Re-Engineering Software Engineering in a Data-Centric World

Miryung Kim
University of California, Los Angeles
Confluence

Interdisciplinary thinking via confluences, George Varghese @ SIGCOMM 2014 Keynote
Confluence: Interdisciplinary Thinking

Interdisciplinary thinking via confluences, George Varghese @ SIGCOMM 2014 Keynote
Confluence: Impressionism

Interdisciplinary thinking via confluences, George Varghese @ SIGCOMM 2014 Keynote
Confluence: Data Analytics and SE

Interdisciplinary thinking via confluences, George Varghese @ SIGCOMM 2014 Keynote
Bug finding is a huge problem in data analytics.

SE4DA is underserved; somehow people have gravitated to applying data analytics to SE.

SE4DA requires re-thinking software engineering techniques.
There is a huge opportunity for data analytics.
Data analytics are in high demand, yet ...
Bugs are huge problems in data analytics.

Data analytics used by thousands of scientists produce **misleading** or **wrong results** [BBC News]

Predictably inaccurate: The prevalence and perils of bad big data. [Deloitte]

The widespread harm includes from a **wrong medical diagnosis** to **incorrect interpretation** of stock history [Dataversity]
Growth of Data Analytics Papers in SE

Data Analytics (AI, Big Data, ML) Growth in ASE Papers

- 2016: 38 papers, Data Analytics 21, Rest 17
- 2017: 50 papers, Data Analytics 22, Rest 28
- 2018: 40 papers, Data Analytics 28, Rest 12
- 2019: 39 papers, Data Analytics 47, Rest 9
SE4DA is under-investigated.
(SE4DA: 13, DA4SE: 105)

- **SE4DA (4%)**: Improving SE for data analytics
- **DA4SE (37%)**: Applying data analytics to SE

Rest (59%)
Outline: Making a Case for Software Engineering for Data Analytics (SE4DA)

1. Shift to data-centric SW development
2. Differences between traditional SW vs. data-centric SW dev process
3. Debugging & testing for big data analytics
4. Open problems in SE4DA

Studies: Data Scientists

Tools

We Can Help
Part 1. Data Scientists in Software Teams: State of the Art and Challenges

Miryung Kim, Thomas Zimmermann, Rob DeLine, Andrew Begel
The Emerging Roles of Data Scientists on Software Teams

We are at a tipping point where there are large scale telemetry, machine, quality, and user data. Data scientists are emerging roles in SW teams. To understand working styles and challenges, we conducted the first in-depth interview study and the largest scale survey of professional data scientists.
Methodology for Studying “Data Scientists”

In-Depth Interviews [ICSE’16]:
• 5 women and 11 men from eight different Microsoft organizations

Survey [TSE 2018]
793 responses
• demographics/self-perception
• skills and tool usage
• working styles
• time spent
• challenges and best practices
Time Spent on Activities

Hours spent on certain activities (self reported, survey, N=532)
What is a “Data Scientist”?

532 data scientists at Microsoft

Based on relative time spent in activities

9 Distinct Categories

Clustering

① Data Scientists
② Difference
③ Tools
④ Challenges
Category 1: Data Shaper

Analyzing and preparing data
Post-graduate degrees
Algorithms, machine learning, and optimizations
Less familiar with front-end programming
Category 2: Platform Builder

Instrument code to collect data

Big data and distributed systems

Back-end and front-end programming

SQL, C, C++ and C#
Category 3: Data Analyzer

Familiar with statistics

Not familiar with front-end programming

Difficulty with data transformation

R Studio or statistical analysis
Common challenges: Data scientists find it difficult to ensure “correctness”

Validation is a major challenge.

“Honestly, we don’t have a good method for this.”
“Just because the math is right, doesn’t mean that the answer is right.”

Explainability is important— “to gain insights, you must go one level deeper.”
Outline: Making a Case for Software Engineering for Data Analytics (SE4DA)

1. Shift to data-centric SW development

2. Differences between traditional SW vs. data-centric SW dev process

3. Debugging & testing for big data analytics

4. Open problems in SE4DA

Studies: Data Scientists

Tools

Difference

Challenges
Part 2. How is Traditional Development Different from Big Data Analytics Development?
Traditional vs. Big Data Analytics Development

- **Develop**
 1. Develop locally

- **Run**
 2. Test locally with Sample Data

- **Test**
 3. Execute the job on the cloud hoping that it would work

- **Debug**
 4. Several hours later, the job crashes or produces wrong output

- **Repeat**
 5. Repeat
Traditional vs. Big Data Analytics Development

1. Data is huge, remote, and distributed.

1. Develop locally
2. Test with Sample
Traditional vs. Big Data Analytics Development

2. Writing test is hard.
Don’t even know the full input and don’t know the expected output.

3. Failures are hard to define.

2. Test with Sample

4. The job crashes or produces wrong output
Traditional vs. Big Data Analytics Development

4. System stack is complex with little visibility.

① Data Scientists
② Difference
③ Tools
④ Challenges

3. Execute the job on the cloud
Traditional vs. Big Data Analytics Development

5. **Gap** between **logical** vs. **physical** execution

Execute the job on the cloud
Traditional vs. Big Data Analytics Development

Task 31 failed 3 times; aborting job
ERROR Executor: Exception in task 31 in stage 0 (TID 31)
java.lang.NumberFormatException

3. Execute the job on the cloud
4. The job crashes or produces wrong output
5. Repeat

6. Data tracing is hard.
Outline: Making a Case for Software Engineering for Data Analytics (SE4DA)

1. Shift to data-centric SW development
2. Differences between traditional SW vs. data-centric SW dev process
3. Debugging & testing for big data analytics
4. Open problems in SE4DA
Part 3. Debugging and Testing for Big Data Analytics

Tyson Condie, Ari Ekmekji, Muhammad Ali Gulzar, Miryung Kim, Matteo Interlandi, Shaghayegh Mardani, Todd Millstein, Madanlal Musuvath, Kshitij Shah, Sai Deep Tetali, Seunghyun Yoo
Insights from Debugging and Testing for Apache Spark

- Designing interactive debug primitives requires deep understanding of *internal execution model, job scheduling, and materialization*.
- Providing traceability requires modifying a runtime.
- **Abstraction** is a powerful force in simplifying program paths.
Enabling interactive debugging requires us to **re-think a traditional debugger**

- Pausing the entire computation on the cluster could reduce throughput
- It is clearly infeasible for a user to inspect billion of records through a regular watchpoint
BigDebug: Interactive Debug Primitives for Big Data Analytics [ICSE 2016]
Titian: Data Provenance for Apache Spark
[VLDB 2016]
BigSift: Automated Debugging of Big Data Analytics [SoCC 2017]

Input: A Program, A Test Function
Output: Faulty Records

Titian Data Provenance

Delta Debugging

Test Predicate Pushdown
Prioritizing Backward Traces
Bitmap based Memoization
Results on Debugging of Big Data Analytics

- BigDebug enables **interactive debugging and repair**, while retaining the **scale-up** property. It poses at most **34% overhead** [ICSE 2016].

- Titian’s **data provenance** is **orders of magnitude faster** than alternatives [VLDB 2016].

- BigSift **automatically** finds bugs **66X faster than delta debugging**. It takes 62% less time to debug than the original job’s run [SoCC 2017].
Why is Testing Big Data Analytics Challenging?

Option 1: Sample Data
- random sampling,
- top n sampling
- top k% sample, etc.

Limitations:
- Low code coverage
- Or increased local testing time

Option 2: Traditional Testing
- 700 KLOC for Apache Spark

Limitations:
- Symbolic execution without abstraction would not scale.
BigTest: White-Box Testing of Big Data Analytics [ESEC/FSE 2019]

Relational skeleton

700 KLOC Spark

Abstract

User defined func

Extract

String operations

Model

Logical Specifications

\[\text{JOIN: } \exists tR, tL: \ cR \in CR \land cL \in CL \land \]
\[cR(tR) \land tR, \text{key} = tL, \text{key} \land cL(tL) \]

Symbolic Execution

<table>
<thead>
<tr>
<th>Path Constraint</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T.\text{split}("),).\text{length} \geq 1 \land \ldots \land V2 = "\text{ERROR}" \ldots)</td>
<td>"\x00", "\text{Palms}"</td>
</tr>
</tbody>
</table>

String Constraints

\[Z.\text{split}("\),\)[1]="\text{Palms}" \land \]
\[Z.\text{split}("\),\).\text{length} > 1 \land \]
\[T.\text{split}("\),\)[1] = Z.\text{split}("\),\)[0] \land \]
\[T.\text{split}("\),\).\text{length} > 1 \land \ldots \]
Test Size Reduction

BigTest reduces tests by 10^5X to 10^8X, achieving 194X testing speed up.
Outline: Making a Case for Software Engineering for Data Analytics (SE4DA)

1. Shift to data-centric SW development
2. Differences between traditional SW vs. data-centric SW dev process
3. Debugging & testing for big data analytics
4. Open problems in SE4DA

Studies: Data Scientists
Difference
Tools
Challenges

We Can Help
Part 4. Roadmap for Accelerating Data-Centric Development

DA4SE
- 2004: Data scientists in software teams

SE collaborates
- 2014: with Systems, ML, and DB to design tools

SE tools are co-developed
- 2022: with runtimes & frameworks
- 2025: (and presumably more)
Insight 1: Debugging data analytics requires both data and code analysis.

How to define a bug based on the properties of both data and code?

Data X-Ray [SIGMOD’15] Bug Patterns [SIGPLAN 2004], etc.

How to repair both code and data errors?

Data Cleaning [VLDB’01] [VLDB’15] [SIGMOD ’15] [SIGMOD’10]

Data Repair [VLDB’11] [SIGMOD ’14]

Data Wrangling [CHI’11]

Program Repair [ICSE’09] [ICSE’13], etc.
Insight 2: Performance debugging is a pain point.

Performance issues are the most common problem, accounting for 39.5% of the issues. Comprehension-related issues make up 28.5%, followed by Installation and Environment Setting at 13.0% and API Usage at 12.5%. Correctness issues are the least common, at 6.5%.

Manual inspection of top 200 Spark related posts from Stack Overflow
Insight 2: Performance debugging requires visibility of system stack, code, and data.

How to estimate performance based on data size?
How to optimize query performance using a cost model?
How to debug computation and data skews?
How to identify the cause of bottlenecks?

Ernest [NSDI’16]

Neo [VLDB’16]

Skewtune [SIGMOD’12]

PerfDebug [SoCC’19]

Causal Profiling [SOSP’15]

Causal Monitoring [SOSP’15]
Insight 3: We must relax the strict notion of an incorrect behavior and the root cause.

How to **specify oracles** for data-centric software?
Metamorphic relations are simple or hard to define

<table>
<thead>
<tr>
<th>Tools</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metamorphic Testing</td>
<td>1998</td>
</tr>
<tr>
<td>DeepTest</td>
<td>ICSE 2018</td>
</tr>
<tr>
<td>DeepConcolic</td>
<td>ASE 2018</td>
</tr>
<tr>
<td>DeepHunter</td>
<td>ISSTA 2019</td>
</tr>
</tbody>
</table>

How to **quantify importance** when debugging faulty inputs for data analytics?

<table>
<thead>
<tr>
<th>Tools</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIME</td>
<td>KDD’16</td>
</tr>
<tr>
<td>Influence Function</td>
<td>ICML’17</td>
</tr>
<tr>
<td>Training Set Debugging</td>
<td>AAAI’18</td>
</tr>
<tr>
<td>MODE</td>
<td>ESEC/FSE’18</td>
</tr>
<tr>
<td>Lamp</td>
<td>ESEC/FSE 2017</td>
</tr>
</tbody>
</table>
Conclusion: Hope for
Software Engineering for Data Analytics (SE4DA)

We are at an inflection point. SE4DA is underserved.

Progress has been made in SE4DA by re-thinking software engineering for big data analytics.

We can together work on open problems in SE4DA.
SE4DA: AI, Big Data, and ML need awesome SE tools

- Diagnose
 - Debugging
 - Intelligent sampling and testing
 - Root cause analysis

- Fix
 - Data cleaning

- Optimize
 - Performance analytics
 - Code analytics
Questions?