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Quick Intro: Miryung Kim

 SE for data intensive computing
and heterogenous computing

* Emphasis on quality
* Industry studies on large scale
re-architecting / data scientists

 Microsoft Research
e Amazon Web Services

» Keynotes at ASE / ISSTA &
Distinguished lectures: CMU,
UIUC, Max Planck Inst, UMN, UC

Irvine, UC Riverside

Al4SE

Al for
Software Engineering

Code Mining, Debugging
and Refactoring for Java
& github stack overflow

Data-driven insights

||
industry collaboration -

Microsoft



What are your products (or
deliverables)?



Philosophy

| am inspired by my adviser, David Notkin's philosophy about working with
students, which he inherited from his academic father, Nico Habermann.

“Focus on the students,
since graduating great
students means you’ll
produce great research,
while focusing on the
research may or may not
produce great students.”


http://www.cs.washington.edu/homes/notkin/

Nico Habermann

David Notkin

Bill Griswold (UC San Diego)

Kevin Sullivan (U Virginia)
Gail Murphy (UBC)

Michael Ernst (U
Washington)

Jonathan Aldrich (CMU)

Vibha Sazawal
Tao Xie (Peking)

Miryung Kim (UCLA) and
many more

Baishakhi Ray (PhD 2013, Associate Prof @ Columbia)

Na Meng (PhD 2014, Associate Prof @ Virginia Tech)

Myungkyu Song (Postdoc 2016, Associate Prof @ U
Nebraska Omaha)

Tianyi Zhang (PhD 2019, Asst Prof @ Purdue )

Muhammad Ali Gulzar (PhD 2020, Asst Prof @ Virginia
Tech)

Jason Teoh (PhD 2021, Twitter => Databricks)
Qian Zhang (Postdoc 2022, Asst Prof @ UC Riverside)

Hong Jin Kang (Postdoc 2024, Asst Prof @ U Sydney
to start in Fall 2024)



Nurturing Next Generation of Leaders
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 Multiply impact through
people

e @Gain trust and respect

 Seek out candid feedback

ACM SIGSOFT Influential Educator
Award 2022



What are Dos and Don’t?



Hiring, Admissions & Departing

Do

* Help out other students / serve on
communities

* Mix co-advise and sole-advise
* Screen early and often
e Get involved in admissions committee

* Be cool with rejections & switching
advisors, etc.

e Create a comfortable environment for
students to disagree with you

e Let _aqlvisees make their own career
decisions

Don’t

* Be anxious

* Hire too many at once

e Spend start up too fast or too slow
* Influence and persuade too much



Research Advising

Do
* Schedule regular meetings

* Provide feedback repetitively (in
the order of X times)

* Get senior students get involved
In grant writing

* Pair up senior / juniors and
create sub teams

Don’t
e Cancel regular meetings for

paper deadlines, grant
deadlines, etc.

e Write introduction, conclusion,
motiving examples and table
skeletons and request students
to fill in results

* Rewrite papers (if you must, do
it sparingly)



Build Team and its Culture

* Reading group

» Stop by and work in the lab

* Scrum

* Lunch & team building

* Conference trips

* Reward & recognize awards, papers, etc.
* Demos

* |[n-person vs. zoom

e Respect boundaries: No slack, text, and email on weekends, nights, etc. (If
you do, write no need to respond at the end)



Frequent, persistent written feedback
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Algorithm 1 A pattern is mined m@wum P from
negatives A Patterns containing the user’s shggested code lines
are favored. -
Require:
« P  positive instances
o A ncgative instances
o A « all instances
o C  code lines suggested by the user

« S  maximum pattern size to be considered Sq\
: functi ts

1 function INFER_FATTERN
2 Del) y N o

5 for s € enumerateSubgraph{(Rl5)Jdo 9)‘

P if match(s P)> match(s; ) then )QN-’I‘

5 D —DU3 SS‘}'\
. endif W

* end for %‘({K
s sort(D,compareBy(containsCodeLines(C))

s .thenCompareBy(discriminativeness)

10 thenCompareBy(matchPopulation(A)))

: T j)%f)
N
e M\%& e i

12 end function
Algorithm 1 shnw%(é algorithm toinfer a pattern. First, from & sef

of positive and negtive instances, SURF mines subgraphs that can

separate the positi es from the negative instances (lines
4-6). THig CORK [34] criteriol is applied to discard subgraphs that
do not coTHIbute to separafing the positive and negaive instances.

We reduce the need for a large number of labelled

Anon.

R munts the support of the pat-
term f the code line were included, ..  code line with a eported
support of 10 in SURF means that the code
line appears 10 times in the population. Support is computed over
the entire population, ignoring their labels. While not all frequent
patterns are useful (15, 21], infrequent code lines are not useful.
Information Gain We use information gain to measure how
well a pattern separates the positive and negative instances after
including the code line. Including a code line is analogous to split-
ting the data at a decision node in a decision tree, The instances
mxlched by the riginal pattern ae patitioned ino two sets one
set o the new instances
that do ot. Firt, we compute the entropy o the three sets
« Gp: positive and negative instances matched by the pattern,
© G posit negative instances matched after the pat-

tern is! (el W aglh )
* Ge: positive and nefative i
tern is updated
Then. for cach group G, entropy is computed using the propor-
tion of positive instances (p.) and negative instances (p-): &
Wy

Entropy(G) = ~ps logy(p+) ~ p- logy (p-) )

es excluded after the pat-

de to select subgraphs. Si
work, SURF enumerates subgraphs. In prior work [15], a sm.\shul
test of significance was performed to select subgraphs that match

significantly more instances of one label. In SURF, we remove the
Yum ‘of statistical significance o enable subgraph mining from just
afew positive and negative instances. In practice, a human user is
unlikely to provide enough i nhnl

contains zero positive instances and one negative instance. Both,

statistically significant, discriminative subgraphs

s.
Finally, SURF applies CORK to filter subgraphs (line u) um
@ The Order-of-subgraphs- Of two S

~\ing is sensitive (G aphs that

%ﬁf‘\mu the same positive and negative instance (say Base6d . cnde

versus new String() in Figure 2), the subgraph first presented Io
the pattern miner will be selected, and the later subgraph removed
(since it no longer contributes o a better positive-negative nstance
separation).
were sorted (lines 8-10). SURF favvxs the code line-level feedback
(line 8) before ordering subgraphs by their discriminativeness (lire
V1o tFAlL Pt

cede other subgraphs. The subgraphs are cnumerated in decréasing
order of the number of matches in the entire population, favoring
‘more general subgraphs over subgraphs specific to a few instances

) and Entropy
lh'hzmdel.\nusl(l o)umecodehnehummﬁ.u
m‘pou ve and negative

KEUATION DESIGN

/aim to answer the rauowmg research questions:
(1) RQ1. Does SURF improve the pam:ipml's ability to com-
prel :wd'ﬂrl’l usage distribution
@ sz How thuch effort reduction dm SURF provide in;
inferring code patterns?

13) RQS. What features in SURF o the participants perceive
to be useful?

To answer the RQs, we curated two case studies ofpxngrams

ﬂme 10). Folmlllplcv new SecretKeySpec(. .
in over Log. £
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When initially inferring a pattern, we limit the size of the in-

ferred pattern (line 11). This prevents a paﬂtm that overfits the
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% within func. func ner wWﬁeﬁm required number of arguments for (gh operation (€g-
i three arguments .
4 Motivated by this observation that fast evolving Jn-guages and IRs would need fexblegadS s Crart st
_adaptable custom input mutations, we propose a new approach, called SYNTHFuZZ that synthesizes
o1 custom mummns‘sﬂ:mF 7 constructs parameterized mutation templates from existing test cases
w6 and instantiates CeAER- dcp’e‘rﬁé?ﬁ"co ete mutations on the fly, The key novelty of SyntFuzz
15 is that its mutation-synthesis capability is different from simply reSombining existing seed inputs.
SynTHFUZZ decomposes existing test cases into into parameterizet mutmon templates, where

mpilers wuh Cumm Mutation Synthesis

ring the fuzzmg loop,

and %atg1) are paramelenzerl with respect to argument names or gperation names, making them

(ol _AveTrote s gn, s ea o mJﬁ?md 4y
Bur evaluation oh 4 MLIR-based compiler projetts, ¥ 12)X, Y, Z parameterized by fy ot

futation templates froff 312, X, Y, Z test cas ch project respectively. Weffdthat 6h

26% ufmu ts generated by SynTHFU: i 1 baseline gramma

fuzzmg 59% of e produced by Suwtafuzz ] fy compile u

7 produced by our bast ”eﬁtm nopsteAting SyNTHFUZZ W*g

‘Ayaverage, each mutation template encodes 317 parameterized variations, “showing SynTFUYz's

1 potential to obviate the need for. deﬁnmg different custom mumrons individually by hand, demon-

41\ qg)ie  strating the versatility of paramete Lge, &6

dolyen SynTHFUZ2 achieves an average of 0 ]
b-{ fuzzing. In terms of fault detection poteit code
e Pz by izing custom mutations
.c faufid. Our qualitative investi % nthesls
S‘%j 7, cannot be found by other fuzzers without specialized mutafio S
N’?ﬂ In summty, our contributions are: les

1) We design a novel compiler fuzzin;
mutations apnon which is impractical when the target language is h:ghl extenslble md

J Y"* quickly evolving,
)’ i (2) Our mcthod automsnmlly synthesizes and applics mult- =dn, dc
o ks

from code examples and adapting edits to its conte]
Vj,,mf E (3) We show that our method has similar overall performa;
m 1% is also capable of det#mg faults that cannot be efficiently found hy other means,
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2 MO lVATING EXAMPLE

2.1 Background (o T
MLIR (Multi-Level Intermediate Representation) is a modular compiler framework that differs from ast Wi
traditional approaches by enabling developers to extend the intermediate representation. Rather
1 than defining a single monolithic IR with a fixed set of types and operations, MLIR is extensible by
‘ design. The core abstraction in MLIR is a dialect. Each MLIR dialect consists of a set of operations,
types, and attributes which collegtively define a domain specific representation. However, this
1 also presents a challenge ror.iqﬂ-‘p? gram generat lzmce dialect operations vary greatly i
1+ terms of their semantics. As shown in Listing ??, both the enclosing "func. func" structure anf
e "tf.Add" operation are considered MLIR operations; and thus follow t
ithout further specialization of an MLIR grammar, existing fuzzer would not distinguish betwees
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Adjustment according to PhD Career Stage

Confidence Exploration More

Pair-up Ownership Independence
Submission ldea Formation Mentoring
experience Independence Help with grant

Industry internship writing



What about other aspects of
mentoring?’



Vice Chair of Graduate Studies at UCLA

phd progress tracking
graduate student orientation
aspect of administration

enrollment management

graduate admission
graduate orientation

Establish clear process
Consistent and fair
Empower staff teams
Navigate HR challenges



Faculty in Residence

e 8 years on-campus residential

life mentor

* Noticed students’ desire * Learn to work with influence
for CS from other depts  After 5pm student

* Sensed students’ anxiety experiences

about finance  Cooperate with campus units



UCLA Residential Life

COMMUNITIES ® RULES ® ACADEMICS ® GET INVOLVED

Professor Miryung Kim, Computer Science, UCLA

“Reflecting Faculty in Residence”



Less Serious Version

* Miryung has degrees in Computer Science. She did well in school. She
saw her adviser enjoying mentoring students. So she became a
Professor, and she has been going to school for quite some time now.
She likes learning something new. In particular, she gets inspiration
from what people do in industry. She enjoys helping students, guiding
students to graduation and working with others. Seeing students
grow makes her proud and her job rewarding. Though she tried to be
helpful, some students did not work out for her. Everyone is different
and unique. Also each and everyone also changes over time. She is
learning how to work with different people.



