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Abstract. Previous research has shown that refactoring code clones as
soon as they are formed or discovered is not always feasible or worth-
while to perform, since some clones never change during evolution and
some disappear in a short amount of time, while some undergo repetitive
similar edits over their long lifetime.

Toward a long-term goal of developing a recommendation system that
selectively identifies clones to refactor, as a first step, we conducted an
empirical investigation into the characteristics of long-lived clones. Our
study of 13558 clone genealogies from 7 large open source projects, over
the history of 33.25 years in total, found surprising results. The size of
a clone, the number of clones in the same group, and the method-level
distribution of clones are not strongly correlated with the survival time
of clones. However, the number of developers who modified clones and
the time since the last addition or removal of a clone to its group are
highly correlated with the survival time of clones. This result indicates
that the evolutionary characteristics of clones may be a better indicator
for refactoring needs than static or spatial characteristics such as LOC,
the number of clones in the same group, or the dispersion of clones in a
system.
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1 Introduction

Code clones are code fragments similar to one another in syntax and semantics.
Existing research on code cloning indicates that a significantly large portion
of software (e.g. gcc-8.7% [9], JDK-29% [14], Linux-22.7% [27], etc.) contains
code duplicates created by copy and paste programming practices. Though code
cloning helps developers to reuse existing design and implementation, it could
incur a significant maintenance cost because programmers need to apply repet-
itive edits when the common logic among clones changes. Neglecting to update
clones consistently may introduce a bug.

Refactoring is defined as a disciplined technique for restructuring existing
software systems, altering a program’s internal structure without changing its
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external behavior [10]. Because refactoring is considered a key to keeping source
code easier to understand, modify, and extend, previous research effort has fo-
cused on automatically identifying clones [15,4,2,21,13].

However, recent studies on code clones [7,18-20, 26| indicated that cloning
is not necessarily harmful and that refactoring may not be always applicable to
or beneficial for clones. In particular, our previous study of clone evolution [20]
found that (1) some clones never change during evolution, (2) some clones disap-
pear after staying in a system for only a short amount of time due to divergent
changes, and (3) some clones stay in a system for a long time and undergo con-
sistent updates repetitively, indicating a high potential return for the refactoring
investment. These findings imply that it is crucial to selectively identify clones
to refactor.

We hypothesize that the benefit of clone removal may depend on how long
clones survive in the system and how often they require similar edits over their
lifetime. Toward a long-term goal of developing a system that recommends clones
to refactor, as a first step, we conducted an empirical investigation into the char-
acteristics of long-surviving clones. Based on our prior work on clone genealo-
gies—an automatically extracted history of clone evolution from a sequence of
program versions [20]—we first studied various factors that may influence a
clone’s survival time, such as the number of clones in the same group, the num-
ber of consistent updates to clones in the past, the degree of clone dispersion
in a system, etc. In total, we extracted 34 attributes from a clone genealogy
and investigated correlation between each attribute and a clone’s survival time
in terms of the number of days before disappearance from a system. Our study
found several surprising results. The more developers maintain code clones, the
longer the clones survive in a system. The longer it has been since the time of
the last addition or deletion of a clone to its clone group, the longer the clones
survive in a system. On the other hand, a clone’s survival time did not have much
correlation with the size of clones, the number of clones in the same group, and
the number of methods that the clones are located in.

For each subject, we developed a decision-tree based model that predicts a
clone survival time based on its characteristics. The model’s precision ranges
from 58.1% to 79.4% and the recall measure ranges from 58.8% to 79.3%. This
result shows promise in developing a refactoring recommendation system that
selects long-lived clones.

The rest of this paper is organized as follows. Section 2 describes related
work. Section 3 gives background of our previous clone genealogy research and
Section 4 describes the characteristics of clone genealogy data and the subject
programs that we studied. Section 5 describes correlation analysis results and
Section 6 presents construction and evaluation of decision tree-based prediction
models. Section 7 discusses threats to validity, and Section 8 summarizes our
contributions.



2 Related Work

This section describes tool support for identifying refactoring opportunities, em-
pirical studies of code cloning, and clone evolution analysis.

Identification of Refactoring Opportunities. Higo et al. [13] propose Aries
to identify refactoring candidates based on the number of assigned variables, the
number of referred variables, and clone dispersion in the class hierarchy. Aries
suggests two types of refactorings, extract method and pull-up method [10]. A
refactoring can be suggested if the clone metrics satisfy certain predefined val-
ues. Komondoor’s technique [22] extracts non-contiguous lines of clones into a
procedure that can then be refactored by applying an extract method refactoring.
Koni-N’Sapu [23] provides refactoring suggestions based on the location of clones
with respect to a system’s class hierarchy. Balazinska et al. [2] suggest clone
refactoring opportunities based on the differences between the cloned methods
and the context of attributes, methods, and classes containing clones. Breakaway
[8] automatically identifies detailed structural correspondences between two ab-
stract syntax trees to help programmers generalize two pieces of similar code.
Several techniques [35,34, 33,11, 28] automatically identify bad-smells that in-
dicate refactoring needs. For example, Tsantalis and Chatzigeorgiou’s technique
identifies extract method refactoring opportunities using static slicing. Our work
is different from these refactoring opportunity identification techniques in that
it uses clone ewvolution history to predict how long clones are likely to survive in
a system.

Studies about Cloning Practice. Cordy [7] notes that cloning is a common
method of risk minimization used by financial institutions because modifying
an abstraction can introduce the risk of breaking existing code. Fixing a shared
abstraction is costly and time consuming as it requires any dependent code to
be extensively tested. On the other hand, clones increase the degrees of freedom
in maintaining each new application or module. Cordy noted that propagating
bug fixes to clones is not always a desired practice because the risk of changing
an already properly working module is too high.

Godfrey et al. [12] conducted a preliminary investigation of cloning in Linux
SCSI drivers and found that super-linear growth in Linux is largely caused by
cloning of drivers. Kapser and Godfrey [18] further studied cloning practices in
several open source projects and found that clones are not necessarily harmful.
Developers create new features by starting from existing similar ones, as this
cloning practice permits the use of stable, already tested code. While interview-
ing and surveying developers about how they develop software, LaToza et al. [26]
uncovered six patterns of why programmers create clones: repeated work, exam-
ple, scattering, fork, branch, and language. For each pattern, less than half of the
developers interviewed thought that the cloning pattern was a problem. LaToza
et al.’s study confirms that most cloning is unlikely to be created with ill inten-
tions. Rajapakse et al. [30] found that reducing duplication in a web application
had negative effects on the extensibility of an application. After significantly re-
ducing the size of the source code, a single change often required testing a vastly
larger portion of the system. Avoiding clones during initial development could



contribute to a significant overhead. These studies indicate that not all clones
are harmful and it is important to selectively identify clones to refactor.

Clone Evolution Analysis. While our study uses the evolutionary character-
istics captured by the clone genealogy model [20], the following clone evolution
analyses could serve as a basis for generating clone evolution data. The evolu-
tion of code clones was analyzed for the first time by Lagué et al. [25]. Aversano
et al. [1] refined our clone genealogy model [20] by further categorizing the In-
consistent Change pattern into the Independent Evolution pattern and the Late
Propagation pattern. Krinke [24] also extended our clone genealogy analysis and
independently studied clone evolution patterns. Balint et al. [3] developed a vi-
sualization tool to show who created and modified code clones, the time of the
modifications, the location of clones in the system, and the size of code clones.

Classification of Code Clones. Bellon et al. categorized clones into Type 1
(an exact copy without modifications), Type 2 (a syntactically identical copy)
and Type 3 (a copy with further modifications, e.g., addition and deletion of
statements) in order to distinguish the kinds of clones that can be detected by
existing clone detectors [5]. Kapser and Godfrey [17,16] taxonomized clones to
increase the user comprehension of code duplication and to filter false positives
in clone detection results. Several attributes of a clone genealogy in Section 4 are
motivated by Kapser and Godfrey’s region and location based clone filtering cri-
teria. Our work is different from these projects by identifying the characteristics
of long-lived clones.

3 Background on Clone Genealogy and Data Set
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Fig. 1. Example clone genealogies: G1 (above) and G2 (below)



A clone genealogy describes how groups of code clones change over multiple
versions of the program. A clone group is a set of clones considered equivalent
according to a clone detector. For example, clone A and B belong to the same
group in version ¢ because a clone detector finds them equivalent. In a clone’s
genealogy, a group to which the clone belongs is traced to its origin clone group
in the previous version. The model associates related clone groups that have
originated from the same ancestor group. In addition, the genealogy contains
information about how each element in a group of clones changed with respect
to other elements in the same group. The detail description on the clone geneal-
ogy representation is described elsewhere [20]. The following evolution patterns
describe all possible changes in a clone group.

Same: all code snippets in the new version’s clone group did not change from
the old version’s clone group.

Add: at least one code snippet is newly added to the clone group.

Subtract: at least one code snippet in the old version’s clone group does
not appear in the corresponding clone group in the new version.

Consistent Change: all code snippets in the old version’s clone group have
changed consistently; thus, they all belong to the new clone group.

Inconsistent Change: at least one code snippet in the old version’s clone
group changed inconsistently; thus, it no longer belongs to the same group in
the new version.

Shift: at least one code snippet in the new clone group partially overlaps
with at least one code snippet in the original clone group.

A clone lineage is a directed acyclic graph that describes the evolution history
of a sink node (clone group). A clone group in the k* version is connected to a
clone group in the k — 1** version by an evolution pattern. For example, Figure 1
shows a clone lineage following the sequence of Add, Same, Consistent Change,
Consistent Change, and Inconsistent Change. In the figure, code snippets
with the similar content are filled with the same shade.

A clone genealogy is a set of clone lineages that have originated from the
same clone group. A clone genealogy is a connected component where every
clone group is connected by at least one evolution pattern. A clone genealogy
approximates how programmers create, propagate, and evolve code clones.

Clone genealogies are classified into two groups: dead genealogies that do
not include clone groups of the final version and alive genealogies that include
clone groups of the final version. We differentiate a dead genealogy from an alive
genealogy because only dead genealogies provide information about how long
clones stayed in the system before they disappeared. On the other hand, for an
alive genealogy, we cannot tell how long its clones will survive because they are
still evolving. In Figure 1, G1 is a dead genealogy with the age 5, and G2 is an
alive genealogy with the age 4. Dead genealogies are essentially genealogies that
disappeared because clones were either refactored, because they were deleted by
a programmer, or because they are no longer considered as clones by a clone
detector due to divergent changes to the clones.



To extract clone evolution histories with respect to this model, our clone

genealogy extractor (CGE) takes a sequence of program versions as input and
uses CCFinder [15] to find clones in each version. It then relates clones between
consecutive versions based on a textual similarity computed by CCFinder and
a location overlapping score computed by diff, a line-level program differencing
tool. Basically, if the similarity between a clone of version i and a clone of a
version i + 1 is greater than a similarity threshold, simyy,, their container clone
groups are mapped.
Data sets. For our study, we extracted clone genealogy data from seven projects:
Eclipse JDT core, jEdit, HtmlUnit, JFreeChart, Hadoop.common, Hadoop.pig,
and Columba. Table 1 summarizes the size of subject programs and the number
of studied versions. We constructed genealogies at a temporal granularity of
releases instead of check-ins because our goal is not to understand fine-grained
evolution patterns but to correlate clones’ characteristics with a survival time.
In total, we studied 7 large projects of over 100KLOC, in total 33.25 years of
release history. Table 2 summarizes the number of dead and alive genealogies. In
our analysis, we removed dead genealogies of age 0, because they do not provide
much meaningful information about evolutionary characteristics.

Table 1. Description of Java subject programs

project |URL LOC duration |# of check-ins|# of versions
Columba  |http://sourceforge.net/projects/columba|80448 ~ 194031 |42 months 420 420
Eclipse http://www.eclipse.org 216813 ~ 424210(92 months 13790 21
common |http://hadoop.apache.org/common 226643 ~ 315586|14 months 410 18

pig http://hadoop.apache.org/pig 46949 ~ 302316 |33 months 906 8
HtmlUnit |http://htmlunit.sourceforge.net 35248 ~ 279982 |94 months 5850 22

jEdit http://www.jedit.org 84318 ~ 174767 |91 months 3537 26
JFreeChart|http://www.jfree.org/jfreechart 284269 ~ 316954|33 months 916 7

Table 2. Clone genealogies (minioren=40, sim, = 0.8)

# of genealogies Columba | Eclipse | common |pig | HtmlUnit | jEdit | JFreeChart
Total 556 3190 3094|3302 1029 654 1733
Alive genealogies 452 1257 627 2474 500 232 1495
Dead genealogies 104 1933 2467 828 529 422 238
# of dead genealogies with age>0 102 1826 455 422 425 245 219

4 Encoding Clone Genealogy Characteristics

To study the characteristics of long-lived clones, we encode a clone genealogy
into a feature vector, which consists of a set of attributes. When measuring
spatial characteristics of clones, we use information from the last version of a
genealogy. For example, to measure the average size of clones in Genealogy G1 in
Figure 1, we use the average size of clone A and C' in the genealogy’s last version,
Vits. This section introduces each attribute and the rationale of choosing the
attribute.

The number of clones in each group and the average size of a clone. The
more clones exist in each clone group and the larger the size of each clone, it
may require more effort for a developer to remove those clones, contributing to



a longer survival time.

ap: the total LOC (lines of code) of clones in a genealogy

a1: the number of clones in each group

as: the average size of a clone in terms of LOC
Addition. Addition of new clones to a genealogy could imply that the clones
are still volatile, or that it is becoming hard to maintain the system without
introducing new clones, indicating potential refactoring needs.

as: the number of Add evolution patterns

ay: the relative timing of the last Add pattern with respect to the age of a genealogy
Consistent update. If clones require similar edits repetitively over their lifetime,
removal of those clones could provide higher maintenance cost-savings than re-
moving unchanged clones.

as: the number of Consistent Change patterns

ag: the relative timing of the last Consistent Change pattern with respect to the age
of a genealogy
Subtraction. A Subtract pattern may indicate a programmer removed only a
subset of existing clones.

a7: the number of Subtract patterns

ag: the relative timing of the last Subtract pattern with respect to the age of a
genealogy
Inconsistent update. An Inconsistent Change pattern may indicate that the
programmer forgot to update clones consistently, and thus a programmer may
prefer to refactor such clones early to prevent inconsistent updates in the future.

ag: the number of Inconsistent Change patterns

a1o: the relative timing of the last Inconsistent Change pattern with respect to the
age of a genealogy
File modification. If a file containing clones was modified frequently, it may
indicate that those clones are likely to be removed early.

a11: the number of times that files containing clones were modified.
Developers. The more developers are involved in maintaining clones, it may be
harder to refactor the clones.

a12: the number of developers involved in maintaining clones.

a13: the distribution of file modifications in terms of developers.
If the following entropy measure—a well-known measure of uncertainty [31]—is
low, that means only a few developers make most of the modifications. If the
entropy is high, all developers equally contribute to the modifications. The en-
tropy measure is defined as follows: entropy = Y1 | —plog(p;), where p; is the
probability of a file modification belonging to author ¢, when n unique authors
maintain the file.
Dispersion. The farther clones are located from one another, the harder it is to
find and refactor them. Inspired by Kapser and Godfrey’s clone taxonomy [17],
we count the number of unique methods, classes, files, packages, and directories
the clones are located. Table 3 shows that most clones are located within the
same class or package, only 4.0% to 29.5% of clones are located within the same
method, and only 2.8% to 31.1% clones are scattered across different directories.



We also used an entropy measure to characterize the physical distribution of
clones at a different level (method, class, file, package, and directory respectively)
by defining p; to be the probability of clones located in location i. For example,
in Figure 2, the dispersion entropy at a method level is 1.5, the entropy at a
file level is 0.81, and the entropy at a package level is 0. If the entropy is low,
clones are concentrated in only a few locations. If the entropy is high, clones are
equally dispersed across different locations.

Package A

File A(Tree java) File B(Forest java)

Tree
ublic void add(){ Forest
A public void add(){
J HITI

Leaf
public yoid add(){
I

rrrrr

Fig. 2. Example physical distribution of code clones

a14: Dispersion of clones into five nominal labels: 'within the same method’, 'within
the same class’, 'within the same file’, 'within the same package’, and 'across multiple
directories.’

a15: The number of unique methods that clones in the /ast version are located.

a16: The distribution of clones in the /ast version at a method level according to the
entropy measure.

a17: The number of unique methods that clones in all versions are located.

a1g: The distribution of clones in all versions at a method level according to the entropy
measure.
We then created similar attributes at the level of class (a1g to asz), file (as3 to
asg), package (ag7 to agg), and directory (asy to asy) by replicating attributes
(CL15 to alg).
Clone survival time (class label). The last attribute ags is the age of a genealogy
in terms of the number of days.

ass: the age of a genealogy in terms of the number of days
In the next section, we conduct a correlation analysis between each of the 34
attributes (a; to as4) with a clone survival time (ass).

5 Characteristics of Long-Lived Clones

To understand the characteristics of long-lived clones, we measured Pearson’s
correlation coefficient between each attribute and a clone genealogy survival
time [32]. In our analysis, we used only dead genealogies, because alive genealo-
gies are still evolving and thus cannot be used to predict how long clones would



Table 3. Characteristics of studied clones

Columba |Eclipse |common|pig HtmlUnit [jEdit |JFreeChart

Age Average age (days) [538.6 435.1 [72.49 [136.6 [292.8 640.9 [229.0
Min 1.1 68.7 34.0 30.0 [6.9 13.3 |11.1
Max 1222.2 2010.0 [585.0 536.9 [2122.4 2281.7/415.0
# of clones Average 3.38 3.37 3.67 4.54 (4.43 4.10 [3.26
in each group [Min 2 2 2 2 2 2 2
Max 21 112 53 115 62 120 |42
Size (LOC) |Average clone size [12.97 18.59 [16.22 |14.38 [14.34 12.10 [15.77
Min 2 3 3 3 3 4 4
Max 38.5 343.4 79 70 92 60 75
Dispersion % clones in the|27.5% 29.5% [13.4% [12.8%(|4% 24.5%(22.8%

same method
% clones in the[61.8% 60.6% [32.5% [49.1%[44.9% 75.9%(31.5%
same class
% clones in the[61.8% 61.0% [48.8% [49.5%(45.2% 75.9%(31.5%
same file
% clones in the[80.4% 83.5% [71.4% [94.1%(87.3% 90.6%(58.9%
same package
% clones in the[87.3% 83.9% |75.4% 197.2%|88.5% 93.9%(68.9%
same directory

survive before they disappear. Table 4 shows the result of top 5 and bottom 5
attributes in terms of correlation strength.

The result indicates the more developers maintained clones, the longer the
survival time of a clone genealogy (al2). The more uniformly developers con-
tribute to maintaining clones, the longer time it takes for the clones to be re-
moved (al3). The longer it has been since the last addition or deletion of a clone,
the longer it takes for them to be removed (a4 and a8). On the other hand, the
size of clones (LOC), the number of clones in each group, and the physical dis-
persion of clones do not affect a clone survival time much (a0, al, a31, and a32).
This implies that the size and the number of clones do not play much role in
estimating a clone survival time; however, it may be harder to remove those
clones changed by a large number of developers.

Table 4. Correlation analysis results

All Columba [JDT common |pig HtmlUnit |jEdit JFreeChart

a13(0.553)|az27(0.366) |a13(0.632)|as (0.568) |a13(0.494)|a13(0.674) |a12(0.385)|ag(0.443)
a12(0.528)|a20(0.353) |a12(0.601)|a4(0.563) |a12(0.474)|as(0.647) |a20(0.358)|a12(0.446)
Top 5 |ag(0.481) |a2s(0.351)|a4(0.562) |a10(0.466)|a4(0.302) |as(0.637) |ass(0.358)|a11(0.438)
a4(0.479) a21(0.307) ag(0.561) a7(0.456) ag(0.287) a12(0.628) a21(0.356) a5(0.415)
a11(0.458) a25(0.300) a11(0.493 (l3(0.448) a10(0.247 a7(0.551) a13(0.347) a10(0.294)

) )
a31(0.023) a15(0.031) a23(0.015) (118(0.048) a24(0.008) a32(0,051) (115(0.066) a1(0.041)
a32(0.018)|a15(0.027) |ass(0.013) |a17(0.046) |a20(0.006) a0 (0.043)  |ag(0.047) |a17(0.021)
Bot. 5[a1(0.016) |ao(0.027) |a24(0.009)|as2(0.026)|ass(0.004)|ass(0.040) |a16(0.039)|as2(0.016)
a17(0.014) a10(0.011) a19(0.009) CL24(0.021) a21(0.004) a21(0.036) a0(0.036) a18(0.006)
ao(O‘OOQ) a16(0.007) a20(0.005) a31(0.012) a26(0.001) a1(0.014) a1(0.003) a21(0‘006)

For example, a clone genealogy id 1317 from Eclipse JDT disappeared in
revision 13992 after surviving more than 813 days. We found that the clones
were modified over 83 times by 10 different developers and were finally removed
when fixing bug id 172633. As another example, we found a clone genealogy that



contained 45 clones modified by 6 different developers in 20 different revisions,
which survived 898 days before being removed.

6 Predicting the Survival Time of Clones

This section describes a decision-tree based model that predicts how long clones
are likely to stay in a system. When building a training data set, we catego-
rized a clone survival time into five categories: very short-lived, short-lived,
normal, long-lived, and very long-lived. It is very important to find an un-
biased binning scheme that converts the number of days a clone survived into a
nominal label. If a binning scheme is chosen so that most vectors in the train-
ing data are put into a single bin, then the resulting prediction model is highly
accurate by predicting always the same label. However, it is not useful because
it cannot distinguish the survival time of clones.

To find an unbiased binning scheme, we explored two binning methods to
convert a clone survival time into five categories. The first scheme is to gradually
increase the size of a bin such that the bin size is larger than the preceding bin
size: bin; = bin;—1 + 0.5 x (i + 1) x x, where x is the size of the first bin. For
example, when x is 50, the binning scheme is { [0,50), [50, 125), [125, 225), [225,
350), [350, 0o) }. The second scheme is to uniformly assign a bin size to x. For
both schemes, we varied the size of the first bin x to be 30, 40, 50, 60 and 70
and computed the entropy measure to assess distribution of the training data set
across those bins. If the training feature vectors are equally distributed across
five bins, the entropy should be 2.3219 (= —log, %) If all vectors are localized in
a single bin, the entropy will be 0. For each subject program, we then selected a
binning scheme with the highest entropy score, which will distribute the training
set as uniformly as possible across the five bins. Figure 5 shows the entropy score
for different binning schemes. After selecting a binning scheme with the highest
entropy score, the training data set is distributed across the selected bins as
shown in Table 6.

Table 5. Entropy measures for various binning schemes

project entropy in incremental scheme entropy in uniform scheme

x value 30 40 50 60 70 30 40 50 60 70

Columba 1.797 [1.954 [1.796 [1.860 [1.955 [1.256 [1.474 [1.769 [1.958 [1.945
Eclipse® 1.101 [1.496 |1.804 |[1.534 (1.919 |0.642 [0.659 [1.092 [1.365 [1.755
common 1.229 [1.367 [1.353 [1.274 [1.235 [1.201 [1.330 [1.352 [1.360 [1.331
pig 1.979 [2.201 [2.061 [2.040 [1.826 [1.512 [2.106 [2.139 [2.172 [2.067
HtmlUnit 2.009 [1.943 [1.662 [2.157 [2.036 [1.724 [1.945 [2.009 [2.065 [2.102
jEdit 1.085 1.454 1.544 1.735 1.843 ]0.604 [0.821 1.136 1.465 1.473
JFreeChart 1.654 [1.535 [1.882 [1.535 [1.339 [0.846 [0.728 [0.769 [1.535 [1.535

1 For Eclipse JDT, we tried additional x values (80, 90, 100). For the incremental binning scheme,
entropy = 2.227, 2.264, and 1.970 respectively, while using an uniform scheme, entropy = 1.823,
1.543, and 1.784.

We built prediction models using five different classifiers in the Weka toolkit
(K Nearest Neighbor, J48, Naive Bayes, Bayes Network and Random Forest)



Table 6. Categorization of feature vectors based on a selected binning scheme

project |# of [survival time |# of genealogies for each category
vectors|(days)
Columba (102 1.1 ~ 1222.2 0,60):18, [60,120):8, [120,180):9, [180,240):16, [240+):51
Eclipse 1826  |68.7 ~ 2010.0 {[0,90):204, [90 225) 423, [225,405):340, [405,630):510, [630+):349
common  |455 34.0 ~ 585.0 0,40):324, [40,100):66, [100,180):16, [180,280):33, [280+):16
pig 422 30.0 ~ 536.9 0,40):131, [40,100):91, [100,180):97, [180,280):31, [280+):72

):

):22

HtmlUnit 425 [6.9 ~ 21224 |[0,60):125, [60,150):119, [150,270):63, [270,420):24, [420+):94
[Edit 245 [13.3 ~ 2281.7 |[0,70):22, [70,175):31, [175,315):31, [315,490):22, [490+):139
TFreeChart219 111~ 415.0 |[0.50):37, [50.125):2, [125,225):104, [225,350):38, [350-+):38

L [n,m):k means there are k number of vectors whose survival time lie in between n to m days.

on these data sets. The J48 decision tree-based classifier [29] combined with the
bagging method [6] performed the best among these classifiers in terms of overall
accuracy. J48 is an implementation of Quinlan’s decision tree learner C4.5 [29]
based on information entropy. At each node of the tree, it chooses an attribute
that most effectively splits the data set into subsets. The attribute that results
in the highest normalized information gain (difference in entropy) is used to split
the data. Bagging is a bootstrapping method, proposed by L. Breiman [6] that
generates multiple versions of a predictor and aggregates these predictors into
a new predictor. Since our class label is nominal, the resulting predictor uses a
voting scheme to produce a new class label. Figure 4 shows a J48 decision tree for
Eclipse JDT core. This model considers factors such as the number of developers
who modified clones and the dispersion of clones in a system to predict how long
the clones are likely to survive in a system.

a;:  The number of add evolution patterns.

a;;: The number of times that files containing clones were modified.

a;,: The number of developers involved in maintaining clones.

a,;: The number of unique methods that clones in the last version are located.

Project Precision|Recall
Columba 58.1% | 58.8%
Eclipse JDT core| 79.4% [79.3%
Hadoop.common | 74.5% |78.0%
Hadoop.pig 79.1% | 79.1%
HtmlUnit 73.3% 73.6%
JEdit 62.0% 65.7%
JFreeChart 68.2% |70.3%
[ Total [ 75.7% [765%]
Fig. 3. An excerpt of a resulting decision tree for Eclipse
JDT core Fig. 4. Prediction model

We use 10-fold cross validation to evaluate the prediction model based on two
n TP; t
measures: (1) a weighted average precision, %ﬁpx and (2) a weighted

i=1"

average recall, Z - , when T'P; is the number of correct predictions of each
i=1"



class label i, F'P; is the number of incorrect predictions of 4, and ¢; is the total
number of vectors with a class label ¢ in the training data set. Table 6 summarizes
the weighted average precision and recall measures for each project. Our precision
ranges from 58.1% to 79.4%, and our recall ranges from 58.8% to 79.3%. This
result shows promise in using the attributes extracted from clone evolution data
to predict a clone survival time.

7 Limitations

Our clone genealogy extractor (CGE) uses CCFinder to detect code clones and to
map clones across versions [15]. CCFinder is a token-based clone detection tech-
nique that transforms tokens of a program according to a language-specific rule
and performs a token-by-token comparison. CCFinder is recognized as a state
of the art clone detector that handles industrial size programs; it is reported
to produce higher recall although its precision is lower than some other tools.
CCFinder does not detect non-contiguous clones and it is sensitive to reordering
statements. This limitation leads to CGE’s limitation in extracting clone geneal-
ogy data. If a programmer consistently modified an old clone group OG to create
a new clone group NG, CCFinder does not find a cloning relationship between
OG and NG if they do not share a contiguous token string greater than the size
of simy,=(|OG text| + |NG.text|)/2. The absence of a cloning relationship can
be mistakenly interpreted as a discontinuation of a lineage. Furthermore, CGE
incorrectly counts the number of consistent change patterns in some cases, be-
cause CCFinder detects only a contiguous token string as a clone. For example,
when code is inserted in the middle of one clone in a clone group, the existing
clone group is broken into two new clone groups with shorter contiguous text,
causing identification of two consistent patterns rather than one inconsistent
change pattern. Similarly when the statements in a clone are reordered, such
clones could be considered as removed because CCFinder may not be able to
detect those clones.

We set the minimum token threshold of CCFinder to be 40 tokens and the
similarity threshold simy for associating clones between consecutive versions as
0.8. Thus, we considered only the clones that are at least 40 tokens long and
could map clones across versions only when the old and new clones are at least
80% similar according to CCFinder’s equivalence criteria.

We extracted clone genealogies at a temporal granularity of major releases
because CGE could not handle more than 1000 program versions as input. Study-
ing clone evolution data at a finer temporal granularity such as check-in snap-
shots may provide more accurate evolutionary characteristics of long-lived clones.
When studying the characteristics of clones, we did not consider the dispersion
of clones in a class hierarchy or the refatorability of clones. Further investigation
of such characteristics remains as future work.



8 Conclusions

Previous studies on code cloning indicate that clones are not necessarily harmful
and that refactoring may not be always applicable to clones or be even beneficial
for them. As a first step toward selectively identifying clones to refactor, we
conducted an empirical investigation into the characteristics of long-lived clones.
Based on our prior work on clone genealogy extraction, we developed a method
that takes a clone genealogy as input and generates a feature vector to encode its
characteristics. By feeding the feature vectors to decision-tree based classification
algorithms, we developed models that predict a clone survival time. The study
found that the size of a clone, the number of clones in the same group, and
the method-level distribution of clones are not strongly correlated with a clone
survival time. However, the number of developers who modified clones and the
time since the last addition or removal of a clone to its group are highly correlated
with the survival time of clones. The survival time prediction model has 75.7%
precision and 76.5% recall, showing promise in selectively identifying clones to
remove.
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