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Abstract To illustrate the key ideas behind the new approach and show its
effectiveness, consider the control data flow graph (CDFG) of 2nd
This paper addresses an optimal technique for throughput optimiza-order Volterra filter, shown in Figure 1(a). The 2nd order Volterra
tion of general non-linear data flow computations using a set of filter is non-linear. The critical path of the computation is 12 clock
transformations. Throughput is widely recognized as the most im- cycles, assuming each operator takes one clock cycle. The critical
portant design metric of the modern DSP and communication appli- path occurs when the next state of the delayis computed. A
cations. Numerous approaches have been proposed for throughpubumber of known techniques can be used to improve the through-
optimization, but most was restricted to limited classes of com- put, but only by limited amounts. For example, pipelining may
putations. They have limited effectiveness when applied to large reduce the critical path to at best 9 clock cycles. Using the tech-
complex non-linear DSP and communication computations. The nique proposed in this paper, the critical path can be reduced to 6,
new technique is used as an optimization engine in a divide-and- as shown in Figure 1(b).
conquer global approach for throughput optimization. We demon-
strate the effectiveness of the new technique on numerous real-life
non-linear designs.

1 Introduction

Throughput is widely recognized as the most important design met-
ric of modern DSP and communication applications [7]. Tech-
niques for optimizing throughput are also widely used during the
optimization of other design metrics such as area and power. For
example, one of the most effective techniques to optimize power
is voltage scaling which is enabled by throughput optimization [1].
Iteration bound, and control and data dependencies impose funda-
mental limits on achievable performance. Transformations are one
of the most effective ways to overcome these limitations [10, 1].
Transformations alter the structure of a computation in such a way
that the user specified input/output relationship is maintained. Nu-
merous approaches have been proposed for throughput optimiza-
tion using transformations, but most was restricted to limited classes
of computations such as linear computations and even more re-
stricted instances of linear computations [8, 9]. They are inappli-
cable or ineffective when applied to large complex non-linear DSP
and communication computations. Guerra et al. [2] recently pro- Figure 1: Motivational example: 2nd order Volterra filter
posed a divide-and-conquer approach for general non-linear com-

putations which leverages upon existing techniques for limited com- > Related Work

putation types by enabling more effective and coordinated use of
the techniques. The approach logically divides the whole compu-
tation into subparts which may fall into special computation types
that can be optimized effectively by existing techniques. However,
the approach is ineffective when subparts are classified as general
non-linear computation for which there are few existing effective
techniques for throughput optimization.

To overcome these limits, this paper addresses an optimal tech-
nique for throughput optimization of general non-linear computa-
tions using a set of transformations (distributivity, associativity, in-
verse and zero element law, common subexpression replication an
elimination, constant propagation, pipelining and unfolding). The
target applications are large complex non-linear DSP and commu-
nication data-flow intensive computations.
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Numerous techniques for throughput optimization have been pro-
posed. The first set of techniques is based on transformations [6,
8, 9]. For control-flow intensive computations, Lakshminarayana
and Jha [4] proposed a set of techniques for throughput and power
optimization. Most was restricted to limited classes of compu-
tations such as linear computations and even more restricted in-
stances of linear computations. Guerra et al. [2] proposed a divide-
and-conquer approach for general non-linear computations which
logically divides the computation into subparts and applies sets of
jndividual techniques for limited computation types to subparts.

his technique has limited effectiveness when subparts are clas-
sified as general non-linear computation for which there are few
existing effective optimization techniques. In this research, we de-
velop an optimal technique for throughput optimization of general
non-linear computations using a set of transformations. In general,
arbitrary speed-up is not known to be achievable for some classes
of non-linear computation [3].

3 Preliminaries

We assume that an arbitrary non-linear computation is given. We
do not impose any restrictions on considered non-linear computa-
tion. We use as computational model homogeneous synchronous
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data flow model [5], which is widely used in many application do- new technique is used as an optimization engine when subparts are
mains such as DSP, video and image processing, communicationsclassified as general non-linear computation.
control, and information theory applications. Under this model, the The divide step partitions the computation by identifying mu-
operations consume a single sample from each input and producetually exclusive subparts. This involves identifying operations in-
a single sample on each output, on every execution. Operation de-side feedback cycles, and those outside of feedback cycles. Since
lays are given as an integral number of clock cycles. Animportant all operations outside of feedback cycles can be pipelined to any
ramification of the semantics of the selected computation model is requested level, we only need to consider the subparts of the com-
that it lends itself to efficient static scheduling. Furthermore, un- putation inside feedback cycles for throughput optimization. The
der this model, throughput is the relevant metric of performance, identification of operations inside feedback cycles is done by iden-
where throughput is the maximum rate at which a design can ac- tifying the computation’s strongly connected components(SCCs),
cept and process incoming samples. The inverse of the throughputusing the standard depth-first search-based algorithm [11]. For any
is the critical path length, which is the maximum length of all paths pair of operations A and B within a SCC, there exist both a path
which start at any of the primary inputs or states and finish at any from A to B, and one from B to A. All operations in non-trivial
of the primary outputs or states. SCCs (those with more than one operation) are part of a feedback
Non-recursive computations, either linear or non-linear, can be cycle. The non-trivial SCCs are isolated from each other and from
maximally sped up by pipelining. The critical path length of the parts outside of feedback cycles using pipeline delays, which al-
computations can be reduced to the maximum delay of the longestlows independent optimization. During subpart optimization, the
operator in the computation. L&, denote the maximum delay  inserted pipeline delays are treated like a subpart primary input or
of the longest operator in the computation. Combined with time- primary output, depending on whether the subpart reads from or
loop unfolding, this type of computations can be arbitrarily sped up writes to the delay. The non-trivial SCCs are classified as being ei-
since the effective critical path length is reducedig,... /(k + 1) ther linear or non-linear. Non-linear computations are further clas-
when the unfolding factor i&. Based on these results, the parts of sified as being either feedback linear, being transformable to a form
the general non-linear computation which do not belong to feed- in which all non-linearities are moved outside of the SCC, or being
back cycles can be optimized separately from those which belong neither.
to feedback cycles. Thus, we concentrate on the parts which belong  Depending on the class in which an SCC belongs to, differ-
to feedback cycles in our study to develop a technique for through- ent optimal techniques are used to optimize throughput. The global
put optimization of general non-linear computation. throughput of the whole computation is the minimum of the through-
In linear computations, the next state (delay) and the outputs areputs for all SCCs. For each class of computations except the last
linear functions of the previous states and inputs. A system exhibits class, the general non-linear computation, there exist optimal tech-
linearity when using as computational elements only addition, sub- niques for throughput optimization. We develop an optimal tech-
traction and multiplication with constants. A system can also ex- nique for throughput optimization of general non-linear computa-
hibit linearity over eithemin or maxin place of the addition, and tions, which is described in Section 5.
addition in place of the multiplication with constants. Given arbi- g Throughput Optimization of General Non-Linear
trary linear computations, the maximally fast technique [9], which .
combines several algebraic and redundancy manipulation transfor- ~ COmputations
mations, reduces the critical path lengtitte= [log2(N)+1]+1, In this Section, we describe a new technique to optimize throughput
where N is the number of states. Combined with time-loop un- of general non-linear computations.
folding, the technique arbitrarily speeds up the linear computations 5,1 Enabling Steps
such th"’}t the effectlv_e critical path length is reduced’ftik + 1), Unfolding the computation by a factor sfresults in the simultane-
wherek is the unfolding factor. . . . ous computation ot + 1 iterations of the computation. For general
The class of feedback linear computations is a special class of , jinear computations, the throughput will continue to improve
general non-linear computations such that there are no multiplica- i, |arger factors of unfolding up to some point and then level
tlons_ordIV|S|0ns betwee'ﬁ v_arla_bles In fee(_:it_)a_ck cycles. Thesg COM- ot With larger factors. The search to find an optimal unfolding
putations may have multiplications and divisions between primary t5¢tor starts with an unfolding factor of 1. As long as the through-
inputs, between primary inputs and algorithmic delays in feedback ;v continues to improve, the factor is doubled and the throughput
cycles, or between algorithmic delays, not in feedback cycles. The otz ation is performed. Once no improvement is achieved, a
maximally fast approach for linear computation can be applied t0 jina search between the current fadt@nd previously tried fac-
this class of computations to result in arbitrary speed-up of through- tor, k/2, is performed to find the smallest optimal factor for which
put (2, 9]. improvement will cease.

AIIim(i;gd suk;set of ginehralnnon-linear computations can bg For the computation, unfolded by any factor, we apply the same
translated into a form in which all non-linear operations are moved o cpnique to optimize throughput. - First, we group and pipeline

outside of feedback cycles. A computation containing only variable 4 hrimary inputs so that each next state depends on only one
multiplications is such a computation [2]. new pipeline delay. This step is an enabling transformation which
4 Global Approach greatly reduces the influence of the primary inputs. This step is
Our strategy for optimizing throughput of general non-linear com- most effective when a computation has a large number of primary
putations is based on the divide-and-conquer paradigm [2]. The inputs and relatively few states in feedback cycles. Next, we iden-
divide-and-conquer approach is based on an observation that whiletify dependencies between delays (both algorithmic and pipeline
a given computation may overall be difficult to optimize, some of delays) and non-linear operations. The dependencies can be repre-
its subparts can be optimized more easily. The divide-and-conquersented in a directed acyclic graph. Finally, using the dependency
approach divides a computation into subparts, which are separatelyinformation obtained in the last step, we arrange all output cones
optimized and thus enables more effective use of existing tech- for next states using the fastest tree structure as described in the
niques for special classes of computations. This approach has lim-next subsections. The global throughput is the minimum of the
ited effectiveness when subparts do not fall into one of the spe- throughputs for all output cones.

cial classes of computations for which effective techniques exist. 5.2 General Output Cone

We develop an optimal technique to optimize throughput of gen- Gjyen a general output cone, the dependencies between delays and
eral non-linear computation using a set of transformations. This on_linear operations can be represented in a tree. If there are
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only linear operations between delays, between nonlinear opera-based on the critical path length of the non-linear output cone of
tions, and between delays and non-linear operations, we connect dahe non-linear operation.

directed edge between them. At the top level, an output may be de-
pendent on some independent non-linear operations and some de

lays. Each of these independent non-linear operations may depenc
on some other independent non-linear operations and some delays

i Algorithm for Throughput Optimization of & Independent
. Non-Linear Operations and d Delays

In the base of the tree, non-linear operations depend on only some
delays.

We note that the output of the parts can be of the following
two types:linear output- the output does not depend on any non-
linear operationsnon-linear output the output depends on some
non-linear operations. We can further classify the non-linear output
into one with only one non-linear operation and one with more than
one non-linear operations. The first case is interesting to consider
because it gives us some insights on the effect of the non-linear
operations on the critical path length (CPL) of the output cone.

5.2.1 Linear Output

If an output does not depend on any non-linear operations, the out-
put can be represented as linear combination of the delays which it
depends on. The throughput of the output cone can be optimized
using the maximally-fast approach in [9].

5.2.2 Output with One Non-Linear Operation

We consider an output cone which includes only one non-linear
operation and a number of linear operations. This special case is
interesting to consider because it gives us some insights on the ef-
fect of the non-linear operations on the critical path length (CPL) of
the computation. Suppose that the CPL of the output cone by the
maximally fast technique is+ 1, assuming all linear operations

in the output cone. Let be the number of delays for the output
cone. It follows that'~! < n < 2!. Letz be the maximum num-
ber of delays that the inputs of the non-linear operation depend on.
The fastest way to compute the output of the non-linear operation
is that all the inputs are computed by the maximally fast technique
and then the non-linear operation is performed. Thus, the CPL for
the non-linear part i$logz + 2]. We treat this output as an addi-
tional input to the maximally fast tree for the whole output cone.
Of course, the available time of this input depends on the CPL for
the non-linear part. There are four cases to consider in terms of the
CPL of the non-linear output cone comparing with that of the cor-
responding linear output cone. The worst case arises whethe
same a%. In this case, the CPL for the non-linear output cone in-
creases by three from that of the corresponding linear output cone.

1. Sort thek independent non-linear operations ahdelays
in the decreasing order of critical path length. Let the
non-linear operations and delays, - - - , n, and
D, ---, Dy, respectively in the order;

2. Connect the input; to a multiplication with constant.
The output of the multiplication is connected to an additio
CPL = height) + 2, where heighit;) is the height of
the output cone for the inpui; ;

3. NextInput = Build_Treef», CPL-1);

4. Connect the tree built to the addition;

5. While (Some inputs are left out of the tree)

>

6. Connect the output of the addition to another additipn
CPL=CPL +1;

7. NextInput = Build Tree(Nextinput, CPL-1);

8. Connect the tree built to the additianR;

9.

10. Return the tree built;

Build _Tree(n, C)

1. Connect the input to a multiplication with constant.
The output of the multiplication is connected to an additio
CPL = heightf) + 2, where height{) is the height of the
output cone for the input. Let NextInput be the next
input of the inputr in the sorted list;

2.1f (height(NextInput) = heightf)) {

Connect the input Nextnput to a multiplication with
constant. The output of the multiplication is connected
to the addition;

} Else{

NextInput = Build_Tree(NextInput, CPL-1);
Connect the tree built to the addition;

}

While (CPL< C and some inputs are left out of the trde)
Connect the output of the addition to another additign
CPL=CPL +1;

9. NextInput = Build Tree(Nextinput, CPL-1);

10. Connect the tree built to the additiop;

11.}

3.
4.
5.
6.
7.
8.

1. no increase in CPL: This case happens whernt- n < 2!,

wherep = 2™ andm is the smallest integer such tradt >

4x.

. increase in CPL by one: This case happens when there is
no p that satisfies the case 1 anck 2/=2.

. increase in CPL by two: This case happens whefi2 <
z < ol=2 4 ol-1

. increase in CPL by three: This case happens whef 2 +
2t < g <n

From this analysis, we note that the maximum number of de-
lays that the inputs of a non-linear operation depend on should be
minimized to optimize the critical path length of the computation.

5.2.3 Output with k£ Independent Non-Linear Op-
erations
We assume that the output cone of each independent non-linear op

12. Return the tree built and the Nexiput;

Figure 2: Pseudo code for throughput optimization of output with
k independent non-linear operations ahdelays

We now describe an algorithm to solve the problem optimally.
The pseudo code of the algorithm is shown in Figure 2. We first sort
the inputs g non-linear output cones anbldelays) in the order of
decreasing critical path length. We process the inputs in this order.
Obviously, thed delays have their critical path lengths @f We
solve a problem to build a tree with the smallest height for all the
inputs. In the first step, the input, the output of the non-linear
operationni, is connected to a multiplication with constant and
then the output of the multiplication is connected to one input of an
additiona;. The constant of the multiplication can be determined
from the original computation. The critical path length has been
increased by two from the critical path length of the output cone of

eration has already been recursively optimized. We also assumethe non-linear operation,. In the next step, we solve a problem

that the linear part consists dfdelays. Our goal is to find the

where for the other input of the additian, we need to include as

fastest tree structure that maintains the original input/output rela- many inputs as possible that does not increase the current critical
tionship. It is equivalent to find the fastest tree structure of all in- path length. If any inputs are left out of the tree built, then the
puts which consist of both the outputs of thenon-linear opera- output of the additioru; is connected to an input of the addition
tions andd delays, where the inputs may arrive at different timing a». Now the critical path length has been increased by one. For

408



CPL| CPL | %Red.| % Red. CPL| CPL | %Red.| % Red.
of of New | From From of of New | From From
Design ICPL | [2] Method | ICPL | CPL of [2] Design ICPL | [2] Method | ICPL | CPL of [2]

1st order 7 6 5 29 17 1st order 7 6 4 43 33
\olterra filter \olterra filter

2nd order 12 9 6 50 33 2nd order 12 9 5 58 44
\olterra filter \olterra filter

3rd order 17 12 8 41 33 3rd order 17 12 6 65 50
\olterra filter \olterra filter

4th order 22 16 9 59 44 4th order 22 16 6 73 62
\olterra filter \olterra filter

5th order 27 19 9 67 53 5th order 27 19 6 78 68
\olterra filter \olterra filter

3rd order 11 11 5 55 55 3rd order 11 11 4 64 64
Noise Sharper Noise Sharpel

5th order 15 15 6 60 60 5th order 15 15 5 67 67
Noise Sharpe Noise Sharpe

ADPCM 72 5 3 96 40 ADPCM 72 | =0 — 0 - -

Echo 320 7 5 98 29 Echo 320 | — 0 —0 - -
Canceller Canceller
DAC 220 2 2 99 0 DAC 220 | —» 0 — 0 - -
Vocoder 110 5 4 95 20 Vocoder 110 | — 0 —0 - -

Table 1: Throughput optimization of non-linear real-life designs Table 2: Throughput optimization of non-linear real-life designs

with no unfolding: ICPL - initial critical path length

the other input of the addition,, we include as many inputs as

possible that does not increase the current critical path length. We

repeat this process until all inputs are included in the tree.

Note that the maximally fast tree in [9] is a solution for a spe-

cial case of this problem when all the inputs arrive at tiiméVe

can verify that the new algorithm constructs the tree with the same

height as the maximally fast tree for the special case.
6 Experimental Results

We have used several \olterra filters of different orders, several
Noise Sharpers, Echo Canceller, Vocoder, NEC DAC (digital-to-
analog converter), and ADPCM (adaptive delta pulse code mod-

ulation) for experimental results. Table 1 shows throughput

provement achieved using the best previous approach by [2] and [5]

im-

using the new approach with optimization engine of general non-
linear computation with no unfolding. Table 2 shows throughput

improvement achieved for non-restricted amount of unfolding.

When no unfolding is used, our approach reduces the critical
path lengths from the technique of [2] by 35 % on average. When
unfolding is used, for the five different Volterra filters, we improve
the critical path lengths from the technique of [2] by more than 50

in arbitrary speed-up of throughput.
7 Conclusion

This paper addressed an optimal approach for throughput optimiza- [9]

tion of general non-linear computations using a set of transforma-

tions. We demonstrated the effectiveness of the new technique on

numerous real-life non-linear designs. When no unfolding was

used, our approach reduced the critical path lengths from the pre-[10]

vious best technique by 35 % on average. When unfolding
used, we improved the critical path lengths from the previous
technique by more than 50 % for many designs.
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