Mentoring and Supervising
Students

Miryung Kim
Professor and Vice Chair of Graduate Studies, UCLA
Amazon Scholar, Amazon Web Services

Quick Intro: Miryung Kim

 SE for data intensive computing
and heterogenous computing

* Emphasis on quality
* Industry studies on large scale
re-architecting / data scientists

 Microsoft Research
e Amazon Web Services

» Keynotes at ASE / ISSTA &
Distinguished lectures: CMU,
UIUC, Max Planck Inst, UMN, UC

Irvine, UC Riverside

Al4SE

Al for
Software Engineering

Code Mining, Debugging
and Refactoring for Java
& github stack overflow

Data-driven insights

||
industry collaboration -

Microsoft

What are your products (or
deliverables)?

Philosophy

| am inspired by my adviser, David Notkin's philosophy about working with
students, which he inherited from his academic father, Nico Habermann.

“Focus on the students,
since graduating great
students means you’ll
produce great research,
while focusing on the
research may or may not
produce great students.”

http://www.cs.washington.edu/homes/notkin/

Nico Habermann

David Notkin

Bill Griswold (UC San Diego)

Kevin Sullivan (U Virginia)
Gail Murphy (UBC)

Michael Ernst (U
Washington)

Jonathan Aldrich (CMU)

Vibha Sazawal
Tao Xie (Peking)

Miryung Kim (UCLA) and
many more

Baishakhi Ray (PhD 2013, Associate Prof @ Columbia)

Na Meng (PhD 2014, Associate Prof @ Virginia Tech)

Myungkyu Song (Postdoc 2016, Associate Prof @ U
Nebraska Omaha)

Tianyi Zhang (PhD 2019, Asst Prof @ Purdue)

Muhammad Ali Gulzar (PhD 2020, Asst Prof @ Virginia
Tech)

Jason Teoh (PhD 2021, Twitter => Databricks)
Qian Zhang (Postdoc 2022, Asst Prof @ UC Riverside)

Hong Jin Kang (Postdoc 2024, Asst Prof @ U Sydney
to start in Fall 2024)

Nurturing Next Generation of Leaders

| B

;;—_:‘

Ty S —

|
9
|
a .

 Multiply impact through
people

e @Gain trust and respect

 Seek out candid feedback

ACM SIGSOFT Influential Educator
Award 2022

What are Dos and Don’t?

Hiring, Admissions & Departing

Do

* Help out other students / serve on
communities

* Mix co-advise and sole-advise
* Screen early and often
e Get involved in admissions committee

* Be cool with rejections & switching
advisors, etc.

e Create a comfortable environment for
students to disagree with you

e Let _aqlvisees make their own career
decisions

Don’t

* Be anxious

* Hire too many at once

e Spend start up too fast or too slow
* Influence and persuade too much

Research Advising

Do
* Schedule regular meetings

* Provide feedback repetitively (in
the order of X times)

* Get senior students get involved
In grant writing

* Pair up senior / juniors and
create sub teams

Don’t
e Cancel regular meetings for

paper deadlines, grant
deadlines, etc.

e Write introduction, conclusion,
motiving examples and table
skeletons and request students
to fill in results

* Rewrite papers (if you must, do
it sparingly)

Build Team and its Culture

* Reading group

» Stop by and work in the lab

* Scrum

* Lunch & team building

* Conference trips

* Reward & recognize awards, papers, etc.
* Demos

* |[n-person vs. zoom

e Respect boundaries: No slack, text, and email on weekends, nights, etc. (If
you do, write no need to respond at the end)

Frequent, persistent written feedback

o

6 » whdj:apg@@g Qian Zhang, Guoging Harry Xu, and Miryung Kim
i

found that the optimization library they ed ag; om the K-S test, we get the K-S statistic to quantify a dis-
s oduced incorrect resultsffA]. Besitgs, tance between the two quantum programs’ results and chcckf, -
likeClassical programs, quantum programs fave many quan- e equivalence.
tum specific pragmas and framework AR For cxample, in We evaluate Qs on three well-known quantum frame-
Prouil chamgethett™ works: Pyquil. Qiskit, and Cirg. In xxx running with our sced
Loptimization stle byget agma Naive/Greedy u:gnms We found six errors and unexpected behavi
qm Tour in Pyquil. one in Qiskit, and one in Girg,
he follow :
1. To the best of our knowledge, QD is the first &t ;&a
Jerential testing to verify the correctness of quantum (":/#
frameworks. Based on quantum gate transformations, ({¢€
Qs can generate and execute equivalent programs (ess
t

e 7 lm

d frameworks by dnfrmnual testing.
Based on our case study on Github issues, we demon- W”U?’*
strute that only testing compiler i not enough. Besides 3, /; .
random gate transformation to generate equivalent éﬁv i
quantum programs, we also design pragma inscrtions
initialization of the quantum virtual machine [4]), and-arr 3 51| to detect errors in framework APIs and synthesis op-

and backends explorations to detect errors in

et synlhens
um backends. Through our approach, we found “‘z
’)

other iSSTE TEPOTTs arerror-of Cirg-when-users-s

options toagertairrvalie[5]. MW .

enou, i - nthesis options errors in Qiskit and Cirg, and back-

%r resent QD1Fr, a general and comps 4 . & e
e z 4 framewpy

€15 (0 apply rigorous formal
w.nﬁu\llon lo check that a compiler does what it intends

£f) o4 bit only has two states 0 and 1, a single qubit has infinife | e
TAH1%* tates, which leads t sate explosion. Most o the wos
restricts their targets or upuxmuuushkc xuuh;l
[z 1 whlch lmuls mc.r scop(' Sccondlﬂ lots of errors a-; okl
eported For example. o /5 0
£Pyquil due o the WIONg ¢ £

7le, @
i B

3 fds errors in Pyquil.
B design a K-S test based results comparison to check
“equivalence of quantum program results. th K S

7 Reduce repef e
- C[,“’“' Tiow ik o e poees Yo oantionct ok Sl Sockion 4 ¢ ai“

illustrates the background knowledge, including quantum

and differential testing, Section 3 describes how {1

QDrFr construct a testing flow based on differential testing

and pragma-insertion based mutation. Section 4 describe:

/)f;vamauon of QDr¥, and Section 5 describes related work

>
Bnckmm = 7 (/,(_‘

2.1 Quantum Computation 4, «dio o
Quantum computing is based on
uadar he law of quantum mechanics rm unique propertics
ot of quentaRTERaBIe-quantum compy t
e ‘% i adi greaffotential in cryptogra-

- §. Machine leamning, chemistry simulation, and databaseg
il etc. & quantum computer, Grover's algo-
rithm achieves VN times speedup compared to the classical
gom an unsorted database.

e %ﬁﬁfﬁr{) quantum Wcucuﬂ}&aaﬂzﬁ“

e Lot toghost pro ‘The program uses a q

Bessing unit (QP(%%ogeﬂ'nr with CPU to

speed up a specific part of the computation.
shomlgomhm only uses QPUS to compute the period o

indptermigio FpieAiai OELa %
3 qufotun progfam s a quanturn framework as lnp\n. P
fmuqm report fagvgcerrors or unexpecte
Goppo comesponding rograms that i
Our key insight is three-folds:
e st 0 5x the satc explsions ad expand the scope, we

we found xxx
Pyquil classical simulator.

ly a fuxzing loop combi to
s quantum frameworks, This is based on the insights

tha in classical computing differential testing and fuzzing
= EFGEp

ertics, QD1 generates and executes equivalent programs.

Then Ql)m mcompams the results afte%s
g i are any

the Kollnogomv Smirnov test (K-S |m| tocheck
‘ the equivalence of program results. In statistics, the K- @
3]

)

PR is a nopparametric test of the equality of continuor

" theck oo
3/4””11.; Ajﬁo

sieal faotoring aldithgn on integer factorizatibn
P Ihc o 1l give a 1t
the quani rogram.

I Al et Brasy
pellip bohpaor rlot helc i

1CSE 2024, April 2024, Lisbon, Portugal

Algorithm 1 A pattern is mined m@wum P from
negatives A Patterns containing the user’s shggested code lines
are favored. -
Require:
« P positive instances
o A ncgative instances
o A « all instances
o C code lines suggested by the user

« S maximum pattern size to be considered Sq\
: functi ts

1 function INFER_FATTERN
2 Del) y N o

5 for s € enumerateSubgraph{(Rl5)Jdo 9)‘

P if match(s P)> match(s;) then)QN-’I‘

5 D —DU3 SS‘}'\
. endif W

* end for %‘({K
s sort(D,compareBy(containsCodeLines(C))

s .thenCompareBy(discriminativeness)

10 thenCompareBy(matchPopulation(A)))

: T j)%f)
N
e M\%& e i

12 end function
Algorithm 1 shnw%(é algorithm toinfer a pattern. First, from & sef

of positive and negtive instances, SURF mines subgraphs that can

separate the positi es from the negative instances (lines
4-6). THig CORK [34] criteriol is applied to discard subgraphs that
do not coTHIbute to separafing the positive and negaive instances.

We reduce the need for a large number of labelled

Anon.

R munts the support of the pat-
term f the code line were included, .. code line with a eported
support of 10 in SURF means that the code
line appears 10 times in the population. Support is computed over
the entire population, ignoring their labels. While not all frequent
patterns are useful (15, 21], infrequent code lines are not useful.
Information Gain We use information gain to measure how
well a pattern separates the positive and negative instances after
including the code line. Including a code line is analogous to split-
ting the data at a decision node in a decision tree, The instances
mxlched by the riginal pattern ae patitioned ino two sets one
set o the new instances
that do ot. Firt, we compute the entropy o the three sets
« Gp: positive and negative instances matched by the pattern,
© G posit negative instances matched after the pat-

tern is! (el W aglh)
* Ge: positive and nefative i
tern is updated
Then. for cach group G, entropy is computed using the propor-
tion of positive instances (p.) and negative instances (p-): &
Wy

Entropy(G) = ~ps logy(p+) ~ p- logy (p-))

es excluded after the pat-

de to select subgraphs. Si
work, SURF enumerates subgraphs. In prior work [15], a sm.\shul
test of significance was performed to select subgraphs that match

significantly more instances of one label. In SURF, we remove the
Yum ‘of statistical significance o enable subgraph mining from just
afew positive and negative instances. In practice, a human user is
unlikely to provide enough i nhnl

contains zero positive instances and one negative instance. Both,

statistically significant, discriminative subgraphs

s.
Finally, SURF applies CORK to filter subgraphs (line u) um
@ The Order-of-subgraphs- Of two S

~\ing is sensitive (G aphs that

%ﬁf‘\mu the same positive and negative instance (say Base6d . cnde

versus new String() in Figure 2), the subgraph first presented Io
the pattern miner will be selected, and the later subgraph removed
(since it no longer contributes o a better positive-negative nstance
separation).
were sorted (lines 8-10). SURF favvxs the code line-level feedback
(line 8) before ordering subgraphs by their discriminativeness (lire
V1o tFAlL Pt

cede other subgraphs. The subgraphs are cnumerated in decréasing
order of the number of matches in the entire population, favoring
‘more general subgraphs over subgraphs specific to a few instances

) and Entropy
lh'hzmdel.\nusl(l o)umecodehnehummﬁ.u
m‘pou ve and negative

KEUATION DESIGN

/aim to answer the rauowmg research questions:
(1) RQ1. Does SURF improve the pam:ipml's ability to com-
prel :wd'ﬂrl’l usage distribution
@ sz How thuch effort reduction dm SURF provide in;
inferring code patterns?

13) RQS. What features in SURF o the participants perceive
to be useful?

To answer the RQs, we curated two case studies ofpxngrams

ﬂme 10). Folmlllplcv new SecretKeySpec(. .
in over Log. £
an uncommon funcfion. * "V

When initially inferring a pattern, we limit the size of the in-

ferred pattern (line 11). This prevents a paﬂtm that overfits the
few positive and negative instances. 74

uge @

%M’M oy OP

ot
wp =5 {Bnbd W =
o tossady N=§41)

using ic APIs (43). We

many prior studies have demonstrated that fully amnmuc m
‘minin

ed pat
vl T

SH T A\

ﬁ’m‘ Stk \ \N‘E e

&ssﬂgfé g tibony &fﬁi -JW.%,

e MW

—'““1‘1’{—0*@ o O
\r ﬂ'\ﬂ"w SWJ)‘}W ,\Lﬁ‘g:,% V\Jy -
v"’ A Jx‘i“’)} WWMM"’(ks

ICSE 2024, April 2024, Lisbon, Portugal
@ snneau v Shonflbe
% within func. func ner wWﬁeﬁm required number of arguments for (gh operation (€g-
i three arguments .
4 Motivated by this observation that fast evolving Jn-guages and IRs would need fexblegadS s Crart st
_adaptable custom input mutations, we propose a new approach, called SYNTHFuZZ that synthesizes
o1 custom mummns‘sﬂ:mF 7 constructs parameterized mutation templates from existing test cases
w6 and instantiates CeAER- dcp’e‘rﬁé?ﬁ"co ete mutations on the fly, The key novelty of SyntFuzz
15 is that its mutation-synthesis capability is different from simply reSombining existing seed inputs.
SynTHFUZZ decomposes existing test cases into into parameterizet mutmon templates, where

mpilers wuh Cumm Mutation Synthesis

ring the fuzzmg loop,

and %atg1) are paramelenzerl with respect to argument names or gperation names, making them

(ol _AveTrote s gn, s ea o mJﬁ?md 4y
Bur evaluation oh 4 MLIR-based compiler projetts, ¥ 12)X, Y, Z parameterized by fy ot

futation templates froff 312, X, Y, Z test cas ch project respectively. Weffdthat 6h

26% ufmu ts generated by SynTHFU: i 1 baseline gramma

fuzzmg 59% of e produced by Suwtafuzz] fy compile u

7 produced by our bast ”eﬁtm nopsteAting SyNTHFUZZ W*g

‘Ayaverage, each mutation template encodes 317 parameterized variations, “showing SynTFUYz's

1 potential to obviate the need for. deﬁnmg different custom mumrons individually by hand, demon-

41\ qg)ie strating the versatility of paramete Lge, &6

dolyen SynTHFUZ2 achieves an average of 0]
b-{ fuzzing. In terms of fault detection poteit code
e Pz by izing custom mutations
.c faufid. Our qualitative investi % nthesls
S‘%j 7, cannot be found by other fuzzers without specialized mutafio S
N’?ﬂ In summty, our contributions are: les

1) We design a novel compiler fuzzin;
mutations apnon which is impractical when the target language is h:ghl extenslble md

J Y"* quickly evolving,
)’ i (2) Our mcthod automsnmlly synthesizes and applics mult- =dn, dc
o ks

from code examples and adapting edits to its conte]
Vj,,mf E (3) We show that our method has similar overall performa;
m 1% is also capable of det#mg faults that cannot be efficiently found hy other means,
154 ol
muwtapt ke

wh You meUm Gl 7»\/1\1—5
2 MO lVATING EXAMPLE

2.1 Background (o T
MLIR (Multi-Level Intermediate Representation) is a modular compiler framework that differs from ast Wi
traditional approaches by enabling developers to extend the intermediate representation. Rather
1 than defining a single monolithic IR with a fixed set of types and operations, MLIR is extensible by
‘ design. The core abstraction in MLIR is a dialect. Each MLIR dialect consists of a set of operations,
types, and attributes which collegtively define a domain specific representation. However, this
1 also presents a challenge ror.iqﬂ-‘p? gram generat lzmce dialect operations vary greatly i
1+ terms of their semantics. As shown in Listing ??, both the enclosing "func. func" structure anf
e "tf.Add" operation are considered MLIR operations; and thus follow t
ithout further specialization of an MLIR grammar, existing fuzzer would not distinguish betwees

p endence awsre. custos

1%

2023-09-19 00:09. Page 3 of 1-17.

be you peal o exp/ n in 25edtonE S
P b it Lihng3 @dotls haono

Adjustment according to PhD Career Stage

Confidence Exploration More

Pair-up Ownership Independence
Submission ldea Formation Mentoring
experience Independence Help with grant

Industry internship writing

What about other aspects of
mentoring?’

Vice Chair of Graduate Studies at UCLA

phd progress tracking
graduate student orientation
aspect of administration

enrollment management

graduate admission
graduate orientation

Establish clear process
Consistent and fair
Empower staff teams
Navigate HR challenges

Faculty in Residence

e 8 years on-campus residential

life mentor

* Noticed students’ desire * Learn to work with influence
for CS from other depts After 5pm student

* Sensed students’ anxiety experiences

about finance Cooperate with campus units

UCLA Residential Life

COMMUNITIES ® RULES ® ACADEMICS ® GET INVOLVED

Professor Miryung Kim, Computer Science, UCLA

“Reflecting Faculty in Residence”

Less Serious Version

* Miryung has degrees in Computer Science. She did well in school. She
saw her adviser enjoying mentoring students. So she became a
Professor, and she has been going to school for quite some time now.
She likes learning something new. In particular, she gets inspiration
from what people do in industry. She enjoys helping students, guiding
students to graduation and working with others. Seeing students
grow makes her proud and her job rewarding. Though she tried to be
helpful, some students did not work out for her. Everyone is different
and unique. Also each and everyone also changes over time. She is
learning how to work with different people.

