of each independent non-linear op-
eration has already been recursively optimized. We also assume
that the linear part consists ofd delays. Our goal is to find the
fastest tree structure that maintains the original input/output rela-
tionship. It is equivalent to find the fastest tree structure of all in-
puts which consist of both the outputs of thek non-linear opera-
tions andd delays, where the inputs may arrive at different timing

based on the critical path length of the non-linear output cone of
the non-linear operation.

Algorithm for Throughput Optimization of k Independent
Non-Linear Operations andd Delays
1. Sort thek independent non-linear operations andd delays

in the decreasing order of critical path length. Let the
non-linear operations and delaysn1; � � � ; nk and
D1; � � � ; Dd, respectively in the order;

2. Connect the inputn1 to a multiplication with constant.
The output of the multiplication is connected to an addition.
CPL = height(n1) + 2, where height(n1) is the height of
the output cone for the inputn1;

3. Next Input = Build Tree(n2, CPL-1);
4. Connect the tree built to the addition;
5. While (Some inputs are left out of the tree)f
6. Connect the output of the addition to another additionan.

CPL = CPL + 1;
7. Next Input = Build Tree(NextInput, CPL-1);
8. Connect the tree built to the additionan;
9. g
10. Return the tree built;
Build Tree(n, C)
1. Connect the inputn to a multiplication with constant.

The output of the multiplication is connected to an addition.
CPL = height(n) + 2, where height(n) is the height of the
output cone for the inputn. Let Next Input be the next
input of the inputn in the sorted list;

2. If (height(NextInput) = height(n)) f
Connect the input NextInput to a multiplication with
constant. The output of the multiplication is connected
to the addition;

3. g Elsef
4. Next Input = Build Tree(NextInput, CPL-1);
5. Connect the tree built to the addition;
6. g
7. While (CPL< C and some inputs are left out of the tree)f
8. Connect the output of the addition to another additionan.

CPL = CPL + 1;
9. Next Input = Build Tree(NextInput, CPL-1);
10. Connect the tree built to the additionan;
11.g
12. Return the tree built and the NextInput;

Figure 2: Pseudo code for throughput optimization of output with
k independent non-linear operations andd delays

We now describe an algorithm to solve the problem optimally.
The pseudo code of the algorithm is shown in Figure 2. We first sort
the inputs (k non-linear output cones andd delays) in the order of
decreasing critical path length. We process the inputs in this order.
Obviously, thed delays have their critical path lengths of0. We
solve a problem to build a tree with the smallest height for all the
inputs. In the first step, the inputn1, the output of the non-linear
operationn1, is connected to a multiplication with constant and
then the output of the multiplication is connected to one input of an
additiona1. The constant of the multiplication can be determined
from the original computation. The critical path length has been
increased by two from the critical path length of the output cone of
the non-linear operationn1. In the next step, we solve a problem
where for the other input of the additiona1, we need to include as
many inputs as possible that does not increase the current critical
path length. If any inputs are left out of the tree built, then the
output of the additiona1 is connected to an input of the addition
a2. Now the critical path length has been increased by one. For
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CPL CPL % Red. % Red.
of of New From From

Design ICPL [2] Method ICPL CPL of [2]
1st order 7 6 5 29 17

Volterra filter
2nd order 12 9 6 50 33

Volterra filter
3rd order 17 12 8 41 33

Volterra filter
4th order 22 16 9 59 44

Volterra filter
5th order 27 19 9 67 53

Volterra filter
3rd order 11 11 5 55 55

Noise Sharper
5th order 15 15 6 60 60

Noise Sharper
ADPCM 72 5 3 96 40

Echo 320 7 5 98 29
Canceller

DAC 220 2 2 99 0
Vocoder 110 5 4 95 20

Table 1: Throughput optimization of non-linear real-life designs
with no unfolding: ICPL - initial critical path length

the other input of the additiona2, we include as many inputs as
possible that does not increase the current critical path length. We
repeat this process until all inputs are included in the tree.

Note that the maximally fast tree in [9] is a solution for a spe-
cial case of this problem when all the inputs arrive at time0. We
can verify that the new algorithm constructs the tree with the same
height as the maximally fast tree for the special case.

6 Experimental Results
We have used several Volterra filters of different orders, several
Noise Sharpers, Echo Canceller, Vocoder, NEC DAC (digital-to-
analog converter), and ADPCM (adaptive delta pulse code mod-
ulation) for experimental results. Table 1 shows throughput im-
provement achieved using the best previous approach by [2] and
using the new approach with optimization engine of general non-
linear computation with no unfolding. Table 2 shows throughput
improvement achieved for non-restricted amount of unfolding.

When no unfolding is used, our approach reduces the critical
path lengths from the technique of [2] by 35 % on average. When
unfolding is used, for the five different Volterra filters, we improve
the critical path lengths from the technique of [2] by more than 50
%. For the other designs, both the technique of [2] and ours result
in arbitrary speed-up of throughput.

7 Conclusion
This paper addressed an optimal approach for throughput optimiza-
tion of general non-linear computations using a set of transforma-
tions. We demonstrated the effectiveness of the new technique on
numerous real-life non-linear designs. When no unfolding was
used, our approach reduced the critical path lengths from the pre-
vious best technique by 35 % on average. When unfolding was
used, we improved the critical path lengths from the previous best
technique by more than 50 % for many designs.
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