
DuoReduce: Bug Isolation for Multi-layer Extensible
Compilation
JIYUAN WANG, University of California, Los Angeles, USA
YUXIN QIU, University of California, Riverside, USA
BEN LIMPANUKORN, University of California, Los Angeles, USA
HONG JIN KANG, University of California, Los Angeles, USA
QIAN ZHANG, University of California, Riverside, USA
MIRYUNG KIM, University of California, Los Angeles, USA

In recent years, the MLIR framework has had explosive growth due to the need for extensible deep learning
compilers for hardware accelerators. Such examples include Triton [39], CIRCT [14], and ONNX-MLIR [22].
MLIR compilers introduce significant complexities in localizing bugs or inefficiencies because of their layered
optimization and transformation process with compilation passes. While existing delta debugging techniques
can be used to identify a minimum subset of IR code that reproduces a given bug symptom, their naive
application to MLIR is time-consuming because real-world MLIR compilers usually involve a large number
of compilation passes. Compiler developers must identify a minimized set of relevant compilation passes to
reduce the footprint of MLIR compiler code to be inspected for a bug fix. We propose DuoReduce, a dual-
dimensional reduction approach for MLIR bug localization. DuoReduce leverages three key ideas in tandem
to design an efficient MLIR delta debugger. First, DuoReduce reduces compiler passes that are irrelevant to
the bug by identifying ordering dependencies among the different compilation passes. Second, DuoReduce
uses MLIR-semantics-aware transformations to expedite IR code reduction. Finally, DuoReduce leverages
cross-dependence between the IR code dimension and the compilation pass dimension by accounting for
which IR code segments are related to which compilation passes to reduce unused passes.

Experiments with three large-scale MLIR compiler projects find that DuoReduce outperforms syntax-aware
reducers such as Perses and Vulcan in terms of IR code reduction by 31.6% and 21.5% respectively. If one uses
these reducers by enumerating all possible compilation passes (on average 18 passes), it could take up to 145
hours. By identifying ordering dependencies among compilation passes, DuoReduce reduces this time to 9.5
minutes. By identifying which compilation passes are unused for compiling reduced IR code, DuoReduce
reduces the number of passes by 14.6%. This translates to not needing to examine 281 lines of MLIR compiler
code on average to fix the bugs. DuoReduce has the potential to significantly reduce debugging effort in
MLIR compilers, which serves as the foundation for the current landscape of machine learning and hardware
accelerators.

CCS Concepts: • Software and its engineering→ Software testing and debugging; Compilers.

Additional Key Words and Phrases: MLIR, Fault Localization, Multi-Layer Extensible Compilation

Authors’ Contact Information: Jiyuan Wang, University of California, Los Angeles, USA, wangjiyuan@cs.ucla.edu; Yuxin
Qiu, University of California, Riverside, USA, yuxin.qiu@email.ucr.edu; Ben Limpanukorn, University of California, Los
Angeles, USA, ben@limpanu.com; Hong Jin Kang, University of California, Los Angeles, USA, hjkang@cs.ucla.edu; Qian
Zhang, University of California, Riverside, USA, qzhang@cs.ucr.edu; Miryung Kim, University of California, Los Angeles,
USA, miryung@cs.ucla.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2994-970X/2025/7-ARTFSE030
https://doi.org/10.1145/3715747

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3715747

FSE030:2 Jiyuan Wang, Yuxin Qiu, Ben Limpanukorn, Hong Jin Kang, Qian Zhang, and Miryung Kim

ACM Reference Format:
Jiyuan Wang, Yuxin Qiu, Ben Limpanukorn, Hong Jin Kang, Qian Zhang, and Miryung Kim. 2025. DuoReduce:
Bug Isolation for Multi-layer Extensible Compilation. Proc. ACM Softw. Eng. 2, FSE, Article FSE030 (July 2025),
21 pages. https://doi.org/10.1145/3715747

1 Introduction
LLVM [18] and the Multi-Level Intermediate Representation (MLIR) [15] framework are gaining
significant traction across a wide array of compilers for machine learning and heterogeneous
computing. They have revolutionized modern compiler architectures with layered and extensible
compiler development, by enabling custom extension of IRs. For example, Triton [39], a cutting-edge
language and compiler for machine learning developed by OpenAI, leverages the MLIR framework
to translate Python kernels into Triton’s IR representation. This IR is then optimized through
various transformation passes before being lowered to PTX assembly, which is then fed to the
CUDA compiler. The increasing adoption of MLIR compiler projects such as Triton underscores
the importance of extensible compiler design, particularly in the domain of machine learning
and hardware accelerators, where the underlying IRs and key optimization strategies are rapidly
evolving.
The key features of MLIR are dialects and compilation passes [15, 17]. Each dialect represents

a particular IR abstraction. The core MLIR project [1] alone consists of 46 dialects. Compiler
developers also introduce additional custom dialects. A pass in MLIR transforms and optimizes IR
within a dialect or from one dialect to another. The core MLIR project [1] includes 232 passes that
either (1) transform the IR code from high-level dialects to low-level dialects, or (2) optimize IR
code within the same dialect. For example, the lower-host-llvm pass translates the host dialect
into the llvm dialect, while affine-loop-fusion pass fuses loops within the affine dialect. We
use the term compilation path in MLIR to denote an ordered set of compilation passes that are
executed sequentially to transform a high-level input IR to a low-level IR.
Consider the Circuit IR Compilers and Tools (CIRCT) [14] project that leverages the MLIR

framework to build a compiler for heterogeneous hardware accelerators. As shown in Figure 1,
CIRCT transforms high-level language code such as Python and C into Verilog. It defines 30 different
hardware-related custom dialects and 206 compilation passes. Similarly, otherMLIR-based compilers
use a significant number of compilation passes. For instance, the GPU stencil optimization [12]
consists of 27 compilation passes. This size of available compilation passes introduces significant
complexity in bug isolation. Suppose that a developer attempts to reproduce the same compiler
error by exhaustively testing all 227 combinations naively by turning on and off each compilation
pass. This could take more than 1000 days to complete. Take the CIRCT Python frontend, PyCDE [2]
as another example. It converts high-level Python constructs to optimized Verilog code using 15
distinct compilation passes. These optimization passes include crucial tasks like resource sharing,
pipelining, and clock domain management. A naive attempt would require testing 215 combinations,
taking more than 18 hours to complete.
MLIR’s extensible compiler architecture enables rapid IR evolution and flexibility; however, it

results in increased effort in compiler debugging for two reasons.
• Interdependent Passes. Compilation passes in MLIR are not isolated; they inherently depend
on each other. Thus, a naive approach of toggling each pass on and off to isolate a reported
bug is inefficient. Real-world MLIR compiler errors result from interactions between multiple
passes. For example, the crash described in GitHub issue [3] is reproducible only if the
convert-parallel-loops-to-gpu pass is preceded by the the affine-loop-tile pass out
of 10 passes, and the other 8 passes are irrelevant.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

https://doi.org/10.1145/3715747

DuoReduce: Bug Isolation for Multi-layer Extensible Compilation FSE030:3

Fig. 1. CIRCT’s multi-layer compilation involves 4 core dialects and 26 optimizing dialects such as hwarith
and sq. An MLIR input program goes through on average 13 transformation passes and produces the resulting

Verilog code. The MLIR community is growing and as of Sep. 2024, there are 30 MLIR-based compiler projects

on GitHub.

• Volume of Generated Code. A few lines of high-level input IR can still produce a large amount
of intermediate or low-level IR. Therefore, input isolation at high-level IR is inadequate, and
compiler developers need pass isolation to determine which compiler optimization module
is the root cause of a bug.

Existing general-purpose delta debugging (DD) tools, such as Perses [36], reduce test cases by
performing syntax-aware code splitting and deletion. However, they often fail to precisely localize
errors in minimized IR code due to the lack of consideration of compilation pass dependencies.
For example, if a compiler developer includes an irrelevant lower-hw-to-sv pass, the input IR
must have operations in dialect hw, because, by definition, this pass lowers dialect hw to dialect
sv. However, if we can determine that pass lower-hw-to-sw is irrelevant, we can remove hw
specific operations safely. Similarly, existing MLIR’s debugging utility, mlir-reduce [4] considers
all available compilation passes provided by a user without identifying which compilation passes
are relevant, leading to poor performance.
Alternatively, a developer may use LLVM’s crash message [18] to get hints on the culprit

compilation passes; however, it always points to the last pass before a crash rather than the
actual set of problematic passes that produce culprit IR code. In other words, it identifies too few
compilation passes and fails to include all relevant passes that cause the crash. For example, on the
previous GitHub issue [3], LLVM’s crash message identifies the convert-parallel-loops-to-gpu
pass as the culprit, overlooking the actual buggy pass affine-loop-tile with specific tile size
parameters. Furthermore, relying on LLVM crash messages for debugging is inadequate for non-
crash compiler bugs that instead result in incorrect code generation. For example, the Verilog
code generated in Figure 2c contains an error due to the assignment of regvar occuring with two
operations in lines 5-6, rather than the correct single operation in line 7. The extra operations at
lines 5-6 need one more time frame to complete, which leads to incorrect time-signal generation in
the EDA simulation, as stated in the GitHub bug issue [5]. Since there is no explicit compiler crash
message, no hints are provided to the developer.

Driven by the complexity of debugging multi-layer extensible compilation, we introduce a new
technique called DuoReduce, which has three key components:

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

FSE030:4 Jiyuan Wang, Yuxin Qiu, Ben Limpanukorn, Hong Jin Kang, Qian Zhang, and Miryung Kim

1 hw.module @Test(in %x :
i8, in %clock:
i1) {

2
3 %regvar = sv.reg :

!hw.inout<i8>
4 sv.assign %regvar, %x

: i8
5
6 %regwithinit = sv.reg

init %x :
!hw.inout<i8>

7 }

(a) Original MLIR code

1 module {
2 hw.module @Test(in %x : i8,

in %clock : i1) {
3 %regvar = sv.reg

{hw.verilogName =
"regvar"} :
!hw.inout<i8>

4 sv.assign %regvar, %x : i8
5 %regwithinit = sv.reg

init %x
{hw.verilogName =
"regwithinit"} :
!hw.inout<i8>

6 hw.output}}

(b) MLIR code after pass
“lower-hw-to-sv”

1 module Test(// o.mlir:1:1
2 input [7:0] x, //

o.mlir:1:20
3 input clock //

o.mlir:1:32
4);
5 reg [7:0] regvar; //

o.mlir:3:13
6 assign regvar = x; //

o.mlir:4:3
7 //correct: reg [7:0] regvar

= x;
8 reg [7:0] regwithinit = x;
9 endmodule

(c) Wrong verilog code after
pass “export-verilog”

Fig. 2. The CIRCT bug # 6317 from GitHub [5] does not include which compilation passes were used to

detect this bug. If a user want to compile program (a) with pass export-verilog only to reproduce the bug,

the compiler will crash with message “Error: Unsupported operation found in design” This shows the need
of identifying a correct ordered set of compilation passes to reproduce the same bug. The original MLIR

code (a) in the hw dialect must go through a first compilation pass lower-hw-to-sv to produce code (b)

and go through a second compilation pass export-verilog to produce the Verilog code (c). There are 205
compilation passes available in CIRCT; thus, it is extremely challenging to isolate 2 out of 205 passes.

• Dependency-Aware Compilation Path Reduction: To efficiently reduce the search space
of compilation passes, DuoReduce reasons about dependencies among compilation passes
and computes a valid compilation path for a given IR input.
• MLIR Transformations: To reduce the buggy IR code effectively, DuoReduce applies two
MLIR-specific transformations: return operand rollback and constant replacement based on the
insight that MLIR compilation crashes often result from operator usage rather than operand
values. By replacing operands with constants or returning intermediate operands instead of
the final ones, DuoReduce can decompose the input IR into finer-grained units, suitable for
reduction.
• IR-Compilation Pass Dual-Dimensional Reduction: By exploiting cross-dependencies
between IR code and compilation passes, DuoReduce removes unnecessary passes. In our
experiment, each pass removal results in not needing to inspect 281 lines of compiler code to
inspect on average.

We conduct a systematic evaluation of DuoReduce on all reproducible Github bug issues for three
open-source MLIR projects in heterogeneous hardware and machine learning domains: MLIR [1],
CIRCT [14], and ONNX-MLIR [22]. We compare DuoReduce’s performance against three baseline
approaches—(1) Perses [36], a syntax-aware delta debugger, (2) MLIR-reduce [4], a state-of-the-
practice MLIR reducer, and (3) Vulcan [42], a delta debugger with general code transformations.
We also conduct ablation studies to quantify the benefit of each of the three components above. We
use two assessment metrics: (a) the IR code reduction rate, and (b) the compilation pass reduction
rate and how it translates to reduction in the amount of MLIR compiler code to be inspected, and
(c) the overall time saving for debugging.

In terms of IR code reduction, DuoReduce outperforms Perses and Vulcan by 32% and 22%
respectively. In terms of reducing compilation passes, DuoReduce achieves 14% pass reduction
than DuoReduce without dual-dimensional reduction. This translates to not needing to inspect 281
lines of MLIR compiler code per bug. Suppose that each IR program goes through 18 compilation
passes on average and each compilation trial takes 2 seconds to finish. Naively enumerating all pass

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

DuoReduce: Bug Isolation for Multi-layer Extensible Compilation FSE030:5

combinations to find buggy passes needs 218 compilation attempts, taking 145 hours. By reasoning
about compilation pass dependencies, DuoReduce reduces the IR debugging time from 145 hours
to 572.35 seconds. In summary, this paper makes the following contributions:
(1) We develop DuoReduce that effectively manages the complexities of multi-layer extensible

compilation with a large number of compilation passes, enabling precise fault localization.
(2) Compared to prior work that does not reduce the dimension of compilation passes, DuoRe-

duce performs IR code reduction and compilation pass reduction in tandem, achieving 17%,
7%, and 12% higher reduction on compilation passes for MLIR, CIRCT, and ONNX-mlir, which
translates to not needing to inspect 7389, 1131, and 201 lines of compiler code respectively.

(3) Overall, DuoReduce achieves an estimated speedup of 901×. For MLIR compilers with more
than 20 passes, DuoReduce can deliver even greater speedup, 1931× on average.

(4) DuoReduce outperforms existing reducers in terms of IR code dimension with MLIR-specific
transformations.DuoReduce achieves 17%, 15%, and 11% higher IR code reduction on average
on MLIR, CIRCT, and ONNX-mlir.

In the current AI era, where companies such as AWS, Microsoft, and Google invest significant
resources for in-house AI processor and hardware compiler development, DuoReduce has the
significant potential to expedite the overall development time of extensible optimizing compilers.
The remainder of this paper is organized as follows. Section 2 introduces MLIR and a motivating
example. Section 3 presents the design of DuoReduce. Section 4 provides the design of our
experiments and their results. Section 5 introduces the related work. We draw the conclusions of
our work in Section 6, and make artifacts available in Section 7.

2 Background
2.1 Multi-Level Intermediate Representation
MLIR [15] aims to offer a unified infrastructure that can represent IR at multiple levels of abstraction.
Its core idea is to define extensible IRs that can be customized with domain-specific dialects [15]
using compilation passes specific to particular domains, such as machine learning, high-performance
computing, or embedded systems. All 30 MLIR projects listed on MLIR’s homepage [1] define a
large number of compilation passes; Triton [39] from NVIDIA has 258 passes, CIRCT has 205
passes, and ONNX-MLIR has 34 passes. As such, MLIR enables code optimization and translation
from high-level domain-specific abstractions to lower-level architecture-specific machine code
through multiple compilation passes. We use the term compilation path 𝑃 to refer to a sequence of
compilation passes 𝑃 = [𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑛] For each compilation path 𝑃 , we define two relations.
• Execution Order Relation: we define a binary relation ≤ to indicate the execution order,
such that 𝑃𝑖 ≤ 𝑃 𝑗 means 𝑃𝑖 is executed before 𝑃 𝑗 in the compilation path 𝑃 .
• Dependence Relation: A compilation pass 𝑃 𝑗 depends on another pass 𝑃𝑖 ⇁ 𝑃 𝑗 if executing
𝑃 𝑗 without executing 𝑃𝑖 leads to a different compilation outcome in terms of reproducing
the same bug symptom. It is important to note executing 𝑃 𝑗 after 𝑃𝑖 (i.e., 𝑃𝑖 ≤ 𝑃 𝑗) does not
directly imply 𝑃 𝑗 depends on 𝑃𝑖 (i.e., 𝑃𝑖 ⇁ 𝑃 𝑗). However, (𝑃𝑖 ⇁ 𝑃 𝑗)⇒ (𝑃𝑖 ≤ 𝑃 𝑗).

DuoReduce finds the shortest sublist 𝑃 ′ that can preserve the same bug as the original com-
pilation path 𝑃 . For each pass 𝑃𝑖 ∈ 𝑃 ′, each 𝑃𝑘 that 𝑃𝑖 depends on (i.e., 𝑃𝑘 ⇁ 𝑃𝑖) must be in-
cluded in 𝑃 ′. For example, in the GitHub issue 82382 [3], the original post contains 𝑃 with 10
passes. DuoReduce finds an alternative shortest path 𝑃 ′ with 2 passes: affine-loop-tile ⇁

convert-parallel-loops-to-gpu.
CIRCT [14] has 196 passes to compile high-level Python or C code to custom hardware expressed

in low-level RTL. Figure 2 shows an example compilation process based on two passes. The registers
%regvar (line 3 in Figure 2a) and %regwithinit (line 6) are assigned and initialized the value %x.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

FSE030:6 Jiyuan Wang, Yuxin Qiu, Ben Limpanukorn, Hong Jin Kang, Qian Zhang, and Miryung Kim

1 func.func @main() {
2 func.func @matmul(%arg0, %arg1, %arg2)
3 ...
4 call @matmul(%2, %0, %1):(memref<128x128xf32>,

memref<128x128xf32>, memref<128x128xf32>)
-> ()

5 scf.for %arg0 = %c0 to %c128 step %c1 {
6 scf.for %arg1 = %c0 to %c128 step %c1 {
7 %3 = memref.load %2[%arg0, %arg1] :

memref<128x128xf32>
8 %4 = arith.cmpf oeq, %3, %cst_0 : f32 -> i1
9 cf.assert %4, "Matmul does not produce the

right output"}}
10 ...
11 return}}

(a) A buggy IR code reported in the MLIR GitHub

issue 56914 [6]: compute matrix-multiplication and

verify.

1 func.func @main() {
2 - func.func matmul(%arg0, %arg1, %arg2)
3 ...
4 - call matmul(%2, %0, %1):(memref<128x128xf32>,

memref<128x128xf32>, memref<128x128xf32>) ->
()

5 - scf.for %arg0 = %c0 to %c128 step %c1 {
6 - scf.for %arg1 = %c0 to %c128 step %c1 {
7 - %3 = memref.load %2[%arg0, %arg1] :

memref<128x128xf32>
8 - %4 = arith.cmpf oeq, %3, %cst_0 : f32 -> i1
9 + %4 = arith.constant 1: i1
10 cf.assert %4, "Matmul does not produce the

right output"}
11 }
12 ...
13 return}}

(b) After applying constant replacement at lines 8-9,

DuoReduce removes lines 2-7.

1 Stack dump:
2 0. Program arguments: mlir-cpu-runner -e main -entry-point-result=void
3 #0 0x000055d56f369ee0 PrintStackTraceSignalHandler(void*)
4 #1 0x000055d56f367904 SignalHandler(int)
5 ...

(c) LLVM’s crash message shows only the last pass mlir-cpu-runner, which is not the root cause

of the crash.

Fig. 3. MLIR bug #56914 [6]: the original input IR code in Fig 3a and 9 compilation passes to reproduce

the crash in Fig 3c. If she compiles the input IR with all available 9 passes, 4480 lines of compiler code

should be inspected. In Fig 3b, DuoReduce successfully removed the @matmul with “constant replacement”

transformation in Section 3.2. DuoReduce removes 6 irrelevant compilation passes out of 9, leaving only 1245

lines of compiler code to inspect.

The original MLIR code is first converted to dialect sv in Figure 2b with pass lower-hw-to-sv and
then lowered to System Verilog code with pass export-verilog in Figure 2c: 𝑃1=lower-hw-to-sv
and 𝑃2=export-verilog, where 𝑃2 ⇁ 𝑃1. When a bug occurs in a compilation path with 𝑛 passes,
developers may naively enumerate all 2𝑛 combinations of passes. Such a naive attempt can easily
take up to 100 hours when 𝑛 is over 18. DuoReduce addresses this very problem by accounting for
dependencies among compilation passes and by applying IR code reduction in tandem, reducing
such time to less than 10 minutes.

2.2 Motivating Example
Figure 3a illustrates a real-world MLIR GitHub issue [6], which resulted in a segmentation fault. The
result of matrix multiplication @matmul on line 3 is stored in %2 and checked on line 8. The original
compilation path has 9 passes: convert-linalg-to-loops, affine-loop-unroll, convert-scf
-to-cf, convert-arith-to-llvm, convert-linalg-to-llvm, convert-memref-to-llvm, conver
t-func-to-llvm, reconcile-unrealizedcasts, and mlir-cpu-runner.

The crashmessage’s stack dump in Figure 3c indicates that the last used pass is mlir-cpu-runner.
However, the message does not display the preceding faulty pass convert-func-to-llvm respon-
sible for the issue.

For Figure 3a, no further IR reduction is possible with existing delta debuggers such as Perses or
Vulcan. However, this minimized IR presents ambiguity. Is the crash caused by flawed implementation
of @matmul called at line 4? Is the crash due to incorrect transformation of the nested for loop at lines
5-6?

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

DuoReduce: Bug Isolation for Multi-layer Extensible Compilation FSE030:7

DuoReduce performs dual-dimensional fault localization based on two insights:

(1) MLIR compiler bugs are often caused by operation invocations rather than by the values of
operands. For example, in Figure 3, using cf.assert at line 9 with the convert-func-to
-llvm pass causes the bug, and the value of operand %4 is irrelevant.

(2) IR code reduction can eliminate unnecessary passes. For example, a loop optimization pass
affine-loop-unroll becomes unnecessary when for loops are removed.

After performing syntax-aware IR reduction,DuoReduce applies constant replacement and return
operand rollback transformations, introduced in Section 3.2. For example, replacing %4 on line 8 with
the constant 0 retains the bug, allowing us to remove related IR using %3 on line 7 and @matmul in
line 4. By further removing IR constructs in the nested for loop (lines 5-6), DuoReduce eliminates
the associated affine-loop-unroll pass.
Figure 3b shows the minimized code, reproducing the same error reported in Figure 3a. This

example shows that it is possible to exclude the @matmul function from the culprit IR code and
remove 6 out of 9 passes. It suggests that the underlying error is caused by the 3 remaining passes:
convert-arith-to-llvm, convert-func-to-llvm, or mlir-cpu-runner.

3 Approach
DuoReduce takes the original IR code 𝐶 , the compilation path 𝑃 , and a separate oracle 𝑂 to check
if the error message remains identical to the original. It outputs the minimized IR code 𝐶_𝑎𝑛𝑠 and
the reduced path 𝑃 ′ to reproduce the bug.
At the heart of DuoReduce is a three-fold approach.

(1) Compilation Path Reduction: It reduces unnecessary compilation passes by identifying
dependencies among the involved passes, as described in Section 3.1.

(2) IR Code Reduction: In the IR code dimension, it performs syntax-aware reduction in
conjunction with MLIR-specific transformation, as described in Section 3.2.

(3) Dual-Dimensional Reduction: As the IR code is reduced, DuoReduce’s dual-dimensional
reduction approach narrows down necessary compilation passes by analyzing the relation
between IR code and passes, as described in Section 3.3.

Algorithm 1 describes DuoReduce’s process. In lines 1-7, DuoReduce removes as many unneces-
sary compilation passes as possible (Section 3.1). Once a minimized compilation path is established,
DuoReduce applies IR code reduction on line 8 until no further reduction is possible. Next, DuoRe-
duce applies MLIR-specific transformations on line 11 and applies IR code reduction again on the
transformed code on line 14 (Section 3.2). DuoReduce then performs dual-dimensional reduction
on the compilation path on line 18 (Section 3.3).

3.1 Dependency-Aware Compilation Path Reduction
MLIR compilers have dependencies among compilation passes, as shown in Figure 2. Naively,
one may examine all possible pass combinations—2𝑛 combinations where 𝑛 is the number of
passes. However, this approach may lead to a large number of invalid compilation attempts, due
to dependencies among passes. In fact, our evaluation showed that exhaustively examining all
29 combinations resulted in 89% invalid compilation attempts for a GitHub issue involving 9
passes [3]. Such exhaustive attempts are inefficient. Therefore, DuoReduce identifies and considers
dependencies among passes to avoid invalid compilation attempts.
DuoReduce performs this (1) pass reduction phase before the (2) IR code reduction phase and

the (3) joint reduction in both dimensions. Our evaluation shows that, without the initial path
reduction (1), it takes 16.7% more time to reach the same IR code reduction rate.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

FSE030:8 Jiyuan Wang, Yuxin Qiu, Ben Limpanukorn, Hong Jin Kang, Qian Zhang, and Miryung Kim

Algorithm 1 DuoReduce takes as input the original IR program 𝐶 , the original compilation path
𝑃 , and an oracle 𝑂 . DuoReduce first gets the reduced compilation path 𝑃 ′ by identifying the
dependency of each pass. Then DuoReduce applies delta debugging with MLIR transformations
on the IR code 𝐶 . In the end, it applies dual-dimensional reduction on the reduced path 𝑃 ′ to get
𝑃_𝑎𝑛𝑠 .
Require:
• 𝐶 ← Original IR Program
• 𝑃 ← Original Compilation Path
• 𝑂 ← Oracle that checks whether the bug is preserved

Ensure:
• 𝐷𝑖 ← Shortest path ending with 𝑃𝑖 that can reproduce the bugs with the original 𝐶
• 𝑃 ′ ← Shortest path that can reproduce the bugs with the original IR program 𝐶

• 𝐶_𝑎𝑛𝑠 ← Reduced IR Program
• 𝑃_𝑎𝑛𝑠 ← Shortest compilation path that can reproduce the bugs with 𝐶_𝑎𝑛𝑠

1: for 𝑛 = 𝑁 downto 1 do
2: 𝐷𝑛 = DEPEND_GEN(𝑃 [1 : 𝑛]) // return the shortest path ending with 𝑃𝑛 .
3: if Len(𝑃 ′) > Len(𝐷𝑛) then
4: 𝑃 ′ = 𝐷𝑛 //Update 𝑃 ′ with the shorter path if possible
5: end if
6: end for
7: 𝐶_𝑎𝑛𝑠 ← DD_IR(𝑃 ′, 𝐶 , 𝑂)
8: 𝐹𝑙𝑎𝑔← True
9: while 𝐹𝑙𝑎𝑔 do //Flag is used to check whether the reduction still happens
10: 𝐶_𝑐𝑎𝑛𝑑 ← IR_Trans(𝐶_𝑎𝑛𝑠 , 𝑂)
11: 𝐹𝑙𝑎𝑔← False
12: if Len(DD_IR(𝑃 ′, 𝐶_𝑐𝑎𝑛𝑑 , 𝑂)) < 𝐶_𝑎𝑛𝑠 then
13: 𝐶_𝑎𝑛𝑠 ← DD_IR(𝑃 ′, 𝐶_𝑐𝑎𝑛𝑑 , 𝑂)
14: 𝐹𝑙𝑎𝑔← True
15: end if
16: end while
17: 𝑃_𝑎𝑛𝑠 = DUO_REDUCTION(𝑃 ′, 𝐶_𝑎𝑛𝑠 , 𝑂)//Applies dual-dim reduction to further reduce 𝑃 ′
18: return 𝐶_𝑎𝑛𝑠 , 𝑃_𝑎𝑛𝑠

Problem Definition. Given a compilation path 𝑃 = [𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑛], DuoReduce identifies the
minimum sublist of 𝑃 as 𝑃 ′ = [𝑃𝑖1 , .., 𝑃𝑖𝑚], where 1 ≤ 𝑖1 < . . . < 𝑖𝑚 ≤ 𝑛, preserving the same bug,
meaning (1) 𝑃 ′ is a sublist of 𝑃 ; (2) the number of passes included in 𝑃 ′ is minimal; and (3) for each
pass 𝑃𝑖 ∈ 𝑃 ′, the passes that 𝑃𝑖 depends on (i.e., 𝑃𝑘 ⇁ 𝑃𝑖) must also be included in 𝑃 ′.

𝑃 ′ = argmin
𝑃 ′⊆𝑃

|{𝑃𝑖 ∈ 𝑃 ′ | (𝑃𝑘 ⇁ 𝑃𝑖) ⇒ (𝑃𝑘 ∈ 𝑃 ′)}| (1)

Identifying Pass Dependencies. Given the original compilation path [𝑃1, 𝑃2, . . . , 𝑃𝑁], DuoReduce
identifies the dependent passes for each pass in a backward order in lines 1-3 of Algorithm 1, in the
decreasing order of 𝑃𝑁 to 𝑃1. We denote the dependencies of 𝑃𝑛 as 𝐷𝑛 , which is initialized to an
empty set. DuoReduce checks 𝑃𝑛’s preceding passes (i.e., 𝑃1, ..., 𝑃𝑛−1) and adds the pass to 𝐷𝑛 , if
it is necessary for preserving the bug with a compilation path ending with 𝑃𝑛 . As shown in line
3 of Algorithm 2, DuoReduce first constructs a set of compilation paths {𝐶1, ...,𝐶𝑛}, where each
𝐶𝑖 is the path executing from 𝑃1 up to 𝑃𝑖−1 (i.e., 𝐶𝑖 = [𝑃1, . . . , 𝑃𝑖−1]) and is later used to determine
whether 𝑃𝑛 depends on 𝑃𝑖 . For example, 𝐶3 = [𝑃1, 𝑃2]. Next, DuoReduce tests whether 𝑃𝑛 depends
on 𝑃𝑖 , 𝑖 < 𝑛, by constructing a modified path 𝐶′𝑖 . 𝐶

′
𝑖 concatenates 𝐶𝑖 and current 𝐷𝑛 and adds 𝑃𝑛 at

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

DuoReduce: Bug Isolation for Multi-layer Extensible Compilation FSE030:9

Algorithm 2 DEPEND_GEN: Dependency-Aware Reduction Algorithm
Require:
• 𝐶𝑜𝑑𝑒 ← IR Program
• 𝑃 ← A Compilation Path ends with 𝑃𝑛 , where 𝑃𝑖 is each compilation pass, and 𝑃𝑖 is execute
sequentially after 𝑃𝑖−1 on this path P.
• 𝑂 ← Oracle that checks whether the bug is preserved

Ensure:
• 𝐷𝑛 ← A sequence of all the compilation passes that 𝑃𝑛 depends on.
• 𝐶𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 ← The shortest compilation path ends with 𝑃𝑛 that can satisfy the oracle 𝑂 with
𝐶𝑜𝑑𝑒 .

1: 𝐷𝑛 = []
2: for 𝑖 = 𝑛 − 1 to 1 do
3: 𝐶𝑖 = [𝑃1, . . . , 𝑃𝑖−1]
4: 𝐶′𝑖 = Concat(𝐶𝑖 , 𝐷𝑛).add(𝑃𝑛)
5: if 𝑂(𝐶′𝑖 , 𝐶𝑜𝑑𝑒)==false then
6: 𝐷𝑛 .𝑎𝑑𝑑 (𝑃𝑖)
7: end if
8: end for
9: return 𝐶𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 = 𝐷𝑛 .𝑎𝑑𝑑 (𝑃𝑛)

the end, as shown in line 4 of Algorithm 2. In this way, 𝐶′𝑖 reserves all passes that 𝑃𝑛 depend on,
except for 𝑃𝑖 . If 𝐶′𝑖 fails to retain the same behavior, it indicates that 𝑃𝑛 depends on 𝑃𝑖 , and 𝑃𝑖 is
added to 𝐷𝑛 , as shown in lines 5-7 of Algorithm 2. Otherwise, we can safely remove the 𝑃𝑖 .
Figure 4 shows a running example. We start with finding the dependency 𝐷4 for 𝑃4, where 𝐷4

is initially an empty list []. For that, DuoReduce incrementally constructs this list by testing the
removal of preceding passes P3 to P1. First, DuoReduce checks if 𝑃4 depends on 𝑃3 by removing
it from the compilation passes. Thus, DuoReduce executes [𝑃1, 𝑃2, 𝑃4]. [𝑃1, 𝑃2, 𝑃4] is constructed
by concatenating 𝐶3 = [𝑃1, 𝑃2] and 𝐷4 = [], and adding the target pass 𝑃4 together. Because it
retains the same bug, 𝑃4 does not depend on 𝑃3 and 𝑃3 can be safely removed. Next, DuoReduce
checks if 𝑃4 depends on 𝑃2 by executing [𝑃1, 𝑃4], which is constructed by concatenating 𝐶2 = [𝑃1]
and 𝐷4 = [], and adding the target pass 𝑃4. However, it does not reproduce the same bug; thus,
DuoReduce adds 𝑃2 into 𝐷4. DuoReduce then checks the dependency against 𝑃1 by removing 𝑃1
and executing [𝑃2, 𝑃4], which is constructed by concatenating 𝐶1 = [] and 𝐷4 = [𝑃2], and adding
𝑃4. If the same bug is not reproduced, DuoReduce adds 𝑃1 to 𝐷4. Finally, DuoReduce identifies
the passes that 𝑃4 depends on as 𝐷4 = [𝑃1, 𝑃2], and constructs the shortest path that ends with
𝑃4, [𝑃1, 𝑃2, 𝑃4]. This algorithm has the time complexity of 𝑂 (𝑛2), where 𝑛 is the total number of
compilation passes.

3.2 Transformation-Based Code Reduction
Prior work found that applying program transformations can improve delta debugging [23, 33, 34,
42]. In MLIR, we observe that compilation crashes are often caused by operation invocations rather
than the values of operands. We thus hypothesize that altering MLIR operands can offer new oppor-
tunities for further IR code reduction. We design two operand-specific transformations—constant
replacement and return operand rollback. If altering an operand successfully retains the bug behavior,
we can eliminate all dependent operands.

1. Constant Replacement. The Constant Replacement transformation substitutes operands in
the IR code with constants of the same type. In Figure 5a, a GitHub issue [7] causes a compiler crash
occurs due to the invocations of vector.broadcast for the operand %111 at line 9 and vector.fma

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

FSE030:10 Jiyuan Wang, Yuxin Qiu, Ben Limpanukorn, Hong Jin Kang, Qian Zhang, and Miryung Kim

Fig. 4. Red edges indicate the current passes being tested, and the golden vertices highlight dependent passes.

DuoReduce finds the shortest path 𝑃 from Start to P4. P4=export-verilog does not depend on P3=-inline
but depends on P1=lower-hw-to-sv and P2=lower-calyx-to-hw.

1 func.func @func1(%arg0: tensor<5x5xf16>, %arg1:
tensor<?x12xi16>, %arg2: vector<5x5xi1>) ->
i1 {

2 %c91 = arith.constant 91 : index
3 %c911 = arith.constant 911 : index
4 %c912 = arith.constant 912 : index
5 %com1 = index.divs %c911, %c91
6 %com2 = index.divs %c912, %c91
7 %c1 = index.divs %com1, %com2
8 //Replace with "%c1 = arith.constant 42 : index"

still trigger the crash
9 %111 = vector.broadcast %c1 : index to

vector<21x12x12xindex>
10 %112 = vector.fma %111, %111, %111 :

vector<21x12x12xf32>
11 //Insert "return %112 : vector<21x12x12xf32>" +

replace the function return type to
"vector" still trigger the crash

12 vector.print %112 : vector<21x12x12xf32>
13 %ans = arith.constant true
14 return %ans : i1}

(a) This IR code crashes LLVM due to the invocation

of vector.broadcast at line 9 and vector.fma at

line 10, with pass vector-unrolling.

%c91 %c911 %c912

%com1 %com2

%c1 %111 %112 ...

(b) Dataflow graph for (a): DuoReduce applies con-

stant replacement for %c1 and return operand roll-

back for %112. It then removes the operands that

%c1 depends on such as %com1, and all the operands
after %112 such as %ans.

1 func.func @func1(...) -> vector<21x12x12xf32> {
2 %c1 = arith.constant 42 : index
3 %111 = vector.broadcast %c1 : index to

vector<21x12x12xindex>
4 %112 = vector.fma %111, %111, %111 :

vector<21x12x12xf32>
5 return %112 : vector<21x12x12xf32>}

(c) Constant replacement on %c1 and return

operand rollback on %112 enabled removal of lines

2-7 and lines 12-13 in (a).

Fig. 5. Code example from MLIR GitHub issue 64074 [7]. DuoReduce applies program transformation on the

1-minimal IR code and enables a further 75% reduction.

for the operand %112 at line 10. The data flow graph in Figure 5b shows that the code is already
1-minimal. DuoReduce replaces the operand %c1 on line 7 with a random constant 42 of the same
type index on line 8. Because the bug is induced by the operation vector.broadcast rather than
the specific value of %c1, replacing line 7 with line 8 triggers the same crash.
DuoReduce then begins another DD cycle. All preceding operands before %c1 are eliminated

because %c1 is a constant. DuoReduce safely removes all operands that lead to the previous %c1

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

DuoReduce: Bug Isolation for Multi-layer Extensible Compilation FSE030:11

...
//IR Dump Before AffineLoopUnroll(affine-loop-unroll)
module {
func.func @main() {
...
%4 = arith.constant false
cf.assert %4, "Matmul does not"}}
...

//IR Dump Before ArithToLLVMConversionPass(convert-arith-to-llvm)
module {
func.func @main() {
...
%4 = arith.constant false
cf.assert %4, "Matmul does not"}}
...

//IR Dump Before ConvertFuncToLLVMPass(convert-func-to-llvm)
module {
func.func @main() {
...
%4 = llvm.mlir.constant(false) : i1
cf.assert %4, "Matmul does not"}}

Fig. 6. After removing @matmul in Figure 3, the pass affine-loop-unroll is no longer relevant. DuoReduce

removes 4 out of 7 passes, and reduces the inspection scope from 2279 to 1245 lines.

and that are not used later—operands %c91, %c911, %c912, %com1, and %com2. This removes lines 2
through 6, as shown in Figure 5c.

2. Return Operand Rollback. The Return Operand Rollback transformation returns intermediate
operands instead of the last operand. DuoReduce updates the return statement and the return
type of the function. In Figure 5, instead of returning %ans at line 14, DuoReduce inserts a return
statement after each operand to determine if the bug persists. For example, DuoReduce produces
a transformation to return at %112 and updates the return type from i1 at line 1 to the type
of operand %112, which is type vector. After returning %112, DuoReduce safely removes all
subsequent operands because they are no longer invoked, thus removing lines 12-13.

3.3 IR-Path Dual-Dimensional Reduction
The existing MLIR framework provides the ability to display the impacts of each compilation
pass on the IR code through the mlir-print-ir-before-all option. When we compile Figure 6
with this option and the compilation passes, (affine-loop-unroll, convert-arith-to-llvm,
convert-func-to-llvm), MLIR prints the IR code before each pass. By comparing the IR code
before and after each pass, DuoReduce identifies which passes are no longer necessary. In this
example, the IR remains unchanged after the affine-loop-unroll pass but is altered following
the convert-func-to-llvm pass. It indicates that the latter pass has an effect on the IR code, while
the former does not.

For example, in Figure 3a, the for loops in the original IR code necessitate the affine-loop-
unroll pass. However, after the IR code is reduced to Figure 3b which no longer contains these
loops, the loop-unrolling pass no longer has an effect. Similarly, this approach effectively elim-
inates the passes convert-linalg-to-loops, convert-scf-to-cf, convert-linalg-to-llvm,
convert-memref-
to-llvm, and affine-loop-unroll, resulting in 63% pass reduction. This in turn reduces the
inspection scope from 2279 lines of compiler code to 1245 lines.

3.4 Overall Time Complexity
DuoReduce operates in three phases: Phase 1 performs compilation path reduction, Phase 2 focuses
on IR code reduction, which involves IR code transformation, and Phase 3 applies dual-dimension
reduction on the compilation path.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

FSE030:12 Jiyuan Wang, Yuxin Qiu, Ben Limpanukorn, Hong Jin Kang, Qian Zhang, and Miryung Kim

Phase 1 has a time complexity of 𝑂 (𝑝2), where 𝑝 represents the number of compilation passes.
Phase 2 consists of two key components: IR transformation and syntax-guided delta debugging
reduction. Let 𝑛 denote the number of operands in the IR code. In the worst-case scenario, delta
debugging reaches 1-minimal 𝑛 times, with each time the IR transformation enabling further
reduction. For IR transformation, both constant replacement and return operand rollback traverse
each operand once, leading to a time complexity of𝑂 (𝑛). Since IR transformation may be applied 𝑛
times in the worst case, the total cost accumulates to 𝑂 (𝑛2). For delta-debugging, since we reach
1-minimal 𝑛 times, it means we apply delta-debugging 𝑛 times. While the time cost of each delta-
debugging is linear [43], the overall cost for syntax-guided delta debugging is 𝑂 (𝑛2). Thus, the
total time complexity for phase 2 is 𝑂 (𝑛2) + 𝑂 (𝑛2) = 𝑂 (𝑛2). Phase 3 iterates over each compilation
pass and verifies its results, leading to a time complexity of 𝑂 (𝑝).
Summing the complexities of all three phases, the total time complexity for DuoReduce is

𝑂 (𝑝2) +𝑂 (𝑛2) +𝑂 (𝑝) = 𝑂 (𝑛2) +𝑂 (𝑝2), where 𝑝 is the number of compilation passes and 𝑛 is the
number of operands in code.

4 Evaluation
DuoReduce has three main components: MLIR code transformation, dual-dimensional reduction,
and dependency-aware pass reduction. We examine the following research questions to answer the
effectiveness of each component:

RQ1: How effective is DuoReduce in terms of IR code reduction? How much reduction can be
achieved by DuoReduce’s MLIR code transformation?

RQ2: How effective is DuoReduce in terms of compilation pass reduction? How much reduction
can be achieved by DuoReduce’s dual-dimensional reduction?

RQ3: How much speedup can DuoReduce achieve with dual-dimensional reduction?

4.1 Experiment Design
We select three large MLIR compiler projects, listed in Table 1. The systems used in our evaluation,
including MLIR [15], CIRCT [14], and ONNX-MLIR [22], are significantly-sized real-world projects
(444k, 171k, and 96k LOC for MLIR, CIRCT, and ONNX-MLIR, respectively) with 295 active contrib-
utors among recent papers on MLIR testing [41]. We examined all issues related to these systems
and filtered out 62 out of 134 issues which lacked MLIR code inputs or corresponding compilation
passes required to reproduce the reported bugs. The GitHub issues are chosen for the latest version
of each project. Out of the remaining 72 issues, we removed 41 issues that did not require further
IR code reduction because the provided IR was already less than 10 lines of code. In the end, we
selected 31 reproducible issues for our evaluation, which include all reproducible, non-trivial bugs
from 3 widely-used MLIR projects on GitHub: onnx-mlir, CIRCT, and MLIR-core. The detailed
benchmarks are provided in the replication package with the GitHub issue IDs and links.
For each IR input reported for a given compiler bug, we determined the super-set of candidate

passes based on two criteria: (1) the structure of the IR program, and (2) the dialects used. Most
GitHub issues provide an initial set of compilation passes that MLIR developers use to reproduce
the reported bugs. These passes serve as the starting point for our delta-debugging. In cases where
such path is not explicitly provided, we use the names of dialects used in the IR program and map to
a corresponding set of compilation passes. For instance, if an IR program contains loops and vector
operations, we assume that vector unrolling passes such as -test-vector-unrolling-patterns=unroll-
based-on-type should be included in the scope. Similarly, if the IR program uses the arith dialect,
lowering passes such as -convert-arith-to-llvm should be included. Column Bug LoP in Table 1
shows the number of candidate passes for the reported bugs.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

DuoReduce: Bug Isolation for Multi-layer Extensible Compilation FSE030:13

Table 1. The systems used in our evaluation are significantly-sized real-world projects (444k, 171k, and 96k

LOC for MLIR, CIRCT, and ONNX-MLIR, respectively). They define a large number of compilation passes: 234,

206, and 34 respectively. On the left, BugLoC stands for lines of IR code and BugLoP stands for the number of

compilation passes for each bug on average.

Compilation Commit # GitHub Bug Bug
Project LoC Pass Message Issues LoC LoP
MLIR [15] 444k 234 1730 23 132.3 17.9
CIRCT [14] 171k 206 2051 6 32.1 20.2
ONNX-mlir [22] 96k 34 2915 2 23.2 17

Evaluation metrics. The following metrics are typically used in previous work on DD [20, 42, 45].
• Average reduction: reduction in IR code size and the number of compilation passes. It is
calculated as |𝑥 |− |𝑥

′ |
|𝑥 | , where |𝑥 | and |𝑥 ′ | are the original and reduced IR code size or the length

of the compilation path.
• Successful reduction: the number of cases in which buggy compilation passes and IR code
segments have been successfully localized by the debugging tool in a 4-hour time limit.
• Time usage: time in seconds that each tool takes.

Baselines.To answer RQ1, we evaluateDuoReduce against Perses+ [8], Vulcan+ [42], mlir-reduce+
(circt-reduce+ for the CIRCT bug issue), and DuoReduce_NoTran (DuoReduce without MLIR
code transformations).
Perses is a syntax-aware delta debugger that leverages the ANTLR grammar and prunes the

search space by avoiding generating syntactically invalid programs according to the grammar.
We configured Perses to use the base MLIR grammar [26]. We then construct Perses+ by adding
DuoReduce’s compilation path reduction, since Perses does not account for the dimension of com-
pilation passes at all and it would be unfair to compare DuoReduce against Perses directly. In short,
Perses+ = Perses + DuoReduce’s dependency-aware compilation path reduction + DuoReduce’s
dual-dimensional reduction.

Vulcan, an enhanced version of Perses, introduces additional code transformation rules, such as
identifier and subtree replacement, to achieve further reduction. These general transformation rules
are not designed for IR code transformations and are thus less effective than DuoReduce. Similar to
Perses+, we configured Vulcan with the base MLIR grammar [26]. Vulcan+ adds compilation path
reduction to the original Vulcan algorithm: Vulcan+ = Vulcan + DuoReduce’s dependency-aware
compilation path reduction + DuoReduce’s dual-dimensional reduction. In short, Vulcan+ replace
DuoReduce’s MLIR transformation with Vulcan’s general code transformations.
mlir-reduce is a utility provided by the MLIR compiler community to reduce the size of the IR

code, and circt-reduce [9] is built on top of mlir-reduce by considering CIRCT dialects. These
domain-specific reducers employ multiple strategies to minimize the input: directly removing
operations (akin to Perses), and applying optimization rewrites [15]. However, since the optimization
rewrites are designed for compilation, not reduction, they are conservative in terms of reducing IR
inputs. Similarly, we construct mlir-reduce+ = mlir-reduce + DuoReduce’s dependency-aware
compilation path reduction + DuoReduce’s dual-dimensional reduction.

To answer RQ2, we compare DuoReduce against its downgraded version DuoReduce_No2Dim
without dual-dimension reduction. We demonstrate why the LLVM compiler crash message alone
cannot provide correct information to help developers localize the buggy pass. To answer RQ3,
we evaluate DuoReduce against its downgraded version DuoReduce_NoDep, DuoReduce with-
out identifying compilation pass dependences. DuoReduce_NoDep exhaustively tries all pass
combinations, instead of considering the dependences among passes.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

FSE030:14 Jiyuan Wang, Yuxin Qiu, Ben Limpanukorn, Hong Jin Kang, Qian Zhang, and Miryung Kim

Table 2. Effectiveness and Efficiency for DuoReduce. DuoReduce achieves the highest IR code reduction

compared to Perses+ and Vulcan+. MLIR transformations enable 31.6% additional IR size reduction. DuoRe-

duce_NoDep cannot finish the reduction for 29 out of 31 GitHub issues in the 4-hour time limit, since it

requires 2𝑛 trials, where 𝑛 is the number of compilation passes.

IR Code Compilation Path
ID Tool Name Successes Average Successful Average Time

Reduction Reduction Reduction Reduction Usage
1 mlir-reduce+ 27 26.1% 27 84.2% 530.65s
2 Perses+ 31 47.2% 31 87.2% 414.37s
3 Vulcan+ 31 51.1% 31 89.3% 1336.55s
4 DuoReduce_NoTran 31 47.2% 31 87.2% 397.45s
5 DuoReduce_NoDep 2 / 2 / ∼ 145h
6 DuoReduce_No2Dim 31 62.1% 31 77.1% 570.77s
7 Compiler Crash Msg / / 15 94.4% N/A
8 DuoReduce 31 62.1% 31 91.7% 572.35s

1 module {
2 func.func @func2(...) {
3 %c11 = arith.constant 11 : index
4 %c12 = arith.constant 12 : index
5 %com1 = index.divs %c11, %c11
6 %com2 = index.divs %c12, %c12
7 %c2 = index.divs %com1, %com2
8 ...
9 %92 = affine.apply affine_map<(d0, d1, d2,

d3) -> (d0 - 16)>(%46, %28, %c2, %43)
10 scf.index_switch %92
11 default {....}}

(a) The 1-minimal code example: the compilation

crash is due to scf.index_switch.

1 module {
2 func.func @func2(%arg0: tensor<?x?x?xi1>,

%arg1: tensor<5x5xi32>) {
3 %c2 = arith.constant 2 : index
4 ...
5 %92 = affine.apply affine_map<(d0, d1, d2,

d3) -> (d0 - 16)>(%46, %28, %c2, %43)
6 scf.index_switch %92
7 default {....}}

(b)DuoReduce applies constant replacement for %c2,
enabling further removal of all the operands %c2
depends on.

Fig. 7. MLIR GitHub issue 64071 [10]. DuoReduce achieves 4 more lines of code reduction with the constant

replacement compared to Perses+ and Vulcan+, and only takes 617.4 seconds compared to Vulcan+ which

takes 2604 seconds, resulting in 3.87× speedup.

Experimental environment. All experiments are performed on a machine with an AMD Ryzen
2950X 16-Core Processor with 32 GB RAM running on Ubuntu 22.04.

4.2 RQ1: Effectiveness of MLIR Code Transformations
As shown in Table 2, mlir-reduce+ has the worst performance, since it applies the naive ddmin [45]
approach.DuoReduce outperforms mlir-reduce+, Perses+/DuoReduce_NoTran, and Vulcan+ by
138%, 31.6%, and 21.5%, respectively, in terms of the IR reduction rate. Although DuoReduce shares
the same compilation pass reduction with the above baselines, the improved IR code reduction
leads to a better compilation pass reduction rate. As shown in the column Compilation Path -
Average Reduction, compared to mlir-reduce+, Perses+/DuoReduce_NoTran, and Vulcan+,
DuoReduce achieves 7.5%, 4.5%, and 2.4% higher reduction rate respectively.

Figure 7 shows an example where DuoReduce outperforms Perses+ and Vulcan+. The compila-
tion crash is caused by the logic in scf.index_switch on line 10 in Figure 7a, which works like
the case statement in C/C++. Perses+ and mlir-reduce+ reach 1-minimal in Figure 7a; however,
the code can be further reduced if we replace the operand %c2 on line 7 with a constant, since

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

DuoReduce: Bug Isolation for Multi-layer Extensible Compilation FSE030:15

1 func.func @main() {
2 %in_buf = memref.alloc() :

memref<16x230x230x3xf32>
3 %filter_buf = memref.alloc() :

memref<64x7x7x3xf32>
4 %out_buf = memref.alloc() :

memref<16x112x112x64xf32>
5 linalg.conv_2d_nhwc_fhwc {dilations = dense<1>

: tensor<2xi64>, strides = dense<2> :
tensor<2xi64>}

6 ins (%in_buf, %filter_buf:
memref<16x230x230x3xf32>,
memref<64x7x7x3xf32>)

7 outs (%out_buf: memref<16x112x112x64xf32>)
8 return}

(a) The above code example crashes because of the

loop tiling. It takes two tensors as input and com-

putes the 2D convolution.

1 Stack dump:
2 0. Program arguments: mlir-opt

--convert-linalg-to-affine-loops
--affine-loop-tile=tile-sizes=4,28,28,..
--affine-loop-unroll=unroll-factor=4
--canonicalize --affine-parallelize
--lower-affine --canonicalize
--gpu-map-parallel-loops
--convert-parallel-loops-to-gpu conv2d.mlir

3 ...
4 #22 0x00005c544cb547a3 processParallelLoop...
5 ...
6 #25 0x00005c544cb53b93 ... const

/home/mlir/lib/Conversion/SCFToGPU/
SCFToGPU.cpp:642:11

(b) The compiler crash message localizes the crash to

the wrong pass: convert-parallel-loops-to-gpu.

Fig. 8. MLIR GitHub issue 82382 [3]. DuoReduce finds the buggy pass affine-loop-tile in the results

while the compiler crash message doesn’t, which motivates the need for DuoReduce.

the crash is due to the invocation of scf.index_switch instead of the value of %c2. DuoReduce
replaces the operands %c2 with a random constant 2 and further reduces the IR code to Figure 7b.
Compared to Perses+, DuoReduce takes 38.1% more time to finish the entire DD process on

average, as shown in the Time Usage column of Table 2. It is because after reaching the fixed point,
DuoReduce applies IR program transformations and enables further reduction that Perses+ cannot
reach. However, by using these transformations, DuoReduce achieves a 14.9% higher reduction
rate and outperforms Perses+ by 31.6%.
Although Vulcan+ also applies code transformations, its general code transformations are not

suitable for MLIR and thus less effective. For example, in Figure 7a, Vulcan+ cannot eliminate
the logic dependency of the operand %c2, which prevents it from removing the code on lines 3-6.
Vulcan+’s identifier replacement technique, which substitutes one identifier with another, fails to
break the logic dependency on the operand on line 7. Similarly, its subtree replacement strategy,
which shares the same logic as identifier replacement, cannot address this dependency either.
Additionally, the time complexity of Vulcan+’s transformations is𝑂 (𝑛2) [42], which is significantly
higher thanDuoReduce’s transformation complexity of𝑂 (𝑛), as discussed in Section 3. For instance,
in Figure 7, Vulcan+ takes 2604 seconds to complete the transformation, whereas DuoReduce
only requires 617.4 seconds. As indicated in the Time Usage column of Table 2, DuoReduce
consistently outperforms Vulcan+, reducing the time required from 1336.55 seconds to 572.35
seconds on average. DuoReduce also achieves an 11.0% higher reduction rate and outperforms
Vulcan+ by 21.5%.

With IR code transformations, DuoReduce outperforms the state-of-the-art DD methods,
Perses and Vulcan, in terms of IR code reduction by 31.6% and 21.5%, respectively.

4.3 RQ2: Effectiveness of Dual-Dimensional Reduction
We evaluate DuoReduce against its downgraded version DuoReduce_No2Dim and LLVM

compiler crash message to show the benefit of dual-dimensional reduction.
As shown in Table 2, comparing row 6 and row 8 shows that DuoReduce achieved 14.6% higher

pass reduction while only taking 1.58 seconds longer than DuoReduce_No2Dim. LLVM compiler

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

FSE030:16 Jiyuan Wang, Yuxin Qiu, Ben Limpanukorn, Hong Jin Kang, Qian Zhang, and Miryung Kim

1 module {
2 func.func @omp_target() {
3 %alloca = memref.alloca() : memref<64x64xf64>
4 ...
5 %0 = omp.map_info var_ptr(%alloca :

memref<64x64xf64>, tensor<?xi32>)
map_clauses(to) capture(ByRef) ->
memref<64x64xf64>

6 ...
7 omp.parallel {
8 ...
9 %2 = vector.load %arg0[%arg2, %arg3] :

memref<64x64xf64>, vector<16xf64>
10 ...}}
11 return}}

(a) This code example crashes with a compilation

path of 4 passes. This requires the developer to in-

spect 2423 lines of MLIR compiler code for debug-

ging.

1 module {
2 func.func @omp_target() {
3 %alloca = memref.alloca() : memref<64x64xf64>
4 %0 = omp.map_info var_ptr(%alloca :

memref<64x64xf64>, tensor<?xi32>)
map_clauses(to) capture(ByRef) ->
memref<64x64xf64>

5 return}}

(b) This reduced IR code enables DuoReduce

to reduce the compilation path from 4 passes:

convert-vector-to-llvm, finalize-memref-to-
llvm, convert-arith-to-llvm, and convert-
openmp-to-llvm, to a single pass: convert-open
mp-to-llvm, and only requires the developer to in-

spect 284 lines of MLIR compiler code for debugging.

Fig. 9. MLIR GitHub issue 76579 [11]. With dual-dimensional reduction, DuoReduce removes 3 redundant

passes and achieves better reduction than DuoReduce_No2Dim, which translates to not needing to inspect

2139 lines of MLIR compiler code.

crash messages cannot handle non-crash bugs such as incorrect code generated for CIRCT GitHub
issue 6317 [5] in Figure 2. In total, LLVM fails to localize correct buggy passes for 52% GitHub
issues.
Take Figure 8 as an example. The original code in Figure 8a transforms a 2-dimensional tensor

using linalg.conv_2d on line 5 and stores the result in out_buf on line 7. LLVM reports a crash
in pass convert-parallel-loops-to-gpu, as shown at #22 in Figure 8b. However, the crash is
actually triggered by the parameter chosen in pass affine-loop-tile. Unlike LLVM crash report,
DuoReduce localizes all four buggy passes: convert-linalg-to-affine-loops, affine-loop-
tile=..., affine-loop-unroll, gpu-map-parallel-loops.
Some compilation passes are not related to the crash but cannot be removed since they are

required to compile the parts of the code that are also unrelated to the crash. With dual-dimensional
reduction, DuoReduce may remove both the code and passes unrelated to the crash. For ex-
ample, in Figure 9a, to successfully compile the code, the vector at line 9 requires the pass
convert-vector-to-llvm to lower the vector to llvm dialect. However, after removing line 9,
which is unrelated to the crash, DuoReduce is able to safely remove the pass convert-vector-to
-llvm while the crash remains. In summary, compared to DuoReduce_No2Dim, DuoReduce
achieves an additional 75% reduction of compilation passes. This eliminates 2,139 lines of unrelated
compiler code for the developer to examine while debugging the crash. On average, DuoReduce
achieves a 91.7% reduction rate compared to DuoReduce_No2Dim with 77.1%.

Compiler crash messages cannot correctly isolate culprit passes in 16 out of 31 GitHub
issues.DuoReduce outperformsDuoReduce_No2Dim and achieves a higher pass reduction
of 14.6%, translating to not needing to examine 281 lines of MLIR compiler code on average.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

DuoReduce: Bug Isolation for Multi-layer Extensible Compilation FSE030:17

0 3 6 9 12 15 18
0

600
1,200

2,400

4,800

14.74s 72.1s 241.7s
572.4s36.4s 314.4s595.0s

6553.6s6553.6s

Number of Passes in the Compilation Path

Ti
m
e
U
sa
ge

/s

Average time usage for DuoReduce vs. DuoReduce_NoDep

DuoReduce
DuoReduce_NoDep

Fig. 10. Time usage for DuoReduce and DuoReduce_NoDep. The x-axis represents the number of passes,

and the y-axis represents the average time usage. DuoReduce achieves higher speedup when more compi-

lation passes are involved. For example, for 13 compilation passes, DuoReduce takes 241.7s, while DuoRe-

duce_NoDep takes 6553.6s, resulting in 27× speedup.

4.4 RQ3: Effectiveness of Compilation Pass Dependence-Aware Reduction
As shown in Table 2 row 5 and row 8, DuoReduce_NoDep cannot finish the compilation pass
reduction for 29 out of 31 GitHub issues in the 4-hour time limit, while DuoReduce finishes all the
tasks with an average time of 572.35 seconds. In our evaluation, DuoReduce_NoDep cannot finish
the reduction tasks in the 4-hour time limit when the number of compilation passes reaches 14.
Take the compilation path from GitHub issues [3] in Figure 8 as an example. The original

compilation path has 9 passes, as listed in the stack dump after the Program arguments. DuoReduce
first figures out the dependency relation in the compilation path. For example, affine-loop-unroll
depends on covert-linalg-to-affine-loops and affine-loop-tile=.... With DuoReduce’s
dependency-aware reduction, DuoReduce achieves the same reduction rate with 101 compilation
trials, compared to DuoReduce_NoDep with 29=512 compilation trails, resulting in a 5.1× speedup.
We compare DuoReduce against DuoReduce_NoDep to examine DuoReduce’s scalability as

the number of compilation passes grows. Figure 10 shows that DuoReduce’s efficiency escalates
with the increase in the number of compilation passes. This improvement is because more passes
lead to a denser web of dependencies among the passes. With the compilation pass dependency,
DuoReduce effectively reduces the number of unnecessary compilation trials. For example, for the
GitHub issues with 4 passes like the example in Figure 9, DuoReduce requires 14.7 seconds on
average to complete the debugging, compared to DuoReduce_NoDep, which takes 36.4 seconds,
resulting in a 2.47× speedup. The efficiency gains are more pronounced with 13 passes, where
DuoReduce averages 241.7 seconds, outperforming DuoReduce_NoDep’s 6553.6 seconds, thereby
achieving a 27× speedup. DuoReduce_NoDep cannot finish the delta debugging process within
the time limit (4 hours) when the number of compilation passes reaches 14, while DuoReduce
finished its process for 18 compilation passes in 572.4 seconds.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

FSE030:18 Jiyuan Wang, Yuxin Qiu, Ben Limpanukorn, Hong Jin Kang, Qian Zhang, and Miryung Kim

DuoReduce finishes compilation path reduction with an average time of 572.35 seconds,
while DuoReduce_NoDep requires an estimated 145 hours, achieving a 901× speedup. The
result shows the effectiveness of compilation pass dependency aware reduction.

5 Related Work
Delta Debugging. Delta debugging is a seminal work for input reduction to identify the minimal
failure-inducing changes between two program versions [44, 45]. Based on ddmin, Ghassan et al.
developed Hierarchical Delta Debugging (HDD) [32]. It applies delta debugging at each level of
a program’s input, working from the coarsest to the finest levels. Recent work proposed several
enhancements on HDD [20, 21, 24]. ProbDD [40] is a probabilistic DD algorithm that learns from
testing history to select elements based on the probabilities. RCC [37] uses ZIP and SHA to compress
the generated variants to speed up program reduction. Perses [36] ensures that each reduction step
considers only syntactically valid variants to avoid futile effort on syntactically invalid variants,
and was later extended to specific domains [38, 47]. None of these reducers can handle bug isolation
across two dimensions: code and compilation passes. Existing DD is inefficient for today’s extensible
multi-layer compilation and can take up to 145 hours to isolate culprit compilation passes along with
the minimized IR program. DuoReduce achieves 14.6% more reduction with this dual-dimension
isolation.

Many delta debugging tools consider the underlying language features and apply various program
transformations to decompose an input program into fine-grained units [16]. Vulcan [42] applies
general code program transformations including identifier and subtree replacement. LPR [46]
combines LLMs and language-generic reduction tools to refine the results of program reduction. C-
Reduce [34] tackles this problem by leveraging domain-specific program transformations to reduce
C/C++ programs. DDSMT [33] serve as the domain-specific reducers for SMT-LIBv2. CHISEL [19]
uses reinforcement learning to select steps in ddmin that are more likely to satisfy the target oracle.
The MLIR and CIRCT projects also develop their own debugger utilities [14, 15]. DuoReduce is the
first to reason about compilation pass dependencies in tandem with IR code reduction.
J-Reduce [23], a domain-specific reducer for Java, performs code isolation by considering call

dependency and field access information among connected code components. DuoReduce’s
dependency-aware compilation path reduction is different from JReduce’s dependency-aware
code reduction. In DuoReduce, we determine whether one compilation pass requires the presence
of another compilation pass before proceeding with IR code isolation. In essence, DuoReduce is
a dual-dimension debugging over compilation pass and code isolation, while JReduce is a single-
dimension debugging over code isolation.
Multi-Layer Compiler Testing and Debugging.MLIR developers enable debugging with com-
piler users and developers with mlir-reduce and the Action framework [15]. Qingchao et al. [35]
present a systematic study of DL compiler bugs. Nikolaos et al. [30] develop a debugging and
repair tool on top of TVM for DL framework conversions. It works on DNN transformation and
detects faults introduced in model parameters and the model graph. None of these leverages the
information gained from the IR code to help the localization on the compilation pass dimension.
Multi-layer compiler testing, for example, testing for TVM [13] and MLIR, is a hot domain.

Compiler testing involves applying program transformation and mutation to generate test cases.
MLIRSmith [41] generates random MLIR programs. Unlike grammar-based fuzzers, it encodes
domain-specific constraints that are difficult to encode in CFG. Ma et al. [31] propose HirGen, which
generates computation graphs represented by IR for testing TVM. CLSmith [25] is a grammar-
based fuzzer for OpenCL. NNSmith [27] and Neuri [28] generate computation graphs for testing

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

DuoReduce: Bug Isolation for Multi-layer Extensible Compilation FSE030:19

deep learning compilers. Tzer [29] is a fuzzer for the TVM tensor compiler. Like DuoReduce, Tzer
mutates both the TVM IR and the compilation passes. However, Tzer does not consider dependencies
among passes. While the above work focuses on a test generation problem, DuoReduce targets a
debugging problem instead—test input reduction.

6 Conclusion
Multi-Level Intermediate Representation (MLIR) is increasingly gaining prominence in compiler
development in the domain of machine learning, high-performance computing, and embedded
systems. By serving as a bridge between high-level languages and low-level machine code, MLIR
facilitates optimizations across multiple layers of abstraction. Some MLIR compilers have over
200 compilation passes available. As of September 2024, the top 3 MLIR projects Triton, CIRCT,
and tensorflow-mlir have 258, 206, and 364 compilation passes available. Due to the complexity of
multi-pass compilation, debugging extensible compilers is challenging.

We presentDuoReduce, a novel dual-dimensional debugging approach designed for such extensi-
ble compiler development. Its innovation centers around handling dependencies among compilation
passes to streamline the debugging search space and utilizing MLIR program transformation to
further decompose the IR code into fine-granular units. Demonstrated through experiments on
three large MLIR projects, DuoReduce significantly outperforms all seven baselines. Compared
to Perses and Vulcan, it improves the IR reduction rate by 31.6% and 21.5% respectively. While
none of the baselines isolate culprit passes, DuoReduce achieves an estimated 901× speedup
with dependency-aware compilation pass reduction. The experiment results prove DuoReduce’s
effectiveness in debugging multi-layer extensible compilers, showing significant potential to reduce
the development cost of extensible optimizing compilers.

7 Data Availability
Per the open science policy, we make DuoReduce’s artifacts, benchmark programs, and datasets
available at https://doi.org/10.5281/zenodo.13751881.

8 Acknowledgement
We would like to thank the anonymous reviewers for their valuable feedback. We thank Yaoxuan
Wu for his kind help in picturing the algorithm for compilation path reduction. The participants
of this research are in part supported by NSF grants CNS 2106838, CCF 2106404, CCF 2426162,
CCF 2426161, Cisco gift funding, UCR Senate Awards, Amazon Science gift funding, and Samsung
contract.

References
[1] 2024. https://mlir.llvm.org/.
[2] 2024. https://circt.llvm.org/docs/PyCDE/basics/.
[3] 2024. https://github.com/llvm/llvm-project/issues/82382.
[4] 2024. https://mlir.llvm.org/docs/Tools/mlir-reduce/.
[5] 2024. https://github.com/llvm/circt/issues/6317.
[6] 2024. https://github.com/llvm/llvm-project/issues/56914.
[7] 2024. https://github.com/llvm/llvm-project/issues/64074.
[8] 2024. https://github.com/uw-pluverse/perses.
[9] 2024. https://github.com/llvm/circt/tree/main/test/circt-reduce.
[10] 2024. https://github.com/llvm/llvm-project/issues/64071.
[11] 2024. https://github.com/llvm/llvm-project/issues/76579.
[12] Nick Brown, Maurice Jamieson, Anton Lydike, Emilien Bauer, and Tobias Grosser. 2023. Fortran performance

optimisation and auto-parallelisation by leveraging MLIR-based domain specific abstractions in Flang. In Proceedings

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

 https://mlir.llvm.org/
https://circt.llvm.org/docs/PyCDE/basics/
https://github.com/llvm/llvm-project/issues/82382
 https://mlir.llvm.org/docs/Tools/mlir-reduce/
 https://github.com/llvm/circt/issues/6317
https://github.com/llvm/llvm-project/issues/56914
https://github.com/llvm/llvm-project/issues/64074
 https://github.com/uw-pluverse/perses
 https://github.com/llvm/circt/tree/main/test/circt-reduce
https://github.com/llvm/llvm-project/issues/64071
https://github.com/llvm/llvm-project/issues/76579

FSE030:20 Jiyuan Wang, Yuxin Qiu, Ben Limpanukorn, Hong Jin Kang, Qian Zhang, and Miryung Kim

of the SC’23 Workshops of The International Conference on High Performance Computing, Network, Storage, and
Analysis. 904–913.

[13] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, Leyuan Wang,
Yuwei Hu, Luis Ceze, et al. 2018. {TVM}: An automated {End-to-End} optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). 578–594.

[14] CIRCT Contributors. 2023. CIRCT: Circuit IR Compilers and Tools. https://github.com/llvm/circt
[15] LLVM Contributors. 2023. MLIR Language Reference. https://mlir.llvm.org/docs/LangRef/
[16] Alastair F Donaldson, Paul Thomson, Vasyl Teliman, Stefano Milizia, André Perez Maselco, and Antoni Karpiński. 2021.

Test-case reduction and deduplication almost for free with transformation-based compiler testing. In Proceedings of the
42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation. 1017–1032.

[17] Mathieu Fehr, Jeff Niu, River Riddle, Mehdi Amini, Zhendong Su, and Tobias Grosser. 2022. IRDL: an IR definition
language for SSA compilers. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. 199–212.

[18] Juliana Freire, D Koop, Emanuele Santos, Carlos Scheidegger, Cláudio Silva, and Vo Huy. 2011. The Architecture of
Open Source Applications. Vol. 1. Chapter LLVM.

[19] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective program debloating via reinforcement
learning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. 380–394.

[20] Renáta Hodován and Ákos Kiss. 2016. Modernizing hierarchical delta debugging. In Proceedings of the 7th International
Workshop on Automating Test Case Design, Selection, and Evaluation. 31–37.

[21] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2017. Coarse hierarchical delta debugging. In 2017 IEEE international
conference on software maintenance and evolution (ICSME). IEEE, 194–203.

[22] Tian Jin, Gheorghe-Teodor Bercea, Tung D Le, Tong Chen, Gong Su, Haruki Imai, Yasushi Negishi, Anh Leu, Kevin
O’Brien, Kiyokuni Kawachiya, et al. 2020. Compiling onnx neural network models using mlir. arXiv preprint
arXiv:2008.08272 (2020).

[23] Christian Gram Kalhauge and Jens Palsberg. 2019. Binary reduction of dependency graphs. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 556–566.

[24] Ákos Kiss, Renáta Hodován, and Tibor Gyimóthy. 2018. HDDr: a recursive variant of the hierarchical delta debug-
ging algorithm. In Proceedings of the 9th ACM SIGSOFT International Workshop on Automating TEST Case Design,
Selection, and Evaluation. 16–22.

[25] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F Donaldson. 2015. Many-core compiler fuzzing.
ACM SIGPLAN Notices 50, 6 (2015), 65–76.

[26] Ben Limpanukorn, Jiyuan Wang, Hong Jin Kang, Eric Zitong Zhou, and Miryung Kim. 2024. Fuzzing MLIR by
Synthesizing Custom Mutations. arXiv preprint arXiv:2404.16947 (2024).

[27] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and Lingming Zhang. 2023. Nnsmith:
Generating diverse and valid test cases for deep learning compilers. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2. 530–543.

[28] Jiawei Liu, Jinjun Peng, Yuyao Wang, and Lingming Zhang. 2023. Neuri: Diversifying dnn generation via inductive
rule inference. In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 657–669.

[29] Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang. 2022. Coverage-guided tensor compiler fuzzing
with joint ir-pass mutation. Proceedings of the ACM on Programming Languages 6, OOPSLA1 (2022), 1–26.

[30] Nikolaos Louloudakis, Perry Gibson, José Cano, and Ajitha Rajan. 2023. Fault Localization for Buggy Deep Learning
Framework Conversions in Image Recognition. In 2023 38th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 1795–1799.

[31] Haoyang Ma, Qingchao Shen, Yongqiang Tian, Junjie Chen, and Shing-Chi Cheung. 2023. Fuzzing deep learning
compilers with hirgen. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis. 248–260.

[32] GhassanMisherghi and Zhendong Su. 2006. HDD: hierarchical delta debugging. In Proceedings of the 28th international
conference on Software engineering. 142–151.

[33] Aina Niemetz and Armin Biere. 2013. ddSMT: a delta debugger for the SMT-LIB v2 format. In Proceedings of the 11th
International Workshop on Satisfiability Modulo Theories, SMT. 8–9.

[34] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun Yang. 2012. Test-case reduction
for C compiler bugs. In Proceedings of the 33rd ACM SIGPLAN conference on Programming Language Design and
Implementation. 335–346.

[35] Qingchao Shen, HaoyangMa, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung, and Xiang Chen. 2021. A comprehensive
study of deep learning compiler bugs. In Proceedings of the 29th ACM Joint meeting on european software engineering

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

https://github.com/llvm/circt
https://mlir.llvm.org/docs/LangRef/

DuoReduce: Bug Isolation for Multi-layer Extensible Compilation FSE030:21

conference and symposium on the foundations of software engineering. 968–980.
[36] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018. Perses: Syntax-guided program

reduction. In Proceedings of the 40th International Conference on Software Engineering. 361–371.
[37] Yongqiang Tian, Xueyan Zhang, Yiwen Dong, Zhenyang Xu, Mengxiao Zhang, Yu Jiang, Shing-Chi Cheung, and

Chengnian Sun. 2023. On the Caching Schemes to Speed Up Program Reduction. ACM Transactions on Software
Engineering and Methodology 33, 1 (2023), 1–30.

[38] Yongqiang Tian, Xueyan Zhang, Yiwen Dong, Zhenyang Xu, Mengxiao Zhang, Yu Jiang, Shing-Chi Cheung, and
Chengnian Sun. 2023. On the Caching Schemes to Speed Up Program Reduction. ACM Transactions on Software
Engineering and Methodology 33, 1 (2023), 1–30.

[39] Philippe Tillet, Hsiang-Tsung Kung, and David Cox. 2019. Triton: an intermediate language and compiler for tiled
neural network computations. In Proceedings of the 3rd ACM SIGPLAN InternationalWorkshop onMachine Learning
and Programming Languages. 10–19.

[40] Guancheng Wang, Ruobing Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang. 2021. Probabilistic delta debugging. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 881–892.

[41] H. Wang, J. Chen, C. Xie, S. Liu, Z. Wang, Q. Shen, and Y. Zhao. 2023. MLIRSmith: Random Program Generation
for Fuzzing MLIR Compiler Infrastructure. In 2023 38th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE Computer Society, Los Alamitos, CA, USA, 1555–1566. https://doi.org/10.1109/ASE56229.
2023.00120

[42] Zhenyang Xu, Yongqiang Tian, Mengxiao Zhang, Gaosen Zhao, Yu Jiang, and Chengnian Sun. 2023. Pushing the
limit of 1-minimality of language-agnostic program reduction. Proceedings of the ACM on Programming Languages
7, OOPSLA1 (2023), 636–664.

[43] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why? ACM SIGSOFT Software engineering
notes 24, 6 (1999), 253–267.

[44] Andreas Zeller. 2002. Isolating Cause-Effect Chains fromComputer Programs. In Proceedings of the 10thACMSIGSOFT
Symposium on Foundations of Software Engineering (Charleston, South Carolina, USA) (SIGSOFT ’02/FSE-10). Asso-
ciation for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/587051.587053

[45] A. Zeller and R. Hildebrandt. 2002. Simplifying and isolating failure-inducing input. IEEE Transactions on Software
Engineering 28, 2 (2002), 183–200. https://doi.org/10.1109/32.988498

[46] Mengxiao Zhang, Yongqiang Tian, Zhenyang Xu, Yiwen Dong, Shin Hwei Tan, and Chengnian Sun. 2024. LPR: Large
Language Models-Aided Program Reduction. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis.

[47] Mengxiao Zhang, Zhenyang Xu, Yongqiang Tian, Yu Jiang, and Chengnian Sun. 2023. PPR: Pairwise Program Reduction.
In Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 338–349.

Received 2024-09-12; accepted 2025-01-14

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE030. Publication date: July 2025.

https://doi.org/10.1109/ASE56229.2023.00120
https://doi.org/10.1109/ASE56229.2023.00120
https://doi.org/10.1145/587051.587053
https://doi.org/10.1109/32.988498

	Abstract
	1 Introduction
	2 Background
	2.1 Multi-Level Intermediate Representation
	2.2 Motivating Example

	3 Approach
	3.1 Dependency-Aware Compilation Path Reduction
	3.2 Transformation-Based Code Reduction
	3.3 IR-Path Dual-Dimensional Reduction
	3.4 Overall Time Complexity

	4 Evaluation
	4.1 Experiment Design
	4.2 RQ1: Effectiveness of MLIR Code Transformations
	4.3 RQ2: Effectiveness of Dual-Dimensional Reduction
	4.4 RQ3: Effectiveness of Compilation Pass Dependence-Aware Reduction

	5 Related Work
	6 Conclusion
	7 Data Availability
	8 Acknowledgement
	References

