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ABSTRACT 
Sensor networks not only have the potential to change the way we 
use, interact with, and view computers, but also the way we use, 
interact with, and view the world around us. In order to maximize 
the effectiveness of sensor networks, one has to identify, examine, 
understand, and provide solutions for the fundamental problems 
related to wireless embedded sensor networks. We believe that 
one of such problems is to determine how well the sensor network 
monitors the instrumented area. These problems are usually 
classified as coverage problems. There already exist several 
methods that have been proposed to evaluate a sensor network's 
coverage. 
We start from one of such method and provide a new approach to 
complement it.  The method of using the minimal exposure path 
to quantify coverage has been optimally solved using a numerical 
approximation approach. The minimal exposure path can be 
thought of as the worst-case coverage of a sensor network. Our 
first goal is to develop an efficient localized algorithm that 
enables a sensor network to determine its minimal exposure path. 
The theoretical highlight of this paper is the closed-form solution 
for minimal exposure in the presence of a single sensor.  This 
solution is the basis for the new and significantly faster localized 
approximation algorithm that reduces the theoretical complexity 
of the previous algorithm.  On the other hand, we introduce a new 
coverage problem – the maximal exposure path – which is in a 
sense the best-case coverage path for a sensor network.  We prove 
that the maximal exposure path problem is NP-hard, and thus, we 
provide heuristics to generate approximate solutions. 
In addition, we demonstrate the effectiveness of our algorithms 

through several simulations.  In the case of the minimal single-
source minimal exposure path, we use variational calculus to 
determine exact solutions.  For the case of maximal exposure, we 
use networks with varying numbers of sensors and exposure 
models.   

Categories and Subject Descriptors 
C.4 [Computer Systems Organization]: Performance of Systems 
– measurement techniques, performance attributes. 

General Terms 
Algorithms, Performance, Design, Theory. 

Keywords 
Wireless Embedded Sensor Networks, Centralized Optimal 
Algorithms, Localized Algorithms, Simulation. 

1. INTRODUCTION 
Wireless sensor networks have the potential to significantly 
impact not only the way people interact with, use, and think about 
computers, but also the way people interact, use, and think about 
the surrounding environment. A wireless sensor network is a 
collection of sensors that have a limited amount of computational 
and battery capacity, the ability to communicate with each other, 
and the ability to sense the environment around them [6].  Sensors 
can be deployed into dangerous or difficult to reach areas, 
forming a wireless network, to monitor the environment. 
Examples include sensors near the edge of a volcano to monitor 
the seismic activity, sensors placed into the walls of buildings to 
monitor the structural integrity, and sensors placed in a battlefield 
providing the capability of monitoring and tracking targets [6]. 
The cost effectiveness and ease of deployment of wireless sensor 
networks make them the perfect candidates for such applications. 
Most existing work focuses on reducing the design and 
maintenance (including deployment) cost or increasing sensor 
network's reliability and lifetime. However, we believe that 
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another crucial problem is to determine how well the sensor 
network monitors (or "covers") the designated area. This is one of 
the most important criteria for evaluating the sensor network's 
effectiveness and we study, in this paper, to understand, 
formulate, and provide solutions to this fundamental problem. 
Specifically, we consider the following scenario: given a sensor 
network, how does one traverse through the sensor field from one 
point to another such that the sensors have the least or most 
coverage of the traveled path. The first part, referred to as the 
least-covered path problem, corresponds to the sensor network's 
worst-case coverage. Sensor networks are designed to monitor the 
sensor field, and the least-covered path measures the ability to 
move in the sensor field without being discovered. Therefore, how 
can one design the sensor network to maximize such minimum 
coverage becomes vital and has attracted significant attention 
recently [5], [9], [10]. Two popular methods addressing this 
problem are the maximum breach path and the minimal exposure 
path. The maximum breach path problem seeks to find a path such 
that the path's maximum exposure to the sensors at any given 
point is minimized [10]. The minimal exposure path problem 
seeks to find a path between two given points such that the total 
exposure acquired from the sensors by traversing the path is 
minimized [10], [11]. 
Using the minimal exposure path problem to evaluate a network is 
important.  Once the minimal exposure path is known, the user 
can manipulate sensors in the network or add sensors to the 
network to increase coverage.  However, using a centralized 
method to determine the minimal exposure path means that the 
moved/added node’s position must be reported to a central node 
or to every other node in the network.  If a central node is used, a 
single-point-of-failure problem arises; if the new data is 
propagated to every other node in the network, the problem of 
energy consumption becomes more important.  Therefore, we 
present a localized minimal exposure path algorithm such that 
only neighboring nodes need to be updated and path information 
can be calculated on-line in an easier and more efficient manner. 
While the least coverage problem takes the pessimistic view of the 
sensor network design, similar to real-time system designs based 
on worst-case execution time analysis, it is equally important to 
study the second part, which we call the maximal exposure path 
problem. A maximal exposure path is the path by following which 
the total exposure to the sensors is maximized – that is, the path 
that is best covered by the sensors.  Normally, there is a maximum 
length constraint on the maximal exposure path or a delay 
constraint that specifies how long the object can stay in the sensor 
field. Otherwise, one can keep moving without reaching the 
ending point or stay at a point with positive exposure forever to 
accumulate infinite coverage. Unlike the least coverage problem, 
which measures how well the sensor network monitors its 
environment, the maximal exposure problem, although it can be 
interpreted as the best case of coverage, finds applications in the 
environment that can benefit from the deployed sensors. These 
applications include, for example, how to manage (such as 
collecting information from the sensors) the sensor network 
efficiently and how to get the most benefit, according to some pre-
defined benefit function, from the sensors while traversing the 
sensor field.  A more concrete example of using the maximal 
exposure path to determine the benefit of a sensor network is with 
respect to a light-detecting network.  Assume that a solar-powered 
autonomous robot is traversing the network and would like to 

travel the past that accumulates the most light within a certain 
time frame.  By using the maximal exposure path of the light-
detecting network, the solar-powered robot can gain as much light 
as possible within its limited time.  Therefore, the maximal 
exposure path is just as important to a user trying to receive as 
much benefit (or detection) from the network as the minimal 
exposure path is to a user trying to receive as little benefit (or 
detection) from the network. 
In this paper, we focus on both the minimal and maximal 
exposure path problems, which correspond to the worst- and best-
case coverage. Our goal is to shed light on the sensor network 
coverage problem by formulating and providing practical 
solutions to both extremes. The rest of the paper is organized as 
follows: in Section 2, we first introduce the exposure model and 
then discuss the minimal exposure path problem highlighted by an 
analytic solution to the single-sensor problem and an 
approximation algorithm to the multiple sensor problem. Section 
3 focuses on the maximal exposure path problem, which we show 
is NP-complete and provide several heuristic methods proposed to 
tackle this problem.  Simulation results are presented to validate 
our claims in the respective sections. In Section 4, we use the 
linear programming formulation to show the intrinsic relationship 
between these two problems.  The most directly related work is 
reviewed in Section 5 before we conclude. 

2. Minimal Exposure Path Problem 
In this section, we describe our sensor exposure model, formulate 
the minimal exposure path problem and present our solutions. 
Specifically, we obtain the optimal solution analytically for the 
single-sensor case by the method of variational calculus. We also 
develop an approximation algorithm for the case of multiple 
sensors based on the Voronoi diagram concept. 

2.1 Minimal Exposure Path Problem 
Although our solutions will work with an arbitrary exposure 
model, for simplicity of the discussion, we take the model that 
measures a single sensor’s sensitivity to an object or a point in the 
sensor field by a function that is inversely correlated with the 
distance between the sensor and the point being monitored. This 
model reflects the most important nature of sensor’s sensitivity: 
the closer the object is to the sensor, the better that the sensor can 
monitor it. The simplest case is when the sensor’s sensitivity 
function f(s,p) takes the form of 1/dk(s,p),  where d(s,p) is the 
distance from point p to the sensor s and k is a positive constant. 
The constant parameter k, indicating how quickly the sensor loses 
its sensitivity as the object movers away, adds some flexibility to 
this model.   
In a sensor network with multiple sensors, the exposure of an 
object, or any point in the sensor field can be defined in the 
following two ways. The closest sensor exposure model uses the 
largest exposure value of any given point to each individual 
sensor as the exposure at that point. The all sensor exposure 
model takes the sum of all the individual exposure values as the 
exposure to the sensor network. When we assume that the 
sensor’s sensitivity is inversely proportional to the distance, the 
Voronoi diagram can be used to conveniently determine the 
exposure in the closest sensor exposure model. The Voronoi 
diagram partitions the sensor field into n polygonal regions, which 
are called Voronoi cells, where n is the number of sensors. Each 
Voronoi cell contains exactly one sensor and any point inside the 



Voronoi cell is closer to the sensor in the same cell than any of the 
other sensors. 
Given two points A = (xa, ya) and B = (xb, yb) in the two-
dimensional sensor field, a path connecting them is a continuous 
function P(t)= (x(t), y(t)) with boundary conditions x(t1) = xa, x(t2) 
= xb, y(t1) = ya, y(t2) = yb. The exposure of this path can be 
defined as the accumulated exposure to the sensor network as the 
object moves along the path, which is equivalent to 
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where f(S,(x(t),y(t))) is the exposure to the sensor network S at 
point (x(t), y(t)). 
We define the minimal exposure path between two points in a 
sensor network to be a path within the sensor field connecting the 
two points with the minimum exposure as defined above in 
Equation (2.1) 

2.2 Single-Sensor Optimal Solution 
The definition of exposure makes it obviously a path-dependent 
value. Given two end-points in the field, different paths between 
them are likely to have different exposure values.  Before 
discussing our solution, we assume that the speed traveled by an 
object through the sensor network is bounded, and that when 
dealing with minimal exposure paths, the object is able to and will 
always travel at the maximum speed (otherwise the exposure 
would not be minimal).  Under these assumptions, the minimal 
exposure path problem for a sensor field with a single sensor can 
be optimally solved by the method of variational calculus 
developed by Euler (1707-1783) and Lagrange (1736-1813).   
Theorem 1. ([8])  Let J[y] be a function(al) of the form 
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b

a
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have continuous first derivatives in [a; b] and satisfy the 
boundary condition y(a) = A, y(b) = B. Then a necessary 
condition for J[y] to have an extremum for a given function y(x) 
is that y(x) satisfy the following Euler's equation, which is also 
referred as the Euler-Lagrange equation: 
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Interested readers may find a proof of this theorem in most 
variational calculus or functional analysis books.  Now we derive 
an analytic solution to the minimal exposure path problem for a 
single-sensor field. 
Theorem 2. Given a sensor sensitivity function f(s, p) = 1/d(s, p), 
where d(s, p) is the distance between the sensor location s and an 
arbitrary location p, the minimal exposure path from an arbitrary 
point A to another arbitrary point B is of the following form in 
polar coordinates: 

( )
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αθρ
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=  (2.3) 

where constants a and b are the distances from the sensor to the 
points A and B respectively, and α is the angle formed by (A-
sensor-B). 
Proof:  
We first rewrite the exposure along a path defined in Equation 
(2.1) into polar coordinates (ρ, θ) by the transformation: 

( ) ( ) ( )tttx θρ cos=  and ( ) ( ) ( )ttty θρ sin=  and we take the 
sensor’s location as the origin 
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Let α be the value of the angle formed by the straight line 
segments connecting the sensor and points A and B respectively, 
and a and b be length of these line segments, the above integral 
can be further simplified to: 
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with new boundary conditions: ( ) a=0ρ and ( ) b=αρ . 

When the sensor sensitivity function is f(s, p) = 1/d(s, p) = 1/ρ, the 
minimal exposure path problem becomes to find the path ρ(θ) that 
minimizes 
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general solution in the form of θρ 1exp2
cc ±=  for constants c1 and 

c2. Applying the boundary conditions ( ) a=0ρ and ( ) b=αρ , 
we can determine these two constants and find the minimal 
exposure path as given in Equation (2.3). 
Similarly, we can show the following for a more general sense 
sensitivity function: 



Theorem 3. For the sensor sensitivity function f(s, p) = 1/dk(s, p), 
)1,0( ≠≥ kk , the minimal exposure path between two points A 

and B is given by 
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2.3 Multiple-Sensor Optimal Solution 
When there are multiple sensors in the sensor network, or the 
sensor field is bounded, a closed form solution to the minimal 
exposure path problem does not exist regardless of the exposure 
model (closest sensor or all sensor). This section describes our 
proposed grid-based approximation method that solves the 
minimal exposure path problem for sensor network with multiple 
sensors in a constrained sensor field.  The algorithm finds a path 
whose exposure is within a bounded error of the minimal 
exposure path.  The error is determined by the granularity of the 
grid. 
Figure 1 depicts a centralized method that works similar to 
Dijkstra’s shortest path algorithm. However, applying this 
algorithm requires that sensor nodes not only to perform the 
exposure calculation and shortest-path searching in the sensor 
network, but also know the topography of the network.  Both, 
particularly discovering the network topography, can be costly, in 
terms of computation and energy consumption. Recall that 
communication, which is required to discover network 
topography, in wireless sensor networks is the major energy 
consumer. Thus, it is important to develop a localized minimal 
exposure path algorithm so that sensors can estimate the 
network’s minimal exposure path without having to know the 
entire network’s topography.  In such a localized algorithm, the 
number of messages sent across the network and the computation 
performed at each node should be kept at the minimal level.  
To achieve low cost on communication and computation on the 
wireless sensor network, our localized approximation method 
necessarily takes the following assumptions: 1) the sensor nodes 
do not possess the necessary knowledge to compute shortest path 
locally and thus rely on forwarding messages to their neighbors 
using a shortest-path heuristic; 2) a sensor node stores topological 
information it receives and forwards the topological information it 
knows; and 3) the Voronoi diagram-based minimal exposure path 
approximation algorithm is used to further reduce the computation 
(of exposure) at each sensor node.  To use the Voronoi diagram in 

order to estimate the minimal exposure path, grid points are 
placed along Voronoi edges, and grid points on the same Voronoi 
cell are fully connected.  The weight of an edge between two 
Voronoi grid points is the single-sensor optimal solution weight 
for the sensor corresponding to the Voronoi cell.  However, this 
weight only applies if the shortest path exists entirely within the 
Voronoi cell.  If the path strays from the Voronoi cell, a straight 
line is used to weight the edges.  Note, however, that if one 
wishes to increase computational complexity, a better 
approximation can be made using the grid-based centralized 
method and limiting the path to exist within the Voronoi cell.  
Furthermore, the single-sensor optimal solution is used to bound 
areas to search; if the single-sensor optimal solution between two 
points is larger than an already-found estimated solution, those 
two points are not investigated during subsequent iterations of the 
localized algorithm. 
The localized minimal exposure algorithm considers the following 
problem: Given a sensor network S with an exposure model E, a 
starting coordinate, and a finishing (or ending) coordinate in a 
grid imposed on the sensor field, find a minimal exposure path 
from the starting location to the ending location.  
Two types of messages, Forward messages and Search messages, 
are passed among sensors in the sensor network. Search and 
Forward messages have the same format except that the receiving 
node will take different action, either search locally or forward to 
a neighboring sensor as the names suggest, on the receipt of the 
message.   
A sensor node selects its neighboring node that with the largest 
heuristic value as the recipient of the message. On one hand, one 
would pick the node that has potentially large number of distinct 
neighbors so it can quickly learn the network topography. This 
can be naturally measured by the distance between the sender and 
the recipient. On the other hand, one would like the recipient to be 
close to the destination (i.e., the ending location). We combine 
these two factors and use the following formula to calculate the 
heuristic value for node j with respect to the sender node i: 
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where D(i, j) is the distance between the sender i and its neighbor 
j, R is the maximum communication radius, h is the number of 
hops that the message has currently been transmitted (assume h 
starts with 1), and k is a positive constant. To balance the above 
two unrelated values, we normalize both as indicated in Equation 
(2.8), where the first term rewards nodes that are far away from 

 
Initialize(Grid G) 
 Start.Cost = 0 
 Start.Visited = FALSE 
 Start.Parent = ∅  
 For each node  i in G that is not Start 
  i.Cost = ∞ 
  i.Visited = FALSE 
  i.Parent = ∅  
 

 
Search(Grid G) 
 Initialize(G) 
 while Finish.Visited = FALSE 
  Let i be the unvisited node with the lowest cost. 
  i.Visited = TRUE 
  For each neighbor j of i 
   if i.Cost + Exposure(i, j) < j.Cost 
    j.Cost = i.Cost + Exposure(i, j) 
    j.Parent = i 
 

Figure 1: The functions associated with the centralized minimal exposure algorithm. 



the sender and the second term penalizes neighbor j if it is further 
to the destination than the sender node i, the case when the second 
term will be negative). The constant k reflects how rapid the 
weight is shifted from picking a neighbor far away from a sensor 
to picking a neighbor close to the destination. One can see that we 
tend to pick a sensor closer to the destination as h, the number of 
hops, increases to prevent the message from being circulated 
endlessly throughout the sensor network. Our experimentation 
suggests that a good value for k is 0.1.  
We now outline our Voronoi-based localized approximation 
algorithm whose main functions are given in Figure 2.  First, the 
sensor that is the closest to the starting coordinate sends a Search 
message to the node that is determined based on the above 
heuristic value (Equation (2.8)). When this Search message 
reaches its destination sensor (the sensor closest to the ending 
coordinate), the sensor calculates the minimal exposure path using 
a Voronoi-based approximation algorithm and the network’s 
topological information it receives.  The Voronoi-based 
approximation algorithm gives the near-optimal exposure path 
within a Voronoi cell without using the computationally 
expensive grid-based method and hence reduces the computation 
requirement. The algorithm then selects the sensor in the location 
that is most promising to contain the minimal exposure path and 
sends a Forward message there. When the appropriate sensor 
receives the Forward message, it sends a Search message back to 
the destination sensor to acquire more information on sensor 
network’s topography that is needed by the Voronoi-based 
approximation algorithm.  This process repeats until no further 

topological information is required by any sensor node or no 
locations look promising when compared to the current minimal 
exposure path calculated. 
We only need to elaborate the process of finding the sensor that 
will be the recipient of the Forward message. To determine such a 
node, we first superimpose grid points onto known Voronoi 
edges.  Grid points that are part of the same Voronoi cell are 
connected via an edge, and the weight of this edge is determined 
by the single-sensor minimal exposure path weight between the 
two points (if the closed formula applies, otherwise a straight-line 
approximation is used).  Then, a shortest-path search is calculated 
from the starting coordinate to the ending coordinate using the 
edges and weights defined by the superimposed grid point. If the 
shortest-path algorithm attempts to select a grid point on a 
Voronoi edge that only one of its two defining sensors has been 
visited, that node is marked as potential and will not be searched 
any further (because no more Voronoi cells lie in that direction). 
The best-weighted path from this point to the destination is 
calculated and stored.  To determine the best-weighted path for a 
grid point, one determines the exposure of the known path to the 
grid point and estimates the exposure to the destination.  To 
estimate the exposure to the destination, we select the sensor that, 
given only this sensor in the sensor network, the path between the 
grid point and the destination would have the most weight.  
Adding these two values yields the best-weighted minimal 
exposure path approximation, and if this approximated path is 
larger than the currently known minimal exposure path, the 
corresponding Voronoi grid point is ignored.  For each potential 

 
Search*(Grid G) 
 Initialize(G) 
 while Finish.Visited = FALSE 
  Let i be the unvisited node with the lowest cost. 
  if i is not on known Voronoi Border 
   i.Visited = TRUE 
   For each neighbor j of i 
    if i.Cost + Exposure(i, j) < j.Cost 
     j.Cost = i.Cost+Exposure(i, j) 
   j.Parent = I 
 

 
GetBestPotentialNode(Grid G) 
 BestP  = ∞ 
 Best = ∅  
 For each node i in G 
  P  = i.Cost + Worst(i, Finish) 
  if (P < BestP) 
    BestP = P 
   Best = i 
 return Best 
 

 
Worst(Node N, Node Dest) 
 WorstValue = 0 
 For each sensor i in S 
  if Exposure(i, Dest) > WorstValue 
   WorstValue = Expsoure(i, Dest) 
 return WorstValue 
  
ForwardMessage(Node N, SensorNetwork S) 
 if N is closest to destination 
  SearchMessage(Finish, S) 
 else 
  Next = GetBestHeuristicNeighbor(N) 
  ForwardMessage(Next, S) 
 

 
SearchMessage(Node N, SensorNetwork S) 
 if N is closest to destination 
  Let G be a Voronoi-Based Grid 
  Search*(G) 
  Next = GetBestPotentialNode(G, S) 
  if Next ≠ ∅  
   ForwardMessage(Next, S)  
 else 
  Next = GetBestHeuristicNeighbor(N) 
  SearchMessage(Next, S) 
 

Figure 2: The functions associated with the localized minimal exposure algorithm. 



grid point a best-weighted path is calculated, and if the best 
potential grid point has a weight lower than the currently known 
minimal exposure path (that lies completely within the known 
Voronoi cells), a Forward message is sent to the closest sensor to 
that grid point (which will in turn search for other Voronoi cells 
near that grid point).  If all potential grid points have best-
weighted paths with more exposure than the current minimal 
exposure path, the search is terminated and the current minimal 
exposure path is considered the final result. 

2.4 Experimental Results 
The goal of Figure 3 is to show how good an approximation our 
algorithm can achieve with respect to the exposure model and the 
number of sensors.  To acquire the data presented in Figure 3, we 
ran 1000 tests for each of the 21 different cases.  The 21 cases 
represented each possible combination of the number of sensors 
(5, 8, 10, 13, 15, 18, and 20) and the exposure models (1 / d2, 1 / 
d3, 1 / d4) used.  For each case, the 1000 tests were average and 
compared to the actual minimal exposure path as determined by 
the centralized optimal numerical approximation method 
described earlier.  This number is called the minimal exposure 
ratio, and is the approximated path’s exposure value divided by 
the minimal exposure path’s exposure value.  As one can see, the 
closer to one this value is the better the approximation. 
Looking at each exposure model separately, from the 1 / d2 
exposure model, we see that as the number of sensors increases, 
the accuracy of the approximation increases until some particular 
number of sensors threshold is reached.  After that threshold, the 
approximation tends to worsen as the number of sensors 
increases.  This behavior is due to the fact that we use a fixed grid 
size; in other words, the grid points placed on the Voronoi 
diagram in the approximation are placed at a specific distance L 
apart.  Thus, when the number of Voronoi cells becomes high 
enough (and thus the sensor network dense enough), the grid size 
is no longer accurate enough to adequately approximate the sensor 
network.  With respect to the 1 / d3 exposure model, a similar 
scenario occurs except that the threshold number of sensors 
appears to have decreased, thus making the approximation 
algorithm less accurate sooner.  Similarly, this threshold appears 
to have decreased again when changing the model to 1 / d4. 

Further analysis comes from comparing how the exposure models 
compare amongst each other.  From Figure 3, one can see that the 
1 / d2 is the most accurate and the 1 / d4 is the least accurate.  This 
is due to the fact that the single-sensor minimal exposure path 
closed formula is not as applicable in the 1 / d4 case because the 
path travels outside the appropriate Voronoi cell more often than 
in the 1 / d2 case.  Figure 4 shows how the centralized-optimal 
minimal exposure path compares with the localized 
approximation using the single-sensor optimal solution. 
To further evaluate our localized minimal exposure path 
algorithm, we also examine the number of messages sent.  This 
graph, however, is uninteresting, and the results are as expected.  
The number of messages sent depends on the communication 
radius, and the larger the radius, the less communications needed.  
Furthermore, on average, the number of communications required 
is quite small (approximately an order of magnitude less for 
networks with a large number of sensors). 

3. Maximal Exposure 
Given a sensor network with an exposure model, the maximal 
exposure path between a starting location and an ending location 
is a path in the sensor connecting the two points such that the 
exposure received from traveling the path is maximal. We 
necessarily take one or more of the following assumptions: 1) 
there is a maximum length constraint on the maximal exposure 
path so the object cannot keep on moving in the sensor field to 
accumulate infinite exposure; 2) there is a delay, or maximal time, 
constraint before which the path has to reach the ending location 
to prevent the object from staying in the sensor field forever; 3) 
there is a maximal velocity at which the object can travel (which 
prevents trivial solutions: jump to the point that has the largest 
exposure, stay until time expires, and then jump to the ending 
point); 4) there is an upper bound for the exposure at a given 
point or there is a minimum distance that the object has to keep 
away from the sensor node to avoid the sensor sensitivity function 
to explode to infinity. This last assumption can be imposed to the 
definition of sensor sensitivity function. In this section, we will 
show that the maximal exposure path problem is NP-hard and 
then propose a set of heuristics and compare their efficiency.  
 

 
Figure 3: Experimental results for the minimal exposure path algorithm. 



Theorem 4. The maximal exposure path problem is NP-hard. 
Proof:  
We consider a special case of the maximal exposure path problem 
and show that it can be reduced to the NP-complete longest path 
problem [7]. 
We first restrict the path to be in the Manhattan space (a grid) by 
defining the exposure function to be positive along the grid and 
zero otherwise. For each grid point, we associate it with a vertex. 
Two vertices are connected by an edge if there is a line segment in 
the grid between the two grid points. The weight of an edge 
equals to the exposure received from traveling along this line 
segment. Note that this weight function is independent of the 
direction of the edge and therefore we construct an undirected 
weighted graph with positive edge weights. The maximal 
exposure path from one grid point s to another grid point t has a 
total exposure that equals to the total edge weights along the path. 
If we treat the edge weight as its length, finding the maximal 
exposure path becomes finding the longest path in the undirected 
graph, which is known as NP-complete. 
Before we elaborate the proposed heuristic methods to find a path 
with large, if not optimal, exposure, we make the following 
observations about any maximal exposure path: 

•  When there is a delay constraint on when the 
destination should be reached, the optimal exposure 
path should arrive exactly on the deadline. This is 
because that if there is any time “left over” when the 
destination is reached, we can always delay the arrival 
by staying inside the sensor field to accumulate more 
exposure. This is true because the sense sensitivity 
function is non-negative. 

•  Similarly, when there is a maximal path length 
constraint, the optimal exposure path should always 
have exactly that maximal length. Otherwise, one can 
move off the path and then come back to the path at the 
point it departs. As long as the maximal length 
constraint is not violated (and the sense sensitivity 
function is not negative), this gives more exposure.  

•  If there is any stop along the optimal exposure path, the 
stop must be made at the point that has the largest 
exposure value along the path. Stopping at anywhere 
else will clearly yield a path with less exposure. 

•  If there is a maximum velocity constraint on how fast 
one can travel in the sense field, the optimal exposure 
path achieves the maximal exposure if and only if one 
either travels at the maximum speed or stops. If one 
travels a path with a slower speed, one can always speed 

up and use the saved time to stop at the point along the 
path with the largest exposure value. This apparently 
increases the total exposure along the same path.  

•  Finally, given a deadline constraint and a maximum 
velocity at which one can travel, any valid path that can 
reach the destination before deadline is contained in an 
ellipse. Note that the ellipse is defined as: given two foci 
f1 and f2, the sum of the distances from any point on the 
ellipse to the two foci f1 and f2 is a constant.  We can 
consider the starting and ending locations as the two 
foci and the constant in the above definition is the 
maximal length one can travel with the maximum speed 
at the given time slot. Furthermore, this is true at any 
point of the path, not only the starting location. We can 
use the remaining time as the deadline to reach the 
destination from our current position. This greatly 
reduces the solution space we need to search for the 
optimal exposure path. 

3.1 Random Path Heuristic 
The first, and perhaps the simplest, heuristic that can be used to 
find a path that has a decent exposure value is to use the random-
path heuristic. In this method, a random path is created according 
to a particular model. This model states that the node on the 
shortest path to the destination is selected with some percentage 
of the time, and random node is selected otherwise.  Nodes on the 
shortest path are selected to increase the chance that we can reach 
the destination before time expires. Random nodes are also 
selected to allow the path to go off the shortest path to collect 
more exposure. If selecting a random node makes the path too 
long (that is, the node is outside the ellipse defined by the current 
location, the destination, and the remaining time as we described 
earlier. As a result, one won’t reach the destination in the required 
amount of time), the node en-route to the shortest path is used 
instead of the random node.    The advantage of the random-path 
heuristic is that it does not rely on the topography of the network 
or the exposure model, and hence it is simple to implement and 
computational inexpensive. Note that we do not compute the 
ellipse and restrict the selection of the random nodes to be within 
such ellipse to keep the computation requirement of the algorithm 
low. The disadvantage of the random-path heuristic is that its 
performance, i.e., the total exposure of the obtained path, is 
unpredictable. In sum, this method can be used in the case when 
we need to find a path fast with low computation cost. 

3.2 Shortest Path Heuristic 
The shortest path heuristic reports the shortest path between the 
starting and ending points as the maximal exposure path. To 
achieve the maximal exposure on this path, we travel at the 

 

 

 
Figure 4: Comparison of minimal exposure paths calculated from the centralized algorithm (left) and the localized algorithm (right) 

using a sensor network with 50 sensors and an exposure model of (1/d2). 



maximum speed, stop at the point with the highest exposure value 
along the path, and reach the ending point on the deadline. Again, 
this heuristic is easy to implement and it has in general better 
performance and predictability than the random path heuristic, 
although both are not very good. The shortest path method does 
require certain knowledge about the sensor network, for example 
to compute the shortest path. It is also independent of the sensor 
exposure model. The solution is optimal if we want to keep the 
path short. However, it may not always yield a good solution 
because it does not leave the shortest path to explore other fields 
that may have higher exposure. For example, if the starting and 
ending locations are fairly close and both are in a region with very 
low exposure, then the shortest path heuristic gives poor solution. 
This is particularly true when the exposure model 1/dk has a large 
k, where exposure increases rapidly as one moves closer to a 
sensor node instead of staying far away on the shortest path to the 
destination. 

3.3 Best Point Heuristic 
Because taking the shortest path to a point does not necessarily 
yield the highest exposure values, it may also result in poor 
solutions under some circumstance.  In the best-point method, we 
superimpose a grid over the ellipse that defines the search space 
as we have discussed earlier. We then find the shortest path to 
each grid point from the start and the destination. Next, we 
compute the total exposure of the path combining two shortest 
paths that share the same grid point, where we stop at the point 
with the highest exposure if there is any “leftover” time. The path 
that gives the overall best exposure is reported as the optimal 
exposure path. Clearly, the quality of the solution from this 
method depends on the granularity of the grid and is almost 
certainly better than the previous two heuristics. Using the 
shortest paths to connect the starting and ending points with the 
grid point ensures that the largest possible amount of time will be 
spent at that point, thus aiming to maximize the amount of 
exposure. However, compared to the previous two heuristics, this 
method is more computationally expensive, as it has to compute 

the exposure along all the paths connecting the starting and 
ending points and each grid point. 

3.4 Adjusted Best Point Heuristic 
The best-point heuristic cannot guarantee the quality of the 
solution because it assumes that the optimal exposure path 
consists of two shortest paths. The adjusted-best-point method 
improves this by considering paths that consists of multiple 
shortest paths. Figure 5 gives an example where the best-point 
method reports the same path as the shortest path method. It also 
shows a random path and one obtained by the adjusted-best-point 
method, which has more exposure than the rest paths. 
For a given path on a sequence of nodes where each two adjacent 
nodes are connected by the shortest path, we define three basic 
actions to adjust the path: moving a node, adding a node, and 
deleting a node. 
Moving a node means that we change the position of the node 
while preserving its order in the sequence of the nodes, and the 
shortest paths between this node and its two adjacent nodes are 
changed accordingly. The rest of the path remains unchanged.  
Each node in the original path is considered as a potential node to 
move.  The position to where a node is moved is selected from its 
neighboring grid points with higher exposure values.  
To add a node, a pair of adjacent nodes is selected and a new node 
is added between them. The shortest path between the two 
previously adjacent nodes is replaced by two shortest paths that 
connecting them with the newly added node respectively. To keep 
the algorithm simple, we consider the neighboring grid points of 
the two nodes as candidates for the new node to add. In particular, 
the one with the largest exposure value is selected. 
Deleting a node involves removing the selected node and the two 
shortest paths connecting it to its two adjacent nodes, as well as 
adding the shortest path to connect these two nodes. To determine 
whether a node should be deleted from the path, we evaluate the 
exposure before and after the deletion to see whether there is any 
gain in exposure by deleting the node. This can be computed 

 

 

 

 

 

 

 
       

 

 

 

 

 

 

 
Figure 5: Demonstration of the four heuristics (from left to right: shortest path, best point, random path, adjusted best point) on a 

discrete (top) and continuous (bottom) exposure model.  Note that in the best point heuristic for the continuous case is not two 
straight lines; this is due to the grid resolution used to generate these examples.  As the grid resolution increases, best point 

solution will approach two straight lines towards the best point. 



efficiently as for each candidate node, we only need to calculate 
the exposure along three shortest paths: two connecting the 
candidate node to its adjacent nodes and one that is going to be 
added to connect those two adjacent nodes. 
 These three adjustment actions can be taken iteratively and in any 
order until we cannot make further improvement of the path’s 
exposure. 

3.5 Experimental Results 
Figure 5 provides a visual comparison between the different 
heuristics used to approximate the maximal exposure path.  
Because the maximal exposure path is NP-hard, in this section we 
hope to show how well our adjusted-best-point algorithm fares 
with respect to other heuristics and a derived upper bound.  
Before discussing the results, we will now describe how the upper 
bound was calculated.  The upper bound was calculated by 
starting at the specified starting point and checking radii of 
increasing length until the entire ellipse defined by the maximum 
length, starting point, and destination point was reached.  At each 
different radii, the point of maximal exposure located on that radii 
was determined, and these calculated exposure values were 
summed to yield an upper bound on the maximal exposure path.  
In essence, this upper bound is calculated by relaxing the 
constraints on the maximal path such that the points used are not 
necessarily connected via an edge. 
The data values in Table 1 represent the maximal exposure path 
calculated for the specified scenario divided by the upper bound.  
Because the upper bound used for comparing the maximal 
exposure path heuristics is not tight, the values these heuristics 
determine are much lower than the upper bound.  However, it is 
important to note that for each scenario in Table 1, the adjusted-
best-point heuristic outperforms the other three heuristics. 

4. Linear Programming Techniques 
Linear programming is a powerful tool for solving optimization 
problems. It takes the form of a set of linear constraints, which 
defines the solution space for a given problem, accompanied by 
an objective function, which is used to evaluate and choose the 
best solution. Due to the wide range of applications of linear 

programming, there exist well-developed tools to solve the linear 
programming problem. In this section, we simply formulate both 
the minimal and maximal exposure path problems as linear 
programming problems. 
Given a sensor network S with an exposure model E, we 
superimpose a grid containing n grid points (also referred to as 
nodes) over the sensor field and define the following: 
For each grid node i, we define a binary variable Xi, which takes 
value 1 if and only if the node is on the path.  
For each edge between nodes i and j, and the line segment in the 
grid between the two nodes, we define a binary variable Eij that 
takes value 1 if and only if this edge is in the path.  
For a given pair of starting and ending coordinates, the binary 
variable Si takes the value of 1 if and only if node i is the starting 
node; Fi takes the value of 1 if and only if node i is the ending 
node.  
The positive value Exposure(i, j) is the exposure acquired by 
traveling from node i to node j. We define Cij (the “cost” from 
node i to node j to be Exposure(i, j) if nodes i and j are neighbors, 
otherwise, the cost from i to j will be ∞.  
Now, a simple path in the sensor field can be defined as any 
assignments to the binary variables {Xi, Eij, Si,Fi} satisfying the 
following: 
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Table 1: Comparison of maximal exposure path heuristics for varying numbers of sensors and exposure models. 
Exposure Model = 1 / d2 

Number of Sensors Adjusted Best Point Best Point Shortest Path Random Path 
5 1.05 × 10-1 1.02 × 10-1 3.42 × 10-2 6.39 × 10-2 

10 1.21 × 10-1 1.15 × 10-1 4.10 × 10-2 7.74 × 10-2 
13 1.12 × 10-1 1.09 × 10-1 4.00 × 10-2 7.41 × 10-2 
15 1.11 × 10-1 1.09 × 10-1 3.95 × 10-2 7.44 × 10-2 

 
Exposure Model = 1 / d3 

Number of Sensors Adjusted Best Point Best Point Shortest Path Random Path 
5 7.69 × 10-3 1.44 × 10-3 2.07 × 10-4 3.94 × 10-4 

10 2.34 × 10-3 1.15 × 10-3 1.10 × 10-4 2.23 × 10-4 
13 2.45 × 10-3 2.01 × 10-3 2.54 × 10-4 4.34 × 10-4 
15 7.27 × 10-3 4.96 × 10-3 2.55 × 10-4 5.30 × 10-4 

 
Exposure Model = 1 / d4 

Number of Sensors Adjusted Best Point Best Point Shortest Path Random Path 
5 1.77 × 10-4 1.44 × 10-4 3.09 × 10-5 1.07 × 10-5 

10 7.56 × 10-5 6.45 × 10-5 2.84 × 10-5 2.81 × 10-6 
13 2.44 × 10-4 1.07 × 10-4 8.29 × 10-5 5.97 × 10-6 
15 1.64 × 10-4 7.40 × 10-5 1.62 × 10-5 1.84 × 10-5 



where (4.1) implies that node i cannot be both the starting node 
and the finishing node of the path, (4.2) and (4.3) enforce that 
there is exactly one starting/finishing node in the path, (4.4) 
includes both the starting and finishing nodes into the path, (4.5) 
restricts the path to be a simple path – namely no node or edge 
can be included in the path more than once. In fact, every node in 
the path (with the exception of the starting/finishing nodes) has 
exactly two edges connecting it to other nodes. The exposure 
along the path is the sum over the exposures of all the edges in the 
path, which can be expressed as 
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The minimal exposure path problem can be conveniently 
formulated as minimize (4.6), subject to (4.1)-(4.5). To find the 
minimal exposure path between two given nodes, we can simply 
replace the sum on left hand side of Equations (4.2) and (4.3) by 
these two nodes. 
The maximal exposure path problem can be formulated exactly 
the same fashion by simply changing the objective from minimize 
(4.6) to maximize (4.6). However, as we have discussed earlier, 
there are normally additional constraints associated with the 
maximal exposure path problem. Define Dij to be the length of the 
edge between nodes i and j if they are neighbors in the sensor 
network.  The maximal length, L, constraint can be expressed as 
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One may stop at some nodes to accumulate exposure, let Ti be the 
time that the path halts at node i and Tij be the time to traverse the 
edge between nodes i and j, then the delay constraint T, or 
maximal time that one can stay in the sensor field before reaching 
the finishing node, becomes 
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where (4.9) ensures that one cannot stop at a node that is not on 
the path.  That is, if Xi = 0, then Ti = 0. Similarly, (4.9) guarantees 
that Tij = 0 for the edges that are not along the path, Eij = 0. 
Finally, let Cii be the exposure at node i.  Finally, the total 
exposure along a path becomes 
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The practicality of the linear programming method is not 
immediately obvious.  In fact, attempting to solve entire minimal 
or maximal exposure path problems with this formulation yields a 
significant amount of variables and constraints.  However, the 
linear programming formulation can be applied when the area 
being searched is uniform, and thus, by using a sparse grid, 
computationally tractable.  Furthermore, the linear programming 
model can be used to generate optimal solutions for small areas of 
the network, and these locally optimal solutions can be combined 
(for example, by using a Dijkstra-style algorithm) to create a 
global approximation.  Moreover, in scenarios where the single-

sensor optimal solution does not apply (i.e. the path travels 
outside the Voronoi cell), the linear programming model can be 
used to determine the optimal path through the cell.  Another use 
for the linear programming model is to simplify it by removing 
variables and constraints.  With proper simplification, the linear 
program can become tractable and thus provide a bound by which 
we can compare our solutions, which is particularly important for 
the maximal exposure path formulation. 

5. Related Work 
There exists a plethora of work to which we are related.  This 
work consists of topics that primarily include coverage in sensor 
networks (breach, support, and minimal exposure paths, and so 
forth) and linear programming methods. 
The work done by Megerian et. al. in [10] shares similarities to 
the work presented in this paper.  In particular, [10] hopes to 
classify and categorize sensor networks using the maximal breach 
path and maximal support path.  The maximal breach path solves 
a problem similar to the minimal exposure path with one key 
difference.  The maximal breach path finds a path such that at any 
time, the exposure no more than some particular value. 
Furthermore, the maximal breach path hopes to minimize this 
particular value.  In contrast, the minimal exposure path does not 
focus on exposure at one particular time, but tries to minimize the 
exposure acquired throughout the entire time in the network.  The 
maximal support path is somewhat analogous to the maximal 
exposure path.  The goal of the maximal support path is to find a 
path such that at any given time, the exposure on the path is no 
less than some particular value, and this value should be 
maximized. However, the maximal exposure path is slightly 
different in that again, we do not focus on one particular time but 
instead aim to take into consideration all the time spent traversing 
the path.  Both works, however, attempt to classify a sensor 
network by bounding it with some minimal and maximal value 
related to exposure. 
The work done in [10] is similar to our work in that both works 
attempt to provide a localized means of determining the minimal 
exposure path. However, the main difference between our works 
lies in how we calculate the minimal exposure path.  In [10], the 
minimal exposure path is calculated using a grid-based method 
inside of the area defined by Voronoi cells, and this information is 
passed between nodes.  In our method, we use Voronoi cells in 
conjunction with the closed-form solution.  Doing this enables us 
to use less gird points and thus less computation by placing the 
grid-points only on the border of the Voronoi cell, instead of 
throughout the entire Voronoi cell. 
In [4], Deb et. al. present an algorithm they call STEM – Sensor 
Topology Extraction at Multiple Resolutions.  The goal of this 
algorithm is to tradeoff topological details with resources 
expended.  In other words, STEM extracts the topology of a 
sensor network at different levels of detail depending on the 
amount of resources that are allowed to be used.  The work by [4] 
is related to ours in that both works attempt to determine some 
particular amount of topology, the way by which it is done differs.  
Our means of evaluating neighbor nodes reduces down to a 
formula that attempts to find the a neighboring node with the most 
distinct neighbors and is closest to the destination.  The means of 
acquiring topology in [4] is through the use of the Minimal 
Virtual Dominating Set.  To find the Minimal Virtual Dominating 
Set, one must partition the network into red and black nodes, with 



each red node being connected to at least one black node.  Red 
nodes do not forward information, and the Minimal Virtual 
Dominating Set is the set of nodes colored black. 
The work by Dhillon et. al. in [5] is related to our work in that [5] 
tries to construct a sensor network that achieves a particular 
minimum coverage.  To construct the network, [5] assumes that 
the sensors are placed in a grid covering a specified area.  The 
goal of [5] is to turn on the minimum number of sensors such that 
all points in the grid are covered with some minimal amount of 
coverage.  Our work is related to this in that one aspect of our 
work is a means by which one can approximate this minimum 
coverage. 
The work done by [9] shows how to use a distributed algorithm to 
optimally solve the best-coverage problem described in [10].  The 
best-coverage problem is also known as the maximal support path, 
and the Delaunay triangulation can be used to solve this  best-
coverage problem optimally.  Our work is related to that of [9] in 
that we also aim to provide a best-case scenario similar to the 
best-coverage problem.  This best-case scenario is called the 
maximal exposure problem, and is a different means of classifying 
a sensor network. 
The goal of Couqueur et. al. in [1] is to provide a strategy for 
deploying sensors such that a target being tracked is subject to 
some minimal amount of exposure.  Furthermore, [1] attempts to 
maximize this minimal amount of exposure.  In addition, [1] also 
minimize the cost of deploying sensors by deploying and 
appropriate number of sensors at each step.  Our work is similar to 
this in that both deal with a worst-case scenario with regards to 
path exposure.  However, our work also deals with a best-case 
scenario with regards to path exposure. 
In the last two decades combinatorial optimization in general and 
integer and linear programming in particular, attracted a great deal 
of attention. Linear programming and in particular simplex 
algorithm for solving it were introduced and greatly popularized 
by Dantzig in 1947.  Dantzig's book is still considered as 
landmark text and must reading. In addition, numerous other 
textbooks are available, including [1], [3]. 

6. Conclusion 
We introduced our algorithms by beginning with the minimal 
exposure path algorithm and introducing a new coverage method 
called the maximal exposure path.  The method of using the 
minimal coverage to quantify a sensor network was solved using 
several methods including a numerical optimization approach and 
a linear programming approach.  Furthermore, we developed a 
localized approximation algorithm to enable a sensor network to 
determine its minimal exposure path.  The second coverage 
problem - the maximal exposure path - was proven to be NP-hard, 
and thus, we provided heuristics that can be used to generate 
approximate solutions. 
To determine the effectiveness of our localized minimal exposure 
path algorithm, we compared the results of our algorithm to those 
produced by the optimal centralized minimal exposure path 
algorithm.  Our results show that our approximation for the 
minimal path in a sensor network with an exposure model of 1/d2 

is only 20% sub-optimal.  This sub-optimality increases as the 
exponent in the exposure model increases due to the fact that the 
single-sensor minimal exposure path solution used in the 
approximation algorithm no longer stays within the corresponding 
Voronoi cell. 
We also provided heuristics to estimate the maximal exposure 
path, and have provided an upper bound on the weight of the 
maximal exposure path. We have shown that our adjusted-best-
point algorithm outperforms the other heuristics, including the 
best-point algorithm, shortest-path algorithm, and the random-
path algorithm. 
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