

Digital PUF using Intentional Faults

Teng Xu and Miodrag Potkonjak
Computer Science Department

University of California, Los Angeles
{xuteng, miodrag}@cs.ucla.edu

Abstract

Digital systems have numerous advantages over analog
systems including robustness, resiliency against operational
variations. However, one of the most popular hardware
security primitive, PUF, has been an analog component. In
this paper, we propose the concept of digital PUF where the
core idea is to intentionally use high-risk synthesis to induce
defects in circuits. Due to the effect of process variation,
each manufactured digital implementation is unique with
high probability. Compared to the traditional delay based
PUF, the induced defects in circuit are permanent defects
that guarantee the fault-based digital PUF resilient against
operational variations. Meanwhile, our proposed design
takes advantage of the digital functionality of the circuits,
thus, easy to be integrated with digital logic.

We experiment on the standard array multiplier module.
Our standard security analysis indicates ideal security
properties of the digital PUF.

Keywords
Physical Unclonable Function (PUF), Intentional Faults,

Security, Testing

1. Introduction
There are two well-known wisdoms, testing and security

that are widely and strongly established. The first is that
integrated circuit (IC) defects and their functional faults are
intrinsically bad phenomenon that should be detected,
diagnosed and, if possible, eliminated. An exciting research
and engineering field, testing, has been built with
tremendous practical importance. In summary, faults are
unwanted.

The second canon is related to emerging security and the
exceptionally popular primitive, the physical unclonable
function (PUF). A great variety of PUFs that employ
different physical entities (e.g. delay and leakage energy),
different architectures (e.g. ring oscillator, feed-forward,
obfuscated parallel, differential, SRAM), and target different
types of security protocols (e.g. secret key and public key)
have been proposed and evaluated. Nevertheless the
common denominator is that all proposed PUFs are analog
systems. The common belief is that the digital PUF is
unachievable because any digital system is easy to simulate,
emulate, and fabricate.

Our objective is to simultaneously rebut these two well-
established postulates. Specifically, we demonstrate how we
can take advantage of process variation to intentionally
induce faults in circuits and use the faulty circuit as a natural
digital PUF. Three key observations are that (i) parts of
large VLSI ICs with faults can produce highly un-
predictable outputs; (ii) faults can be intentionally induced

because of process variation, e.g., when wires in circuits are
intentionally put close to each other, bridge faults between
the wires can happen; (iii) it is difficult to form an IC that
contains exactly a specified list of faults because of process
variation. The first and the second observations are essential
for creating digital PUFs. The last observation prevents a
large family of security attacks and serves as a starting point
to create and to use a unique piece of digital PUF.

Our basic idea is surprisingly simple. The starting point
is to use process variation to intentionally inject faults in an
IC. Process variation is defined as the deviation of integrated
circuit (IC) parameters (e.g. threshold voltage, effective
length) from the nominal specifications that manifest as a
result of manufacturing processes. Then we intentionally
induce faults in circuits, e.g., design wires to be close to
each other. As a result, even with exactly the same design,
different implementations have different faults because of
process variation. We directly use the faulty circuit as a
digital PUF. A PUF is a physical system with multiple
inputs and at least one output, whose outputs are
prohibitively difficult to predict for a given set of inputs.
The digital PUF has numerous advantages over its
traditional analog realization, including operational and
environmental stability. While predicting the output of a
circuit with one or a few faults may be easy, as the number
of faults increases, the prediction becomes exceptionally
hard. The essential step in exploiting faults is the creation of
structures so that the faults in circuits can maximize output
randomness. Using extensive simulations we analyze digital
PUFs based on standard XOR network in terms of their
security properties. Based on this, we demonstrate the fact
that digital PUF shows even better security properties than
the published analog PUF. In order to establish this claim,
we use both standard PUF tests as well as looking into their
resistance against different types of attacks.

Before we summarize our contributions, we claim that
faulty IC is an ideal PUF. The first and most important
support for this claim is related to their digital nature, the
consequential benefits, and the unclonability because of
process variation.

2. Related Work
2.1 PUF

Pappu et al. introduced the concept of the first PUF and
demonstrated it using mesoscopic optical systems [1].
Devadas' research group at MIT developed the first family
of silicon PUFs through the use of intrinsic process variation
in deep submicron integrated circuits [2]. Guarardo and his
coworkers at Philips Research in Eindhoven demonstrated
how PUFs create unique startup values in SRAM cells [3].
Although a variety of PUF structures have been proposed,

978-1-4799-7581-5/15/$31.00 ©2015 IEEE 448 16th Int'l Symposium on Quality Electronic Design

arbiter-based (APUF) [2], SRAM PUFs [3], and ring
oscillator-based (RO-PUF) [4] are by far most popular.
More recently, Xu et al. first proposed digital PUFs based on
LUT networks on FPGA [5][6]. PUFs can be applied in
sensor networks, lightweight protocols, and the security of
Internet of things [7][8].

2.2 Testing PUFs
A number of approaches have been demonstrated for

testing PUF security properties [9]. Many technologies are
also proposed for the simulation of faulty circuits [10]. In
addition to using them, our approach maps the testing of
PUF security to standard randomness tests of random
number generators. Therefore, if one succeeds in breaking a
PUF that passes the outputs randomness test it is equivalent
to break the widely used statistical test. Such event is
unlikely but would be of major importance for many fields
for science and engineering.

2.3 Fault Injection
Since at least 1997 fault injections have been recognized

and demonstrated as a powerful security attack on
cryptographic devices [11]. Numerous fault injection- based
security attacks have been reported and have been
surprisingly successful [12]. Models to evaluate the circuit
sensitivities to random defects are proposed in [13]. The key
difference between the surveyed research and our efforts is
that for the first time we intentionally induce faults in
circuits and advocate positive use of faults for security.

3. Preliminaries
Due to the effect of process variation, the wires that are

close to each other have high potential to cause defects in
the circuit. According to the position of where the faults
occur, we simulate two types of faults in our digital PUF,
stuck-at faults and bridge faults.

3.1 Stuck-At Faults
In this case, we assume that process variation effects the

wire connection inside a gate that eventually causes the
functionality of the gate to be changed. In our simulation,
under such circumstance, we suppose that the output of the
gate is stuck at logic high or logic low. Figure 1 shows an
example of a stuck-at fault caused by the process variation
inside a gate.

3.2 Bridge Faults
Another type of fault that locates between wires which

connect gates are bridge faults. When we intentionally put
wires in a layout close to each other, two or more normally
distinct lines would have relatively high probability to be
shorted together. In this paper, we use this wired-and fault
model to simulate the bridge fault between gate wires as
depicted in Figure 2. To be more specific, whenever a bridge
fault occurs, if one of the wires is logic low, the other wire
would be forced to logic low.

Finally, we consider the real layout of a full adder as
shown in Figure 3. When we intentionally put wires close to
each other in the process of manufacturing, as the example
shown in Figure 3, both stuck-at faults and bridge faults can
occur. However, the positions of the faults are completely
uncontrollable because of process variation.

Figure 1: The schematic of a 2-input NAND gate. A, B are
inputs and Out is the output. Suppose the red wire is the
bridge caused by the process variation, as a result, this
NAND gate is stuck at 0. The figure is cited from [14].

Figure 2: Wired-and mechanism for bridge fault simulation.

Figure 3: Full adder layout with stuck-at fault and bridge
fault, A, B, C is inputs and S and Cout are outputs. The figure
is cited from [15].

4. Concept
4.1 A Motivational Example

Figure 4 shows the gate-level full adder with 4 potential
faults (G1 to G4). Among the faults, G1 and G2 are stuck at
faults, G3 and G4 are bridge faults and we use wired- and
for simulation. Every time we assume that only a single fault
occurs in the circuit and the corresponding outputs are
compared with the fault-free circuit outputs given the same
inputs. The result in Table 1 indicates that even with a single
fault in the circuit, the outputs change dramatically. This
provides three observations: (i) Single faults can already
alter the circuit outputs in such a way that is completely
different from the fault-free outputs. (ii) Different faults
have different impact on the circuit outputs. (iii) There are
multiple faults on a big circuit.

Figure 4: tuck-at and bridge faults in a full adder. G1, G2
are stuck-at faults and G3, G4 are bridge faults.

that for example, the outputs of an xor network based digi-
tal PUF can serve as a random number generator that passes
NIST tests[1].

Before we summarize our contributions, we claim that
faulty IC is an ideal PUF. The first and most important
support for this claim is related to their digital nature, the
consequential benefits, and the unclonability because of pro-
cess variation. Our contributions include:

• The creation of the concept of a digital PUF.

• To the best of our knowledge, one of the first posi-
tive uses of faults and in particular the first use for
hardware in general security applications.

• Identification of the best arithmetic structures for the
realization of digital PUFs.

• A new and much more demanding approach for testing
digital PUFs as well as other PUFs by applying NIST
randomness tests on the PUF outputs.

2. RELATED WORK
We now briefly survey the most directly related literature

on the physical unclonable function, fault injection, PUF
testing, and random number generator.

2.1 PUF
Pappu et al. demonstrated the first active physical un-

clonable function using optical mesoscopic systems in 2001[2].
Devadas and members of his research group observed that
intrinsic deep submicron process variation in silicon is an
ideal practical and economical starting point to fabricate a
large amount of PUFs[3][4]. Two types of approaches, PPUF
and SIMPL, enabled transition from secret key to public key
hardware cryptography. PPUFs were introduced by Beck-
mann[5]. SIMPL was proposed by Rührmair[6]. Both ap-
proaches employed the gap between simulation and execu-
tion to accomplish various security tasks. More recently,
device-ageing based PUF introduces techniques that com-
pletely eliminate any need for simulation by exploiting mech-
anisms that allow the creation of exactly a specified number
of identical devices[7]. The use of PUFs in conjunction with
standard pseudorandom generators and von Neuman data
post-processing was analyzed by the Devadas group[8].

Recent comprehensive surveys on PUFs include Rührmair
et al.[9]. The di↵erence between our new approach and all
other PUFs and their variants is that for the first time we
are able to create a digital device that can serve as a PUF.

2.2 Fault Injection
Since at least 1997 fault injections have been recognized

and demonstrated as a powerful security attack on crypto-
graphic devices[10]. Numerous fault injection-based secu-
rity attacks have been reported and have been surprisingly
successful. A comprehensive survey on fault injection tech-
niques as tools for compromising security devices and proto-
cols was recently presented by Barenghi[11]. Until now, not
surprisingly, no technique for induction of permanent faults
has been reported. The key di↵erence between the surveyed
research and development and our e↵orts is that for the first
time we intentionally induce faults in circuits and advocate
positive use of faults for security.

2.3 Testing PUFs
A number of approaches have been demonstrated for test-

ing PUF security properties[12][13]. Many technologies are
also proposed for the simulation of faulty circuits[14]. In ad-
dition to using them, our approach maps the testing of PUF
security to standard randomness tests of random number
generators. Therefore, if one succeeds in breaking a PUF
that passes the new test it is equivalent to break the widely
used statistical test. Such event is unlikely but would be of
major importance for many fields for science and engineer-
ing.

2.4 Random Number Generator
Pseudo random number generation and its evaluation have

a long history and have resulted in a significant variety of
techniques and tools[15]. However, they rarely result in fast
and compact hardware implementations. More recently, a
number of hardware random number generators (HRNG)
are also proposed[16][17]. However, all of them employ ana-
log mechanisms that have the problem of uncontrollability
and instability. The NIST tests indicate that our proposed
digital PUF exhibits excellent randomness and that it can
be used as a random number generator (RNG).

3. PRELIMINARIES
Due to the e↵ect of process variation, the wires that are

close to each other have high potential to cause defects in
the circuit. According to the position of where the faults
occur, we simulate two types of faults in our digital PUF,
stuck-at faults and bridge faults.

3.1 Stuck-At Faults
In this case, we assume that process variation e↵ects the

wire connection inside a gate which eventually causes the
functionality of the gate to be changed. In our simulation,
under such circumstance, we suppose that the output of the
gate is stuck at logic high or logic low. Figure 1 shows an
example of a stuck-at fault caused by the process variation
inside a gate.

A B

Out

1Ω

Figure 1: The schematic of a 2-input NAND gate. A, B
are inputs and Out is the output. Suppose the red wire is
the bridge caused by the process variation, as a result, this
NAND gate is stuck at 0. The figure is cited from [18].

3.2 Bridge Faults
Another type of fault which locates between wires which

connect gates are bridge faults. When we intentionally put
wires in a layout close to each other, two or more normally
distinct lines would have relatively high probability to be
shorted together. In this paper, we use this wired-and fault
model to simulate the bridge fault between gate wires as
depicted in Figure 2. To be more specific, whenever a bridge
fault occurs, if one of the wire is logic low, the other wire
would be forced to logic low.

A

B

A’

B’

Figure 2: Wired-and mechanism for bridge fault simulation.

Finally, we consider the real layout of a full adder as shown
in Figure 3. When we intentionally put wires close to each
other in the process of manufacturing, as the example shown
in Figure 3, both stuck-at faults and bridge faults can occur.
However, the position of the faults are completely uncontrol-
lable because of process variation.

Figure 3: Full adder layout with stuck-at fault and bridge
fault, A, B, C are inputs and S and C

out

are outputs. The
figure is cited from [19].

4. CONCEPTS

4.1 Motivational Example
Figure 4 shows the gate-level full adder with 4 potential

faults (G1 to G4). Among the faults, G1 and G2 are stuck
at faults, G3 and G4 are bridge faults and we use wired-
and for simulation. Every time we assume that only a single
fault occurs in the circuit and the corresponding outputs are
compared with the fault-free circuit outputs given the same
inputs. The result in Table 1 indicates that even with a
single fault in the circuit, the outputs change dramatically.
This provides three observations: (i)Single faults can already
alter the circuit outputs in such a way that is completely dif-
ferent from the fault-free outputs. (ii)Di↵erent faults have
di↵erent impact on the circuit outputs. (iii)There are mul-
tiple faults on a big circuit.

Figure 4: Stuck-at and bridge faults in a full adder. G1, G2

are stuck-at faults and G3, G4 are bridge faults.

4.2 Digital PUFs
In order to create the digital PUF, we have two key op-

erations. The first is to intentionally design the circuit in
such a way that faults are easily induced by process varia-
tion, e.g., put wires close to each other to induce bridging
between wires. Note that we do not manually inject faults

to certain positions, but only to take advantage of the in-
tentional design defects to induce faults. As a result, for dif-
ferent implementations, the position and type of the faults
would be di↵erent due to process variation. The second is
that since the faults are randomly created due to intrinsic
process variation, it is only by gate level characterization
that the position and the type of the faults can be measured
and, thus, potentially enable an attacker to clone the de-
vice. We eliminate this possibility by physically removing
(e.g. burning) those pins on the circuit which enable gate
level characterization. Therefore, the physical unclonablity
of the faulty circuit is guaranteed.

Now consider an attacker who attempts to clone our dig-
ital PUF. He is not able to execute a hardware level attack
to look into the structure of digital PUF due to the burn-
ing of the pins. What he can do is to test all the possible
input vectors on the faulty circuit to get the corresponding
outputs and further create a mapping between the inputs
and outputs. Due to the di�culty of reverse engineering, he
can not reverse engineer the corresponding hardware archi-
tecture just by acquiring this mapping.

5. ARCHITECTURE
In this section, we propose the architecture of our digital

PUF based on a few common circuits. The desiderata is
that although our digital PUF can be applied in any type
of circuit, we define an architecture to have “good perfor-
mance”only when it guarantees excellent security properties
under the constraint of small area and low energy consump-
tion. We first propose the digital PUF architecture based on
commonly used adders and multipliers. Then we propose a
customized XOR network that can potentially show “better
performance”.

5.1 Adders
The adder is one of the most commonly used circuits. An

example of the full adder based digital PUF is already shown
in Figure 4.

5.2 Multipliers
Multipliers can also be found in many circuits, but gener-

ally take more area and power than adders. For the sake of
security, when the faults in a particular architecture can sig-
nificantly change the outputs, the architecture is regarded
as “good” since the outputs would be hard to predict. Our
intuition is that the faults in multipliers are easier to prop-
agate and consequently alter the outputs more as compared
to adders because of the increased circuit depth.

5.3 XOR networks
The XOR network architecture shown in Figure 5 has w

inputs, u outputs and h stages of XOR gates. Each stage is
comprised of u XOR gates. Between two stages, the outputs
of previous stage are randomly shu✏ed and used as the in-
puts for the next stage of XOR gates. The total number of
XOR gates used in this design is u ⇤ h.

In this architecture, on average, an output from a previ-
ous stage needs to be used as the input of 2 gates in the
next stage, e.g., the red line connection in Figure 5. Now
suppose a fault occurs at the first stage of this XOR net-
work. As a result, in stage 1, the output of one gate is
potentially changed. In stage 2, since the wire of the faulty
output from previous stage is connecting to two gates in this

Figure 2: Wired-and mechanism for bridge fault simulation.

Finally, we consider the real layout of a full adder as shown
in Figure 3. When we intentionally put wires close to each
other in the process of manufacturing, as the example shown
in Figure 3, both stuck-at faults and bridge faults can occur.
However, the position of the faults are completely uncontrol-
lable because of process variation.

Figure 3: Full adder layout with stuck-at fault and bridge
fault, A, B, C are inputs and S and C

out

are outputs. The
figure is cited from [19].

4. CONCEPTS

4.1 Motivational Example
Figure 4 shows the gate-level full adder with 4 potential

faults (G1 to G4). Among the faults, G1 and G2 are stuck
at faults, G3 and G4 are bridge faults and we use wired-
and for simulation. Every time we assume that only a single
fault occurs in the circuit and the corresponding outputs are
compared with the fault-free circuit outputs given the same
inputs. The result in Table 1 indicates that even with a
single fault in the circuit, the outputs change dramatically.
This provides three observations: (i)Single faults can already
alter the circuit outputs in such a way that is completely dif-
ferent from the fault-free outputs. (ii)Di↵erent faults have
di↵erent impact on the circuit outputs. (iii)There are mul-
tiple faults on a big circuit.

Figure 4: Stuck-at and bridge faults in a full adder. G1, G2

are stuck-at faults and G3, G4 are bridge faults.

4.2 Digital PUFs
In order to create the digital PUF, we have two key op-

erations. The first is to intentionally design the circuit in
such a way that faults are easily induced by process varia-
tion, e.g., put wires close to each other to induce bridging
between wires. Note that we do not manually inject faults

to certain positions, but only to take advantage of the in-
tentional design defects to induce faults. As a result, for dif-
ferent implementations, the position and type of the faults
would be di↵erent due to process variation. The second is
that since the faults are randomly created due to intrinsic
process variation, it is only by gate level characterization
that the position and the type of the faults can be measured
and, thus, potentially enable an attacker to clone the de-
vice. We eliminate this possibility by physically removing
(e.g. burning) those pins on the circuit which enable gate
level characterization. Therefore, the physical unclonablity
of the faulty circuit is guaranteed.

Now consider an attacker who attempts to clone our dig-
ital PUF. He is not able to execute a hardware level attack
to look into the structure of digital PUF due to the burn-
ing of the pins. What he can do is to test all the possible
input vectors on the faulty circuit to get the corresponding
outputs and further create a mapping between the inputs
and outputs. Due to the di�culty of reverse engineering, he
can not reverse engineer the corresponding hardware archi-
tecture just by acquiring this mapping.

5. ARCHITECTURE
In this section, we propose the architecture of our digital

PUF based on a few common circuits. The desiderata is
that although our digital PUF can be applied in any type
of circuit, we define an architecture to have “good perfor-
mance”only when it guarantees excellent security properties
under the constraint of small area and low energy consump-
tion. We first propose the digital PUF architecture based on
commonly used adders and multipliers. Then we propose a
customized XOR network that can potentially show “better
performance”.

5.1 Adders
The adder is one of the most commonly used circuits. An

example of the full adder based digital PUF is already shown
in Figure 4.

5.2 Multipliers
Multipliers can also be found in many circuits, but gener-

ally take more area and power than adders. For the sake of
security, when the faults in a particular architecture can sig-
nificantly change the outputs, the architecture is regarded
as “good” since the outputs would be hard to predict. Our
intuition is that the faults in multipliers are easier to prop-
agate and consequently alter the outputs more as compared
to adders because of the increased circuit depth.

5.3 XOR networks
The XOR network architecture shown in Figure 5 has w

inputs, u outputs and h stages of XOR gates. Each stage is
comprised of u XOR gates. Between two stages, the outputs
of previous stage are randomly shu✏ed and used as the in-
puts for the next stage of XOR gates. The total number of
XOR gates used in this design is u ⇤ h.

In this architecture, on average, an output from a previ-
ous stage needs to be used as the input of 2 gates in the
next stage, e.g., the red line connection in Figure 5. Now
suppose a fault occurs at the first stage of this XOR net-
work. As a result, in stage 1, the output of one gate is
potentially changed. In stage 2, since the wire of the faulty
output from previous stage is connecting to two gates in this

Figure 2: Wired-and mechanism for bridge fault simulation.

Finally, we consider the real layout of a full adder as shown
in Figure 3. When we intentionally put wires close to each
other in the process of manufacturing, as the example shown
in Figure 3, both stuck-at faults and bridge faults can occur.
However, the position of the faults are completely uncontrol-
lable because of process variation.

Figure 3: Full adder layout with stuck-at fault and bridge
fault, A, B, C are inputs and S and C

out

are outputs. The
figure is cited from [19].

4. CONCEPTS

4.1 Motivational Example
Figure 4 shows the gate-level full adder with 4 potential

faults (G1 to G4). Among the faults, G1 and G2 are stuck
at faults, G3 and G4 are bridge faults and we use wired-
and for simulation. Every time we assume that only a single
fault occurs in the circuit and the corresponding outputs are
compared with the fault-free circuit outputs given the same
inputs. The result in Table 1 indicates that even with a
single fault in the circuit, the outputs change dramatically.
This provides three observations: (i)Single faults can already
alter the circuit outputs in such a way that is completely dif-
ferent from the fault-free outputs. (ii)Di↵erent faults have
di↵erent impact on the circuit outputs. (iii)There are mul-
tiple faults on a big circuit.

A

B

Cin

Cout

S
G1 G3

G4
G2

Figure 4: Stuck-at and bridge faults in a full adder. G1, G2

are stuck-at faults and G3, G4 are bridge faults.

4.2 Digital PUFs
In order to create the digital PUF, we have two key op-

erations. The first is to intentionally design the circuit in
such a way that faults are easily induced by process varia-
tion, e.g., put wires close to each other to induce bridging
between wires. Note that we do not manually inject faults

to certain positions, but only to take advantage of the in-
tentional design defects to induce faults. As a result, for dif-
ferent implementations, the position and type of the faults
would be di↵erent due to process variation. The second is
that since the faults are randomly created due to intrinsic
process variation, it is only by gate level characterization
that the position and the type of the faults can be measured
and, thus, potentially enable an attacker to clone the de-
vice. We eliminate this possibility by physically removing
(e.g. burning) those pins on the circuit which enable gate
level characterization. Therefore, the physical unclonablity
of the faulty circuit is guaranteed.

Now consider an attacker who attempts to clone our dig-
ital PUF. He is not able to execute a hardware level attack
to look into the structure of digital PUF due to the burn-
ing of the pins. What he can do is to test all the possible
input vectors on the faulty circuit to get the corresponding
outputs and further create a mapping between the inputs
and outputs. Due to the di�culty of reverse engineering, he
can not reverse engineer the corresponding hardware archi-
tecture just by acquiring this mapping.

5. ARCHITECTURE
In this section, we propose the architecture of our digital

PUF based on a few common circuits. The desiderata is
that although our digital PUF can be applied in any type
of circuit, we define an architecture to have “good perfor-
mance”only when it guarantees excellent security properties
under the constraint of small area and low energy consump-
tion. We first propose the digital PUF architecture based on
commonly used adders and multipliers. Then we propose a
customized XOR network that can potentially show “better
performance”.

5.1 Adders
The adder is one of the most commonly used circuits. An

example of the full adder based digital PUF is already shown
in Figure 4.

5.2 Multipliers
Multipliers can also be found in many circuits, but gener-

ally take more area and power than adders. For the sake of
security, when the faults in a particular architecture can sig-
nificantly change the outputs, the architecture is regarded
as “good” since the outputs would be hard to predict. Our
intuition is that the faults in multipliers are easier to prop-
agate and consequently alter the outputs more as compared
to adders because of the increased circuit depth.

5.3 XOR networks
The XOR network architecture shown in Figure 5 has w

inputs, u outputs and h stages of XOR gates. Each stage is
comprised of u XOR gates. Between two stages, the outputs
of previous stage are randomly shu✏ed and used as the in-
puts for the next stage of XOR gates. The total number of
XOR gates used in this design is u ⇤ h.

In this architecture, on average, an output from a previ-
ous stage needs to be used as the input of 2 gates in the
next stage, e.g., the red line connection in Figure 5. Now
suppose a fault occurs at the first stage of this XOR net-
work. As a result, in stage 1, the output of one gate is
potentially changed. In stage 2, since the wire of the faulty
output from previous stage is connecting to two gates in this

Table 1: Single fault impacts on the outputs of a full adder.
Values in red indicate the different bits in faulty outputs
compared to fault-free outputs.

4.2 Digital PUFs
 In order to create the digital PUF, we have two key
operations. The first is to intentionally design the circuit in
such a way that faults are easily induced by process
variation, e.g., put wires close to each other to induce
bridging between wires. Note that we do not manually inject
faults to certain positions, but only to take advantage of the
intentional design defects to induce faults. As a result, for
different implementations, the position and type of the faults
would be different due to process variation. The second is
that since the faults are randomly created due to intrinsic
process variation, it is only by gate level characterization
that the position and the type of the faults can be measured
and, thus, potentially enable an attacker to clone the de- vice.
We eliminate this possibility by physically removing (e.g.
burning) those pins on the circuit, which enable gate level
characterization. Therefore, the physical unclonablity of the
faulty circuit is guaranteed.

Now consider an attacker who attempts to clone our
digital PUF. He is not able to execute a hardware level
attack to look into the structure of digital PUF due to the
burning of the pins. What he can do is to test all the possible
input vectors on the faulty circuit to get the corresponding
outputs and further create a mapping between the inputs and
outputs. Due to the difficulty of reverse engineering, he
cannot reverse engineer the corresponding hardware
architecture just by acquiring this mapping.

Another core idea of the design is to run the faulty circuit
for iterations. Essentially, the outputs of the faulty circuit
can be iteratively utilized as the inputs in the next iteration
after keep repeating. Therefore, after rounds of iterations,
the influence of the circuit faults on the final outputs can be
propagated and enlarged, thus making the outputs to be
completely unpredictable.

5. Security Analysis
We analysis the security properties of faulty circuits

based on the standard multiplier module. We use 16-bit
inputs array-multiplier with 32 bits of outputs. We also
assume that process variation will cause 1 percentage of the
circuits have fault. We feed back the outputs as inputs
iteratively for 10 iterations. For each of the following
analysis, we simulate to test on 50 instances.

The security digital PUF comes from the unpredictability
of its outputs. When given the inputs, without acquiring the
structure of faulty circuits, attackers should not be able to
deduce the corresponding outputs. According to the way of
prediction. The attacks to PUF can be categorized in two
types: prediction from fault-free circuit and prediction from
statistical model.

5.1 Predication from Fault-free Circuit
In this type of attack, the attacker tries to predict the

outputs of a digital PUF by using the fault-free circuit. As
the circuit with exactly the same fault cannot be reproduced,
the attacker replaces the faulty circuit in digital PUFs with
fault-free circuit, and then tries to predict the faulty outputs
according to the fault-free outputs. Two criterions can be
analyzed to decide whether our digital PUF is resilient
against this type of attack.

1) Hamming distance distribution: In this criterion, we
compare the hamming distance between the faulty outputs
and fault-free outputs. Ideally, the result should be in form
of polynomial distribution with peak on the half of the
output number.

Figure 5: Prediction from fault-free circuit:(a) Hamming
distance distribution (the error bar shows the distribution of
max, 75%, mean, 25% and min)

2) Conditional probability: The other criterion is that the
attacker tries to build a conditional probability model
between every bit of fault-free outputs and faulty outputs.
The goal of the attacker is to predict P(O1i = c1/O2j =
c2),c1, c2=1 or 0 where O1 is the faulty output and O2 is the
fault-free output. When the probability is always distributed
around 0.5, it means the correlation between faulty outputs
and fault-free outputs are weak, which indicates ideal
security property.

Figure 6: Prediction from fault-free circuit: Conditional
probability between fault-free output O2 and faulty output
O1.

5.2 Predication from Statistical Model
In this type of prediction, the attacker tries to predict the

faulty outputs by building statistical model of the digital
PUF to increase the correct rate of prediction. The statistical
model can involve the following three aspects.

A / B / Cin
Cout / S

Fault-Free G1 ! 1 G1 ! 0 G2 ! 1 G2 ! 0 G3(bridge) G4(bridge)
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 0 1
0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1
0 1 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0
1 0 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1
1 0 1 1 0 1 0 0 1 1 0 0 0 1 0 0 0
1 1 0 1 0 1 1 1 0 1 0 0 0 1 0 0 0
1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1

Table 1: Single fault impacts on the outputs of a full adder. Values in red indicate the di↵erent bits in faulty outputs compared
to fault-free outputs.

stage, the outputs of two gates in stage 2 are influenced. In
the final stage (stage h), on average, 2h�1 outputs are influ-
enced. Therefore, we conclude that a fault in XOR network
propagates exponentially as the stage grows.
In our realization, we use the XOR gate as the basic el-

ement to build our network. Before we explain the reason,
we define the concept of switching factor which represents
the frequency of output switching with respect to the fre-
quency of input switching. Note that for a two input gate,
the ratio of these frequencies is at most 2. The 2-input
XOR gate reaches this maximum switching factor because
each switching of any input results in the switching of the
output. This is superior to both the AND gate and the
OR gate. Therefore, we use the XOR network to achieve
maximum switching e↵ect.

Figure 5: XOR network architecture with w inputs, u out-
puts and h stages of XOR gates. Interstage network inter-
connects only the cells between neighbouring layers of gates.
The red line shows an example of interstage connection.

6. SECURITY ATTACKS AND EVALUATION
In this section, we analysis the security properties of the

digital PUF based on adders, multipliers, and XOR net-
works respectively. The basic approach is to identify their
resistance against two classes of potential security attacks:
(i) guessing with statistical model, and (ii) technological at-
tacks. In guessing attacks, the attacker observes a polyno-
mial number of challenge-response pairs and tries to statis-
tically analyze them in order to predict the answer to an
unseen challenge. Technological attacks refer to the attacks
based on commonly used attack technology, e.g., cloning at-
tack, brute-force simulation, look-up table attack, and spe-
cial purpose hardware.

For each type of attack, we conducted comprehensive tests
using 64-bit carry-ripple adder, 32-bit array multiplier and
XOR network with w = 64, u = 64, and h = 8. All of these
circuits have 64 outputs which facilitate comparison (we do
not consider carry bit in the case of adder and multiplier).
For each simulation, we present the results using 10,000 in-
put vectors. In each type of circuit, we suppose 2 percent of
the gates have faults.

6.1 Guessing with Statistical Model

6.1.1 Predictions using fault-free circuits
In this type of attack, the attacker tries to predict the

outputs of a digital PUF by using the outputs of the corre-
sponding fault-free circuit given the same inputs. We sim-
ulate to analyse their average output hamming distance on
adders, multipliers and XOR gates respectively. Ideally, the
results should be around half of the number of outputs. Ta-
ble 2 shows the average output hamming distance across the
three circuits. It is obvious that XOR network has best per-
formance, followed by multiplier and adder has worst per-
formance.

Adder Multiplier XOR network
Avg. Distance 2.7± 1.8 22.9± 4.3 31.92± 4.56

Table 2: Average output hamming distance between 2%
faulty circuit and fault free circuit. The uncertainties corre-
spond to standard deviations in faults characterisation. The
ideal hamming distance should be 32.

6.1.2 Avalanche effect predication
If the avalanche criterion is evident in a cryptographic

system, then there is an ultra low probability that an at-
tacker can predict any subsequent outputs using knowledge
of outputs for similar inputs. The avalanche criterion can
be measured by observing the corresponding outputs for two
inputs who di↵er by a minimal amount. In the case of our
digital PUF, the smallest amount that an input can change
is by one bit.
Thus, we measure the hamming distance between out-

put vectors when changing one bit of our input vector over
10,000 inputs. Ideally, the average hamming distance should
be 32. Table 3 presents the results on the three architecture,
still, XOR network performs best, then the multiplier and
the adder.

6.1.3 Output randomness prediction
This prediction attack directly guesses the outputs based

on their frequency. For instance, if some output bits have
high probability to be in 1, the attacker can always predict

0 2 4 6 8 10 13 16 19 22 25 28 31

0.
00

0.
05

0.
10

0.
15

0.
20

Output Hamming Distance

R
el

at
iv

e
Fr

eq
ue

nc
y

(a)

5 10 15 20 25 30

5

10

15

20

25

30

Output without fault: O1j

O
ut

pu
t w

ith
 fa

ul
t:

O
2i

P(O2i=1/O1j=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

1 3 5 7 9 11 14 17 20 23 26 29 32

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Output Oi

P(
O

i=
0)

(c)
Figure 5: Prediction from fault-free circuit:(a) Hamming distance distribution(the error bar shows the distribution of max,
75%, mean, 25% and min), (b) Conditional probability between fault-free output O2 and faulty output O1, Prediction from
statistical model:(c) Frequency prediction: the probability that a bit in faulty output is equal to 1.

0 2 4 6 8 10 13 16 19 22 25 28 31

0.
00

0.
05

0.
10

0.
15

0.
20

Avl:Output Hamming Distance

R
el

at
ive

 F
re

qu
en

cy

(a)

5 10 15 20 25 30

5

10

15

20

25

30

Input Ij
Ou

tp
ut

 O
i

P(Oi=1/Ij=1)

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

5 10 15 20 25 30

5

10

15

20

25

30

Output Oj

O
ut

pu
t O

i

P(Oi=1/Oj=1)

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)
Figure 6: Prediction from statistical model:(a) Hamming distance distribution of avalanche effect, (b) Conditional Probabilities
between Output bits Oi and input bits Ij , (c) Conditional Probabilities between Output bits Oi and other output bits Oj .

Statistical Test Passing Proportion P-value
Frequency 100% 0.9692

Block Frequency (m=128) 98.7% 0.2784
Cusum-Forward 99.8% 0.9953
Cusum-Reverse 99.7% 0.9958

Runs 99.5% 0.5781
Longest Runs of Ones 99.4% 0.2033

Rank 98.8% 0.4310
Spectral DFT 99.0% 0.1341

Non-overlapping Templates (m=9) 98.2% 0.4318
Overlapping Templates (m=9) 99.7% 0.6819

Universal 99.8% 0.8879
Approximate Entropy (m=8) 99.6% 0.5223
Random Excursions (x=+1) 98.8% 0.4289

Random Excursions Variant (x=-1) 99.0% 0.3687
Serial (m=16) 99.8% 0.2935

Linear Complexity (M=500) 99.3% 0.1246

Table III: Passing proportion and P -value for NIST Statis-
tical Test. 1000 arrays are tested for each test. Significance
Level � = 0.01. When P -value��, the array passes test.
The P -value in table is the overall P -value of the 1000
arrays.

A. Type of faults

Theoretically, the best faults to create DPUFs are the ones
that have the most impacts on the outputs. While the impacts
are directly decided by the faulty gate’s fan-out, the number
of fan-out can be used as one criterion to distinguish the
quality of the fault. The more fan-outs, the more impacts
the stuck at gate on the outputs may have. Table IV shows
the average hamming distance between the faulty output
and the fault-free output with single fault of different fan-
out in circuit. The result confirms that with more number
of fan-out, the average hamming distance approaches ideal
case which should be 16. Moreover, whether a fault is a
dominate fault is also important to influence the result.
A dominate fault means that a fault directly influence the
output, for example, the stuck at fault at G2 and G5 in
Figure1. The dominate fault is direct, but lack of chance
to make propagation.

0 2 4 6 8 10 13 16 19 22 25 28 31

0.
00

0.
05

0.
10

0.
15

0.
20

Output Hamming Distance

R
el

at
iv

e
Fr

eq
ue

nc
y

(a)

5 10 15 20 25 30

5

10

15

20

25

30

Output without fault: O1j

O
ut

pu
t w

ith
 fa

ul
t:

O
2i

P(O2i=1/O1j=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

1 3 5 7 9 11 14 17 20 23 26 29 32

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Output Oi

P(
O

i=
0)

(c)
Figure 5: Prediction from fault-free circuit:(a) Hamming distance distribution(the error bar shows the distribution of max,
75%, mean, 25% and min), (b) Conditional probability between fault-free output O2 and faulty output O1, Prediction from
statistical model:(c) Frequency prediction: the probability that a bit in faulty output is equal to 1.

0 2 4 6 8 10 13 16 19 22 25 28 31

0.
00

0.
05

0.
10

0.
15

0.
20

Avl:Output Hamming Distance

R
el

at
ive

 F
re

qu
en

cy

(a)

5 10 15 20 25 30

5

10

15

20

25

30

Input Ij

Ou
tp

ut
 O

i

P(Oi=1/Ij=1)

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

5 10 15 20 25 30

5

10

15

20

25

30

Output Oj

O
ut

pu
t O

i

P(Oi=1/Oj=1)

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)
Figure 6: Prediction from statistical model:(a) Hamming distance distribution of avalanche effect, (b) Conditional Probabilities
between Output bits Oi and input bits Ij , (c) Conditional Probabilities between Output bits Oi and other output bits Oj .

Statistical Test Passing Proportion P-value
Frequency 100% 0.9692

Block Frequency (m=128) 98.7% 0.2784
Cusum-Forward 99.8% 0.9953
Cusum-Reverse 99.7% 0.9958

Runs 99.5% 0.5781
Longest Runs of Ones 99.4% 0.2033

Rank 98.8% 0.4310
Spectral DFT 99.0% 0.1341

Non-overlapping Templates (m=9) 98.2% 0.4318
Overlapping Templates (m=9) 99.7% 0.6819

Universal 99.8% 0.8879
Approximate Entropy (m=8) 99.6% 0.5223
Random Excursions (x=+1) 98.8% 0.4289

Random Excursions Variant (x=-1) 99.0% 0.3687
Serial (m=16) 99.8% 0.2935

Linear Complexity (M=500) 99.3% 0.1246

Table III: Passing proportion and P -value for NIST Statis-
tical Test. 1000 arrays are tested for each test. Significance
Level � = 0.01. When P -value��, the array passes test.
The P -value in table is the overall P -value of the 1000
arrays.

A. Type of faults

Theoretically, the best faults to create DPUFs are the ones
that have the most impacts on the outputs. While the impacts
are directly decided by the faulty gate’s fan-out, the number
of fan-out can be used as one criterion to distinguish the
quality of the fault. The more fan-outs, the more impacts
the stuck at gate on the outputs may have. Table IV shows
the average hamming distance between the faulty output
and the fault-free output with single fault of different fan-
out in circuit. The result confirms that with more number
of fan-out, the average hamming distance approaches ideal
case which should be 16. Moreover, whether a fault is a
dominate fault is also important to influence the result.
A dominate fault means that a fault directly influence the
output, for example, the stuck at fault at G2 and G5 in
Figure1. The dominate fault is direct, but lack of chance
to make propagation.

1) Frequency Prediction: In this attack, the attacker
collects the data from previous outputs from digital PUFs
and builds a probability distribution for each output being a
particular value. The ideal situation would be that each bit of
the output has equal probability to be 1 or 0 that provides no
clue for the attacker to make the prediction.

Figure 7: Prediction from statistical model: Frequency
prediction: the probability that a bit in faulty output is equal
to 1.

2) Avalanche Criterion: The notion of avalanche effect
refers to that when the inputs of a digital PUF change
slightly, the output changes significantly. If the avalanche
effect is not exhibited to a significant degree, it indicates the
digital PUF shows low randomness, thus easy to be
predicted the other output given some similar output. We
use the hamming distance between two similar outputs to
indicate the avalanche effect. The ideal situation should be
that the result is in the form of polynomial distribution.

Figure 8: Prediction from statistical model: Hamming
distance distribution of avalanche effect.

3) Conditional Correlation: Another type of attack is
that the attacker tries to look into the correlation between an
output bit Oi and an input bit Ij of a particular digital PUF.
The goal of the attacker is to predict P (Oi = c1|Ij = c2), c1,
c2=1 or 0. When the value is equal to 0.5, the correlation
comes the lowest. Figure 9 shows the correlation results.

Reference
 [1] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld,

"Physical one-way functions," Science, vol. 297, no.
5589, pp. 2026–2030, 2002.

 [2] B. Gassend et al., "Silicon physical random functions,"
in Computer and Communications Security, pp. 148–
160, 2002.

Figure 9: Prediction from statistical model: Conditional
probabilities between Output bits Oi and input bits Ij.

[3] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls,

"FPGA intrinsic PUFs and their use for IP protection,"
in CHES, pp. 63–80, 2007.

 [4] G. E. Suh and S. Devadas, "Physical unclonable
functions for device authentication and secret key
generation," in DAC, pp. 9–14, 2007.

 [5] T. Xu, J. B. Wendt, and M. Potkonjak, "Digital bimodal
function: an ultra-low energy security primitive," in
ISLPED, pp. 292–296, 2013.

 [6] T. Xu, M. Potkonjak, “Robust and Flexible FPGA-based
Digital PUF,” International Conference on Field
Programmable Logic and Applications (FPL), 2014.

 [7] T. Xu, J. B. Wendt and M. Potkonjak, "Secure Remote
Sensing and Communication using Digital
PUFs," ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS),
pp. 173-184, 2014.

 [8] T. Xu, J. B. Wendt, and M. Potkonjak, "Security of IoT
Systems: Design Challenges and Opportunities,"
IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 417-423, 2014.

 [9] Y. Hori, T. Yoshida, T. Katashita, and A. Satoh,
“Quantitative and statistical performance evaluation of
arbiter Physical Unclonable Functions on FPGAs,”
Reconfigurable Computing and FPGAs - ReConFig,
International Conference on, pp. 298-303, 2010.

[10] F. Hapke, et al. ”Defect-oriented cell-aware ATPG and
fault simulation for industrial cell libraries and
designs,” IEEE International Test Conference, 2009.

[11] D. Boneh, R.A. DeMillo, and R.J. Lipton, “On the
importance of checking cryp- tographic protocols for
faults,” Advances in Cryptology - EUROCRYPT, pp.
37-51, 1997.

[12] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache,
“Fault injection attacks on cryptographic devices:
theory, practice, and countermeasures,” Proceedings of
the IEEE, vol. 100, no. 11, pp. 3056-3076, 2012.

[13] C.H. Stapper, “Modeling of integrated circuit defect
sensitivities,” IBM Journal of Research and
Development, vol. 27, no. 6, pp. 549-557, 1983.

[14] J. Plusquellic, CMPE 646: VLSI Design Verification
and Test Course Notes, University of New Mexico,
2007, Lecture Notes.

[15] N. Weste, and D. Money, CMOS VLSI Design,
Pearson/Addison Wesley, 2005.

0 2 4 6 8 10 13 16 19 22 25 28 31

0.
00

0.
05

0.
10

0.
15

0.
20

Output Hamming Distance

R
el

at
iv

e
Fr

eq
ue

nc
y

(a)

5 10 15 20 25 30

5

10

15

20

25

30

Output without fault: O1j

O
ut

pu
t w

ith
 fa

ul
t:

O
2i

P(O2i=1/O1j=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

1 3 5 7 9 11 14 17 20 23 26 29 32

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Output Oi

P(
O

i=
0)

(c)
Figure 5: Prediction from fault-free circuit:(a) Hamming distance distribution(the error bar shows the distribution of max,
75%, mean, 25% and min), (b) Conditional probability between fault-free output O2 and faulty output O1, Prediction from
statistical model:(c) Frequency prediction: the probability that a bit in faulty output is equal to 1.

0 2 4 6 8 10 13 16 19 22 25 28 31

0.
00

0.
05

0.
10

0.
15

0.
20

Avl:Output Hamming Distance

R
el

at
ive

 F
re

qu
en

cy

(a)

5 10 15 20 25 30

5

10

15

20

25

30

Input Ij

Ou
tpu

t O
i

P(Oi=1/Ij=1)

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

5 10 15 20 25 30

5

10

15

20

25

30

Output Oj

O
ut

pu
t O

i

P(Oi=1/Oj=1)

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)
Figure 6: Prediction from statistical model:(a) Hamming distance distribution of avalanche effect, (b) Conditional Probabilities
between Output bits Oi and input bits Ij , (c) Conditional Probabilities between Output bits Oi and other output bits Oj .

Statistical Test Passing Proportion P-value
Frequency 100% 0.9692

Block Frequency (m=128) 98.7% 0.2784
Cusum-Forward 99.8% 0.9953
Cusum-Reverse 99.7% 0.9958

Runs 99.5% 0.5781
Longest Runs of Ones 99.4% 0.2033

Rank 98.8% 0.4310
Spectral DFT 99.0% 0.1341

Non-overlapping Templates (m=9) 98.2% 0.4318
Overlapping Templates (m=9) 99.7% 0.6819

Universal 99.8% 0.8879
Approximate Entropy (m=8) 99.6% 0.5223
Random Excursions (x=+1) 98.8% 0.4289

Random Excursions Variant (x=-1) 99.0% 0.3687
Serial (m=16) 99.8% 0.2935

Linear Complexity (M=500) 99.3% 0.1246

Table III: Passing proportion and P -value for NIST Statis-
tical Test. 1000 arrays are tested for each test. Significance
Level � = 0.01. When P -value��, the array passes test.
The P -value in table is the overall P -value of the 1000
arrays.

A. Type of faults

Theoretically, the best faults to create DPUFs are the ones
that have the most impacts on the outputs. While the impacts
are directly decided by the faulty gate’s fan-out, the number
of fan-out can be used as one criterion to distinguish the
quality of the fault. The more fan-outs, the more impacts
the stuck at gate on the outputs may have. Table IV shows
the average hamming distance between the faulty output
and the fault-free output with single fault of different fan-
out in circuit. The result confirms that with more number
of fan-out, the average hamming distance approaches ideal
case which should be 16. Moreover, whether a fault is a
dominate fault is also important to influence the result.
A dominate fault means that a fault directly influence the
output, for example, the stuck at fault at G2 and G5 in
Figure1. The dominate fault is direct, but lack of chance
to make propagation.

0 2 4 6 8 10 13 16 19 22 25 28 31

0.
00

0.
05

0.
10

0.
15

0.
20

Output Hamming Distance

R
el

at
iv

e
Fr

eq
ue

nc
y

(a)

5 10 15 20 25 30

5

10

15

20

25

30

Output without fault: O1j

O
ut

pu
t w

ith
 fa

ul
t:

O
2i

P(O2i=1/O1j=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

1 3 5 7 9 11 14 17 20 23 26 29 32

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Output Oi

P(
O

i=
0)

(c)
Figure 5: Prediction from fault-free circuit:(a) Hamming distance distribution(the error bar shows the distribution of max,
75%, mean, 25% and min), (b) Conditional probability between fault-free output O2 and faulty output O1, Prediction from
statistical model:(c) Frequency prediction: the probability that a bit in faulty output is equal to 1.

0 2 4 6 8 10 13 16 19 22 25 28 31

0.
00

0.
05

0.
10

0.
15

0.
20

Avl:Output Hamming Distance

R
el

at
ive

 F
re

qu
en

cy

(a)

5 10 15 20 25 30

5

10

15

20

25

30

Input Ij

Ou
tp

ut
 O

i

P(Oi=1/Ij=1)

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

5 10 15 20 25 30

5

10

15

20

25

30

Output Oj

O
ut

pu
t O

i

P(Oi=1/Oj=1)

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)
Figure 6: Prediction from statistical model:(a) Hamming distance distribution of avalanche effect, (b) Conditional Probabilities
between Output bits Oi and input bits Ij , (c) Conditional Probabilities between Output bits Oi and other output bits Oj .

Statistical Test Passing Proportion P-value
Frequency 100% 0.9692

Block Frequency (m=128) 98.7% 0.2784
Cusum-Forward 99.8% 0.9953
Cusum-Reverse 99.7% 0.9958

Runs 99.5% 0.5781
Longest Runs of Ones 99.4% 0.2033

Rank 98.8% 0.4310
Spectral DFT 99.0% 0.1341

Non-overlapping Templates (m=9) 98.2% 0.4318
Overlapping Templates (m=9) 99.7% 0.6819

Universal 99.8% 0.8879
Approximate Entropy (m=8) 99.6% 0.5223
Random Excursions (x=+1) 98.8% 0.4289

Random Excursions Variant (x=-1) 99.0% 0.3687
Serial (m=16) 99.8% 0.2935

Linear Complexity (M=500) 99.3% 0.1246

Table III: Passing proportion and P -value for NIST Statis-
tical Test. 1000 arrays are tested for each test. Significance
Level � = 0.01. When P -value��, the array passes test.
The P -value in table is the overall P -value of the 1000
arrays.

A. Type of faults

Theoretically, the best faults to create DPUFs are the ones
that have the most impacts on the outputs. While the impacts
are directly decided by the faulty gate’s fan-out, the number
of fan-out can be used as one criterion to distinguish the
quality of the fault. The more fan-outs, the more impacts
the stuck at gate on the outputs may have. Table IV shows
the average hamming distance between the faulty output
and the fault-free output with single fault of different fan-
out in circuit. The result confirms that with more number
of fan-out, the average hamming distance approaches ideal
case which should be 16. Moreover, whether a fault is a
dominate fault is also important to influence the result.
A dominate fault means that a fault directly influence the
output, for example, the stuck at fault at G2 and G5 in
Figure1. The dominate fault is direct, but lack of chance
to make propagation.

0 2 4 6 8 10 13 16 19 22 25 28 31

0.
00

0.
05

0.
10

0.
15

0.
20

Output Hamming Distance

R
el

at
iv

e
Fr

eq
ue

nc
y

(a)

5 10 15 20 25 30

5

10

15

20

25

30

Output without fault: O1j

O
ut

pu
t w

ith
 fa

ul
t:

O
2i

P(O2i=1/O1j=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

1 3 5 7 9 11 14 17 20 23 26 29 32

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Output Oi

P(
O

i=
0)

(c)
Figure 5: Prediction from fault-free circuit:(a) Hamming distance distribution(the error bar shows the distribution of max,
75%, mean, 25% and min), (b) Conditional probability between fault-free output O2 and faulty output O1, Prediction from
statistical model:(c) Frequency prediction: the probability that a bit in faulty output is equal to 1.

0 2 4 6 8 10 13 16 19 22 25 28 31

0.
00

0.
05

0.
10

0.
15

0.
20

Avl:Output Hamming Distance

R
el

at
ive

 F
re

qu
en

cy

(a)

5 10 15 20 25 30

5

10

15

20

25

30

Input Ij

Ou
tp

ut
 O

i

P(Oi=1/Ij=1)

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

5 10 15 20 25 30

5

10

15

20

25

30

Output Oj

O
ut

pu
t O

i

P(Oi=1/Oj=1)

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)
Figure 6: Prediction from statistical model:(a) Hamming distance distribution of avalanche effect, (b) Conditional Probabilities
between Output bits Oi and input bits Ij , (c) Conditional Probabilities between Output bits Oi and other output bits Oj .

Statistical Test Passing Proportion P-value
Frequency 100% 0.9692

Block Frequency (m=128) 98.7% 0.2784
Cusum-Forward 99.8% 0.9953
Cusum-Reverse 99.7% 0.9958

Runs 99.5% 0.5781
Longest Runs of Ones 99.4% 0.2033

Rank 98.8% 0.4310
Spectral DFT 99.0% 0.1341

Non-overlapping Templates (m=9) 98.2% 0.4318
Overlapping Templates (m=9) 99.7% 0.6819

Universal 99.8% 0.8879
Approximate Entropy (m=8) 99.6% 0.5223
Random Excursions (x=+1) 98.8% 0.4289

Random Excursions Variant (x=-1) 99.0% 0.3687
Serial (m=16) 99.8% 0.2935

Linear Complexity (M=500) 99.3% 0.1246

Table III: Passing proportion and P -value for NIST Statis-
tical Test. 1000 arrays are tested for each test. Significance
Level � = 0.01. When P -value��, the array passes test.
The P -value in table is the overall P -value of the 1000
arrays.

A. Type of faults

Theoretically, the best faults to create DPUFs are the ones
that have the most impacts on the outputs. While the impacts
are directly decided by the faulty gate’s fan-out, the number
of fan-out can be used as one criterion to distinguish the
quality of the fault. The more fan-outs, the more impacts
the stuck at gate on the outputs may have. Table IV shows
the average hamming distance between the faulty output
and the fault-free output with single fault of different fan-
out in circuit. The result confirms that with more number
of fan-out, the average hamming distance approaches ideal
case which should be 16. Moreover, whether a fault is a
dominate fault is also important to influence the result.
A dominate fault means that a fault directly influence the
output, for example, the stuck at fault at G2 and G5 in
Figure1. The dominate fault is direct, but lack of chance
to make propagation.

