
ISSTA 2022 Keynote

Miryung Kim
UCLA Computer Science

Software Engineering Analysis Laboratory

Software Developer Tools for Democratizing
Heterogeneous Computing

ACM SIGSOFT International Symposium
on Software Testing and Analysis

Software Engineering Analysis Lab at UCLA

Debugging and Testing
Tools for Big Data

Systems and Runtimes

Developer Tools for
Heterogeneous

Computing

Code Mining, Debugging
and Refactoring for Java DA4SE

SE4DA
Software Engineering

for Data Analytics

Data Analytics for
Software Engineering

A new wave of
SE tools for data

intensive
computing

SW developer tools
<> Heterogeneous HW

Outline

• Why heterogeneity now?

• What does heterogeneity look like?

• What are the implications of heterogeneity?

• High-level synthesis developer workflow

• Examples of SW developer tools for heterogeneity

• Opportunities and challenges

Why heterogeneity now?

A new era of golden age of architectures

End of Moore’s Law and Dennard Scaling [CACM 2019]

2018 2006

Cloud is shifting to HW heterogeneity

Increasing Heterogeneity of Cloud Hardware [SIGSOPS 2020]

Hardware accelerators are widely available

What does heterogeneity look like?

CPU, GPU, FPGA and ASICs tradeoffs

Field programmable gate array (FPGA)

Programmable logics, interconnects, and customizable
building blocks

Catapult – Bing search with FPGA-enabled servers
50% throughput increase and 25% latency reduction.

Difficult to programs in RTL languages

Application-specific integrated circuit (ASIC)

TPU for accelerating deep-learning workloads

80X performance–per-watt advantage over CPU

Design cycle is long and costly.

What are the implications of
heterogeneity?

US bureau of labor statistics

Towards Democratized IC Design and Customized Computing, 2022

1.8 M
software

developer

70000
hardware
engineers

Year

Raising the abstraction level of HW design

FPGA
HLS C/C++

evolving

Programmability
(languages features,
etc.)

HDL

 1989 2003 2011 2014 2017

What is developer workflow with
high level synthesis?

HDL (Verilog / VHDL)

CPU
Execution

FPGA
Execution

(fast)

RTL Synthesis

Traditional FPGA design flow

Gate-Level
Bit Stream

Host Code

Kernel Code

int KNN()
 ...
// Calculate distance
 for (i = 0 to number){
 dist[i] =
l2norm(data[i], dim);
 }
//Top 1 nearest neighbor
 ...
}

Kernel Code

CPU

HDL (Verilog / VHDL)

HLS C/C++

C Execution

High-Level Synthesis

FPGA
Execution

(fast)

RTL Synthesis

High level synthesis (HLS) for FPGA

Co Simulation

Gate-Level
Bit Stream

Host Code

Kernel Code

CPU

HDL (Verilog / VHDL)

HLS C/C++

C Execution

High-Level Synthesis

FPGA
Execution

(fast)

RTL Synthesis

High level synthesis (HLS) for FPGA

Co Simulation

Gate-Level
Bit Stream

Host Code

Kernel Code

compile in minutes to hours

(in minutes to hours)

FPGA synthesis in hours or days

(in seconds)

int KNN()
 ...
// Calculate distance
 for (i = 0 to
number){
 dist[i] =
l2norm(data[i], dim);
 }
//Top 1 nearest
neighbor
 ...
}

What is developer workflow with HLS?

1 Performance profiling

Kernel function
identification in C

Differential testing with
input samples (RTL
simulation vs. C execution)

2

3

4

Manual rewriting from C
to HLS-C

Iterative
optimization

5

HLS compilation to RTL
6 minutes

CPU-FPGA
co-simulation
8 minutes

FPGA synthesis in 2.5 hours

7X speed up on FPGA

Repeat

HLS tools are not easy to use for SW developers

C/C++ HLS-C
No developer tools for

code translation

Manual rewriting for
synthesizability and

optimization

● Resource finitization
● Hardware expertise and pragmas for optimization
● Partitioning, parallelization, pipelining, etc.

HLS-C requires specifying bitwidth for each type

float vecdot(
 float a[],
 float b[],
 int n) {
 for (int i = 0; i < n;
i++)
 sum += a[i] * b[i];

return sum;
}

float vecdot(
 float a[],
 float b[],
 fpga_int<7> n) {
 for (fpga_int<7> i = 0;
i < n; i++)
 sum += a[i] * b[i];

return sum;
}

C Program HLS-C Program

float vecdot(
 float a[],
 float b[],

fpga_int<7> n) {
for (fpga_int<7> i = 0; i

< n; i++)
 sum += a[i] * b[i];

return sum;
}

C Program HLS-C Program

HLS-C uses a custom floating point type

fpga_float<8,15> vecdot(
 fpga_float<8,15> a[],
 fpga_float<8,15> b[],

fpga_int<7> n) {
for (fpga_int<7> i = 0; i < n;

i++)
sum += a[i] * b[i];

return sum;
}

HLS-C requires finitizing resources

Node Node_arr[NODE_ARR_SIZE];
struct Node {

Node *left, *right;
int val; };

void delete_tree(Node_ptr root)
{...
 node_free(root); }
void traverse_converted(Node_ptr
curr) {

stack<context> s(STACK_SIZE);
while (!s.empty()) {

 ...}}

C Program HLS-C Program

struct Node {
Node *left, *right;
int val; };

void init(Node **root) {
*root = (Node

*)malloc(sizeof(Node)); }
void delete_tree(Node *root) {...
 free(root); }
void traverse(Node *curr) {

if (curr == NULL) return;
int ret = visit(curr->val);
traverse(curr->left);
traverse(curr->right);

}

HLS compile
error

Performance boost is not automatic with HLS

7-line CNN: Initially 108X slower with a commercial HLS tool.
After 28 pragmas and proper restructuring, 89X faster.

Source: “Towards Democratized IC Design and Customized Computing, 2022

Computing power locked in a few hands

Less than 5% of

software developers
are able to make use
of HLS effectively.

SW developer tools for
democratizing heterogeneity

Qian Zhang, Jiyuan Wang, Miryung Kim

ESEC/FSE 2021

HeteroFuzz: Fuzz Testing to Detect Platform
Dependent Divergence for Heterogeneous
Applications

int accumulate(int data[size]){
 typedef ap_uint<8> bit8;
 #define max M;
 bit8 sum = 0;
 bit8 data_fpga[M];
 for(i = 0 to M){
 data_fpga[i]=(bit8)data[i];
 }
 SUM_LOOP for(i = 0 to M){
 #pragma HLS unroll factor=2
 sum += data_fpga[i];
 }
 return sum;
}

int main(int argc, char
*argv[]){
int data[] =
 gradient(argv[1]);
 int sum;
 float th = argv[2];
 int size = data.size();
 accumulate(data[size]);
 for(i = 0 to size){
 data[i] /= sum;
 if(data[i] > th)
 discard;
 }
}

Host Code Kernel Code

Divergence errors between CPU and FPGA

Input CPU FPGA

[1,1,1,253] no errors div/0
in host

[2,1,1,253] 257 1

Testing Translation

Is fuzz testing applicable?

Input Input Input’

ProgramNew Branch
Coverage?

Pick Mutate

Ex
ec

u
te

FeedbackYes

No

Add
Input’

Testing Translation

AFL running time for finding errors

AFL: American Fuzzy Lop (a well known fuzz testing framework)

Testing Translation

Ex
ec

u
te

Challenge 1: lack of guidance in HW

Input Input Input’

ProgramNew Branch
Coverage?

Pick Mutate

FeedbackYes

No

Add
Input’

Branch coverage is not meaningful in HW

Testing Translation

Challenge 2: lack of effective mutations

Input Input Input’

ProgramNew Branch
Coverage?

Pick Mutate

FeedbackYes

No

Add
Input’

Input mutations must stretch HW behavior in terms of finitized
resource usages to induce errors

Ex
ec

u
te

Testing Translation

Input Input Input’

ProgramNew Branch
Coverage?

Pick Mutate

FeedbackYes

No

Add
Input’

Fuzzing assumes the program under test can execute quickly in
the order of milliseconds.

Ex
ec

u
te

Challenge 3: long simulation time
Testing Translation

HeteroFuzz Overview

Challenge

lack of guidance in HW

lack of effective mutations

Accelerator Spectra Monitoring

Heterogeneous
Applications

Probabilistic Mutation

Selective HLS Invocationlong simulation time

Testing Translation

Accelerator spectra monitoring

int accumulate(int data[size]){
 typedef ap_uint<8> bit8;
 #define max M;
 bit8 sum = 0;
 bit8 data_fpga[M];
 for(i = 0 to M){
 data_fpga[i]=(bit8)data[i];
 }
 SUM_LOOP for(i = 0 to M){
 #pragma HLS unroll factor=2
 sum += data_fpga[i];
 }
 return sum;
}

int main(int argc, char
*argv[]){
int data[] =
 gradient(argv[1]);
 int sum;
 float th = argv[2];
 int size = data.size();
 accumulate(data[size]);
 for(i = 0 to size){
 data[i] /= sum;
 if(data[i] > th)
 discard;
 }
} Host CodeKernel Code

Fuzzing Guidance
Kernel input: [1,1,1,9]

Accelerator Feedback

 Data_fpga: [1,9]

 Sum: [2,12]

 Accessed offsets: [0,1,2,3]

 loop iterations: 2

Host Feedback

 The activated branches

Inject accelerator
specific monitors

Static analysis of
HLS pragmas

Testing Translation

HeteroFuzz evaluation

754X57% 8.8X
Speed up

with

three-pronged

optimizations in

finding

divergence

errors

Efficiency

with selective

HLS invocation

17.5X
Speed up

with dynamic

probabilistic

mutation

Effectiveness

divergence-indu

cing inputs with

accelerator

spectra

monitoring

Testing Translation

Qian Zhang, Jiyuan Wang, Harry Xu, Miryung Kim

ASPLOS 2022

HeteroGen: Transpiling C to Heterogeneous
HLS Code with Automated Test Generation
and Program Repair

Fitness
Evaluation

Fault
Localization

Candidate
Repair

Generation

Fix PatternsOracle

Testing Translation

Is search-based repair applicable?

Automated program repair (2008 ~)

Fitness
Evaluation

Fault
Localization

Candidate
Repair

Generation

Fix Patterns

 0.2s in GenProg vs. 14 minutes in HLS

(1) Long compilation & run (2) a large search space

Oracle

Testing Translation

Genprog: a generic method for automatic software repair 2011

HeteroGen overview

Challenge

The search-space of small edits is
too large

Heterogeneous
Applications

Encode composite edits

Early candidate rejection
HLS compilation and simulation

takes minutes to hours

Dependence-guided repair

Testing Translation

1. Encode HLS repairs with composite edits

An error study based on Xilinx 1000 posts.

static_stack($a1:var)

pointer($v1:ptr)

insert_allocator()

update_size($v1:var)

update_allocator()

array_static($a1:arr)

insert_guard($v1:var)

insert_pragma($v1:var)

Testing Translation

2. Dependence-guided repair exploration
1

2 3

5

4

6

7

8

static_stack($a1:var)

pointer($v1:ptr)

insert_allocator()

update_size($v1:var)

update_allocator()

array_static($a1:arr)

insert_guard($v1:var)

insert_pragma($v1:var)

• Dependence-guided search
helps construct valid
edits and prune the search space
of potential repairs
● 1
● 1 -> 2
● 1 -> 3
● 1 -> 2 -> 5

Testing Translation

3. Early candidate rejection

void foo (...) {
 int8 array1[M];
 int12 array2[N];
 ...
 #pragma HLS unroll
skip_exit_check factor=4
 loop_2: for(i=0;i<M;i++) {
 array1[i] = ...;
 array2[i] = ...;
 ...
 }
 ...
}

• LLVM-level style check
• If a repair does not conform to

HLS coding styles, it does not
need to be compiled

14 mins full HLS compilation and HW
simulation
 vs.
1 second conformance checking

Testing Translation

HeteroGen evaluation

90% 97% 35X ~438 lines
Effectiveness

HeteroGen

produces an

HLS-compatible

version for 9

out of 10.

Coverage

Auto-generated

~2500 inputs

cover 97%,

while

pre-existing

tests reach 36%

coverage.

Speed-up

Dependence

-based search

contributes to

35X speedup

than the one

without.

Automation

It automates upto

438 lines.

1.6X
Latency

It produces a HLS version 1.63X

faster than the original C

Testing Translation

How can our SE community
contribute?

1. Programmability

Context:
• domain specific language
[Halide] [HeteroCL] [SPIRAL]
• one API to target many

platforms
• cross-industry, multi-vendor

programming model
[Intel’s oneAPI] [DOE’s IRIS
runtime]

Opportunities:

• automated refactoring

• code recommendation for

inserting pragmas (HW hints)

Challenges:

• fewer examples than

Python/Java/C/C++

• ML accuracy vs. performance

tradeoffs

2. Debuggability

Opportunities:

• combine SW monitoring and

HW probes

Challenges:

• difficulty with injecting HW

probes

• slow execution and simulation

• overhead

Context:

• in-circuit debugging [Kourfali

et al.]

• HLS debugging via source to

source transformation

[Calagar et al. Hemmert et al.]

• software monitors and tracing

[MOP] [Phosphor], etc.

3. Testing

Opportunities:

• HW acceleration for fuzzing

• fuzzing guidance with HW

probes

• efficient search strategies

based on HW design hints

Context:

• grey-box fuzzing [AFL]

[HeteroFuzz]

• symbolic execution [Klee] [JPF]

[Cute]

• search-based testing

[EvoSuite], etc.
Challenges:

• slow execution and simulation

4. Compiler correctness

Opportunities:

• automatic program generation

for testing compilers &

extensions

Context

• deep layers of compilation

flows [Halide] [HeteroCL]

• frequent compiler extension

[MLIR]

Challenges:

• slow execution and simulation

• large design space exploration

search space

Thank you!

SERVICE
S

Thanks to Qian Zhang, Jiyuan Wang, Muhammad Ali Gulzar,
Jason Lau, Aishwarya Sivaraman, Jason Cong, Harry Xu, Hongbo
Rong, Adrian Sampson, Rohan Padhye, Jason Teoh, Fabrice
Harel-Canada, Yifan Qiao, Haoran Ma

https://github.com/ucla-seal/

Debugging and Testing
Tools for Big Data

Systems and Runtimes for
Memory Disaggregation

Developer Tools for
Heterogeneous Computing

Testing, Debugging and
Refactoring for Java

 + Code Mining GitHub

HeteroGen, HeteroFuzz, HeteroRefactor, QDiff

BigDebug, BigSift, BigTest, BigFuzz, PerfDebug,
FlowDebug, OptDebug, Titian

ExampleCheck, ExampleStack, Examplore,
Jdebloat, Jshrink, Critics, Lase, Alice, etc.

Semeru, Dorylus, Mapo, etc.

Q&A

