
Co-dependence Aware Fuzzing for Dataflow-Based Big Data
Analytics

Ahmad Humayun
ahmad35@vt.edu
Virginia Tech

Blacksburg, Virginia, USA

Miryung Kim
miryung@cs.ucla.edu

University of California, Los Angeles
Los Angeles, California, USA

Muhammad Ali Gulzar
gulzar@cs.vt.edu
Virginia Tech

Blacksburg, Virginia, USA

ABSTRACT

Data-intensive scalable computing has become popular due to the
increasing demands of analyzing big data. For example, Apache
Spark and Hadoop allow developers to write dataflow-based appli-
cations with user-defined functions to process data with custom
logic. Testing such applications is difficult. (1) These applications
often take multiple datasets as input. (2) Unlike in SQL, there is
no explicit schema for these datasets and each unstructured (or
semi-structured) dataset is segmented and parsed at runtime. (3)
Dataflow operators (e.g., join) create implicit co-dependence con-
straints between the fields of multiple datasets. An efficient and
effective testing technique must analyze co-dependence among dif-
ferent regions of multiple datasets at the level of rows and columns
and orchestrate input mutations jointly on co-dependent regions.

We propose DepFuzz to increase the effectiveness and efficiency
of fuzz testing dataflow-based big data applications. The key insight
behind DepFuzz is twofold. It keeps track of which code segments
operate on which datasets, which rows, and which columns. By
analyzing the use of dataflow operators (e.g., join and groupByKey)
in tandem with the semantics of UDFs, DepFuzz generates test data
that subsequently reach hard-to-reach regions of the application
code. In real-world big data applications, DepFuzz finds 3.4× more
faults, achieving 29% more statement coverage in half the time as
Jazzer’s, a state-of-the-art commercial fuzzer for Java bytecode. It
outperforms prior DISC testing by exposing deeper semantic faults
beyond simpler input formatting errors, especially when multiple
datasets have complex interactions through dataflow operators.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging.

KEYWORDS

Testing, Fuzzing, Data analytics, Provenance, Taint analysis

ACM Reference Format:

Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar. 2023. Co-
dependence Aware Fuzzing for Dataflow-Based Big Data Analytics. In Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616298

December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3611643.3616298

1 INTRODUCTION

Data-Intensive Scalable Computing (DISC) applications have be-
come a prevalent way to process large-scale data. DISC frameworks
like Hadoop MapReduce [2] and Apache Spark [3] offer APIs that
contain dataflow operators such as map, join, and groupByKey for
parallel data processing across thousands of machines. A typical
DISC application builds on a series of dataflow operators in con-
junction with user-defined functions (UDFs) that are passed as
arguments to the dataflow operators. Despite the widespread usage
of DISC applications, testing remains difficult due to their large
input size and the applications’ complex interactions with data.

Fuzzing is an effective software testing approach for many com-
plex programs [1, 7, 9, 17, 28, 32, 41, 49, 52]. Fuzzers make small
perturbations (mutations) to inputs to increase the likelihood of
exercising uncovered application logic. Such traditional fuzzing
may take a long time to generate meaningful inputs for DISC ap-
plications because a large input data has too many locations to mu-
tate. Therefore, it is necessary to identify which rows and columns
are worthwhile to mutate when a fuzzer attempts to reach a new
code location. Naive mutations cannot satisfy complex input con-
straints from mixing dataflow operators and user-defined functions.
For instance, join concatenates rows from two datasets that have
matching values in designated key columns. This introduces an
implicit equality constraint between the fields of multiple datasets.
Consequently, to exercise code inside the UDF func1 of map in
the code snippet dataset1.join(dataset2).map(func1), input
mutations must simultaneously operate on both datasets dataset1
and dataset2 to observe the co-dependence constraint i.e., there
must exist a row in dataset1 with the same key as the dataset2’s
first column in order for join to produce any data on which map can
apply func1. Mutations used in fuzz testing today fail to account
for such co-dependence and thus may not exercise application logic
beyond join. This problem is further exacerbated because, unlike
SQL, there is no explicitly defined schema to identify columns, and
the inputs for DISC applications are usually parsed on the fly.

We proposeDepFuzz, a fuzzer that performs co-dependence aware
row selection and column mutation while ensuring that constraints
amongmultiple datasets are observed. DepFuzz combines row-level
and column-level data tracking via taint analysis. In other words, it
identifies which rows and which columns from which dataset are
operated by individual lines of application code. This knowledge of
row-level provenance helps reduce data size for subsequent fuzzing
iterations, as DepFuzz retains only selected rows and mutates them,

https://doi.org/10.1145/3611643.3616298
https://doi.org/10.1145/3611643.3616298

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar

map

map

join

map

map

join

map

join

map

val airports_and_coords =
airports

.map(. . .)

val aflights_and_coords =
flights
.map(. . .)
.join (airports_and_coords)
.map (. . .)

val flights_and_distances =
flights

.map(. . .)

.join(airports_and_coords)

.map(. . .)

.join(aflights_and_coords)

.map(. . .)

.collect()

1

2 3

4 5

6 7

8

9

1

2

3

4
6

5

7
8

9

def dist(dep: Tuple[Float], arr: Tuple[Float]):
Float = {
. . .
// Fault: should be 1-a instead of .1-a

val c = 2*math.atan2(math.sqrt(a), math.sqrt(.1-a))
(6373.0 * c * 0.621371).toFloat

32556 , PG0371 , 08-22 07:25 , 08-22 09:50 , KRO , DME , Arrived

22019 , PG0240 , 09-03 15:00 , 09-03 02:50 , HMA , DME , Arrived

31522 , PG0338 , 09-03 08:55 , 09-03 10:20 , ARH , DME , Arrived

DME , Domodedovo Airport , 37.91 , 55.41 , Moscow

ARH , Talagi Airport , 40.72 , 64.60 , Moscow

HMA , Khanty Airport , 69.09 , 61.03 , Yekaterinburg

KRO , Kurgan Airport , 65.42 , 55.48 , Yekaterinburg

KRO , 32556

HMA , 22019

ARH , 31522

DME , (37.91 , 55.41)

ARH , (40.72 , 64.60)

HMA , (69.09 , 61.03)

KRO , (65.42 , 55.48)

DME , 32556

DME , 22019

DME , 31522

DME , (32556, (37.91 , 55.41))

DME , (22019, (37.91 , 55.41))

DME , (31522, (37.91 , 55.41))

KRO , (32556, (65.42 , 55.48))

HMA , (22019, (69.09 , 61.03))

ARH , (31522, (40.72 , 64.60))

32556 , (DME, 37.91 , 55.41)

22019 , (DME, 37.91 , 55.41)

31522 , (DME, 37.91 , 55.41)

32556 , (KRO, 65.42 , 55.48)

22019 , (HMA, 69.09 , 61.03)

31522 , (ARH, 40.72 , 64.60)

32556 , ((KRO, 65.42 , 55.48) , (DME, 37.91 , 55.41))

22019 , ((HMA, 69.09 , 61.03) , (DME, 37.91 , 55.41))

31522 , ((ARH, 40.72 , 64.60) , (DME, 37.91 , 55.41))

32556 , (KRO, DME, 1901.31)

22019 , (HMA, DME, 2165.32)

31522 , (ARH, DME, 528.17)

⨝ ⨝

⨝

1
2 3

4 5

6 7

8

9

(a) DISC Application in Spark (b) Directed Acyclic Graph (c) Data Processing

Flights.csv

Airports.csv

Figure 1: A DISC application with a fault in the UDF of step 9 , map: (a) code in Scala. (b) the corresponding dataflow graph, and

(c) an illustration of data manipulation in 9 steps. Blue and red colored texts are co-dependent regions identified by DepFuzz.

as opposed to the entire dataset during mutational fuzzing with-
out sacrificing code coverage. By inferring co-dependence relations
among different columns from multiple datasets, it increases the
chance of generatingmeaningful unstructured inputs that can reach
the later stages of the application after operations such as join and
co-group are used.

DepFuzz instruments the program under test by overriding
dataflow operators and UDF components to capture row-level,
column-level, and dataset-level provenance. This is done by imple-
menting dynamic taint tracking for UDFs and dataflow operators.
By leveraging co-dependence aware row selection and column mu-
tations, it generates inputs that can reach deeper regions (i.e., UDFs
in the later stages of dataflow operators).

To evaluate DepFuzz, we use 17 DISC applications and measure
(1) statement coverage, (2) fault detection capability, and (3) fuzzing
speed-up. To assess fault detection capability, we inject faults at
different depths in terms of the program’s joint dataflow and control
flow graph. We evaluate DepFuzz against two baseline techniques:
Jazzer [24], a coverage-guided greybox fuzzer for Java bytecode
based on LibFuzzer [45]; and BigFuzz [52], a greybox fuzzer for
DISC applications. Comparison against Jazzer and BigFuzz serves
to assess the overall benefit in terms of fault detection and speed-
up, when orchestrating input mutations across multiple datasets
by identifying co-dependence constraints. DepFuzz achieves 87%
statement coverage, which is 29% and 13% more than Jazzer and
BigFuzz. It also obtains coverage 2.1× and 1.3× faster than Jazzer
and BigFuzz, respectively. Since faults appearing in earlier stages
tend to be easier to find (e.g., due to ill-formatted inputs) than those
faults appearing in later processing stages, we evenly distribute

injected faults in all dataflow operators for fairness. The average
depth of a fault found byDepFuzz is 3.7 operators deep compared to
2.8 and 2.6 by Jazzer and BigFuzz, respectively. Our contributions
are as follows:

• We present a new fuzz testing approach that leverages rich
provenance information to increase mutational fuzzing’s
effectiveness and efficiency for DISC applications. This is the
first test generation approach that extracts co-dependence
constraints at the level of rows, columns, and datasets fully
automatically without requiring an explicit schema from a
user.

• Our evaluation includes an extensive comparison against
two baselines on 17 different benchmark programs for 24
hours each. The results show DepFuzz reaches previously
uncovered code faster, finds faults faster, and reaches deeper
code locations of later stages than existing fuzzers.

• DepFuzz is built on extended dynamic taint tracking and
analysis of dataflow operators. It has comprehensive support
for Apache Spark-based DISC applications written in Scala,
and its key idea generalizes to other dataflow-based big data
applications such as Google’s MapReduce or Apache Hadoop.
DepFuzz is publicly available at https://github.com/SEED-
VT/DepFuzz [20]

2 MOTIVATING EXAMPLE

This section motivates DepFuzz with a concrete example. Suppose
a data analyst computes the distance traveled by airplanes for each
flight in 2017 from two input datasets: flights contains millions

https://github.com/SEED-VT/DepFuzz
https://github.com/SEED-VT/DepFuzz

Co-dependence Aware Fuzzing for Dataflow-Based Big Data Analytics ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Flights Dataset:

Int,String,String,String,String,String,String
20199,PG0320,08-09 06:55,08-09 09:15,MRV,PEE
Airports Dataset:

String,String,String,Float,Float,String
TOF,Bogashevo Airport,Tomsk,85.21,56.38,Krasnoyarsk
Duration:

24h

Figure 2: A sample configuration file required by BigFuzz.

The file contains schemas and seed inputs for the flights
and airports dataset, and a user-specified time cut-off for

the fuzzing campaign.

of flights flown worldwide in 2017 and airports contains the geo-
graphic location of airports. The top two boxes in Figure 1 (c) show
sample rows from each dataset. The flights dataset has a flight ID,
the departure and landing times, the departure and arrival airport
codes, and the flight status, all separated by commas. The airport
dataset maps airport codes to their airport name, longitude and lat-
itude coordinates, and the corresponding city. Figure 1 (a) shows a
DISC application written in Spark. It consists of dataflow operators,
such as map and join, where some dataflow operators, such as map,
take a user-defined function (UDF) as an argument. For example,
the 9 map takes a UDF that computes distance using the Haversine
formula, shown in the expanded text box.

In 1 , the analyst extracts the airport code and longitude and lati-
tude values from airport. From flights, she selects the departure
and arrival airport codes and the flight ID, as the first column and
the second column in 2 and 3 , respectively. She uses join in 4

and 5 to join the arrival and departure airports with their longitude
and latitude coordinates. 8 joins the two data streams using a flight
ID. 9 applies the dist function on the pairs of latitude-longitude
tuples to compute the Haversine distance.

While writing the Haversine formula, she mistakenly writes
sqrt(.1-a) instead of sqrt(1-a) (text box for 9 in Figure 1 (a)).
This error is hard-to-spot and subtle and causes NaN exceptions.
Limitations of Existing Fuzzers. To reveal such errors, suppose
that she runs a commercially used, coverage-guided greybox fuzzer,
Jazzer [24]. After a 24-hour fuzzing campaign, even with cover-
age guidance, Jazzer cannot produce an input to reach code be-
yond custom parsing logic at 2 , where it persistently triggers the
same ArrayOutOfBoundsException. Jazzer achieves a maximum
statement coverage of 27%. Due to a lack of schema and a lack
of awareness of co-dependent regions, it continues to generate
random strings for the two datasets that cannot pass beyond the
parsing stage (i.e., map at 2).

Similarly, BigFuzz [52] requires an input schema (as shown
in Figure 2) to apply schema-aware mutations such as changing
the numerical value, changing integers to float, adding/removing
columns, or changing the delimiter. These mutations help BigFuzz
avoid some trivial parsing errors. Although BigFuzz achieves 98%
statement coverage in 24 hours, it is still unable to trigger the
fault in 9 , because to pass beyond join at 8 , the three columns
(column 0 of airports and columns 4 and 5 of flights) must have
the same value to satisfy co-dependence constraints to exercise the
UDF of map at 9 . Since Jazzer and BigFuzz mutate all columns
independently of each other, this three-way constraint is highly
unlikely to be satisfied by their mutations.

Flights dataset:

-17252,P*34,4GJn50:0k0G,Zu:CSO.9-,D)N,D)N,A]i%e(
-17252,PG04,09-o0’gc:k7,zq-j01:55",D)N,D)N,]ZTed
Airports dataset:

D)N,SYhkutkl:irp7rS,Gap/ns4,1.64E9,1.30E9,JUSg3sk+

Figure 3: A test case generated by DepFuzz that causes a NaN
exception in the program in Figure 1

Benefits of DepFuzz. Suppose that the data analyst uses DepFuzz
to generate new test inputs. She does not need to provide an explicit
schema and simply provides the current dataset to DepFuzz. At
the end of 24 hours, DepFuzz generates new inputs as shown in
Figure 3, leading to a NaN error, reaching the faulty line inside the
corresponding UDF of map at 9 .

DepFuzz detects the two sets of co-dependent regions (high-
lighted in blue and red in Figure 3) and mutates them such that
they can still satisfy the implicit constraints imposed by the three
join operators (4 , 5 , and 8). The rows in blue (i.e., -17252) must
be equal since 8 performs a self-join. The red cells (i.e., D)N) are
co-dependent by equality due to join 4 and 5 . Close inspection
of the application execution on this input shows that variable c is
faulty at 9 in Figure 1 (b). The developer spots this error on the sec-
ond last line and replaces sqrt(.1-a) to sqrt(1-a) in accordance
with the Haversine formula.

DepFuzz

Dataset 1

Dataset 3

Dataset 2

DISC App. Operator Col Row Dataset

Join4 4 0 0

Join4 0 3 1

Join5 5 0 0

Join5 0 4 1

DISC App.
+ Taint Analysis

+Co-Dependence Monitors

High-quality
Concise Seed Input

Co-dependency Between
Input Regions

Phase I

Phase II

Phase III
(D0,col(4),row(0))

(D1,col(0),row(3))

(D0,col(5),row(0))

(D1,col(0),row(4))

Test Result

I1 ✓

I2 𝙭

… …

In
p

u
ts

O
u

tp
u

t

Phase IV

Fuzzing Campaign

Figure 4: Workflow of DepFuzz.

3 APPROACH

The key contribution of DepFuzz is to detect co-dependent regions
across multiple datasets and orchestrate input mutations on the co-
dependent regions accordingly. In this section, we formally define
co-dependence and provide details of how DepFuzz detects them.
DepFuzz consists of four phases as shown in Figure 4. Phase I
automatically instruments a given DISC application to enable fine-
grained taint analysis at the level of rows, columns, and dataset IDs.
This allows it to track data provenance through dataflow operators
and UDFs to capture co-dependence relationships. Phase II executes
this instrumented program on the entire dataset to capture co-
dependence constraints among multiple input datasets. Phase III
leverages this provenance tracking capability to select a precise
subset of rows from each dataset to use as seeds for subsequent
fuzzing iterations. Phase IV then initiates a fuzzing campaign with
the selected rows from Phase III and applies co-dependence aware
mutations to expose deeper faults. After reaching a user-specified
time limit, DepFuzz outputs a set of test inputs.
Formalizing Input Co-dependence. Co-dependence is a depen-
dency created between multiple input regions by an operation (e.g.,
a dataflow operator or a binary operation that affects control flow
in UDFs) that operates on such input regions. An input region is

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar

data.filter { row =>
if(row.t_depart.time.after(13:00))

return true
else

return false
}
.join(…)
.map(…)
.reduceByKey(…)
.map(…)

f_id t_depart t_land from to
32556 , 08-22 07:25 , 08-22 09:50 , KRO , DME
22019 , 09-23 05:00 , 09-23 02:50 , HMA , DME
31522 , 10-03 08:55 , 10-03 10:20 , ARH , DME
54522 , 05-15 16:55 , 05-16 14:22 , LHE , IAD

(a) The first three rows (shown in red) are dropped by the filter
condition (shown in green) and therefore do not influence any code
beyond the filter operation

(b) Co-dependence monitors are attached to each branch in the JDU
Graph.

data.monitoredFilter { row =>
if(monitoredPredicate(row.t_depart.time.after(13:00)))

return true
else

return false
}
.monitoredJoin(…)
.map(…)
.monitoredReduceByKey(…)
.map(…)

Figure 5: The red color rows do not participate in the join
operation since the filter operation removed them earlier.

a contiguous sequence of bytes in an input dataset. We formalize
co-dependence as follows. Given a DISC application, we define its
dataflow graph (DFG) with two types of vertices: operators and
datanodes, similar to the traditional DFG representation [27]. In
the case of DISC applications, Operators are functions in a program
that operate on data (e.g., join() dataflow operator or == in UDFs).
A comprehensive list of trackable operators is shown in Table 1.
Datanodes represent data that propagate from one operator to an-
other (i.e., input and output of an operator). Thus, we define a DISC
application’s DFG, 𝐺 , as

𝐺 = ⟨𝑂 ∪ 𝑁, 𝐸⟩

where 𝑂 = {𝑜1, 𝑜2, ..., 𝑜𝑛} is a set of operators, 𝑁 = {𝑛1, 𝑛2, ..., 𝑛𝑚}
is a set of datanodes. 𝐸 ⊆ (𝑂 × 𝑁) ∪ (𝑁 ×𝑂) is a set of directed
edges connecting operators with datanodes. An atomic unit of
this DFG has three nodes and two edges i.e., an operator with
an incoming edge from an input datanode and an outgoing edge
to an output datanode. Furthermore, a datanode 𝑛 holds data in
the form of a byte sequence 𝑏1𝑏2 ...𝑏𝑘 . Let 𝐷 (𝑛) be the set of all
possible subsequences of the byte sequence in a datanode 𝑛, i.e.,
{𝑏1, 𝑏2, ..., 𝑏1𝑏2, ..., 𝑏1 ...𝑏𝑘 }. Input datasets of DISC applications are
defined as 𝑆 , a set of initial datanodes which are external inputs to
the DFG. We combine regions in input datasets in 𝑆 ′, a union of
𝐷 (𝑛) across all input datanodes.

𝑆 ′ =
⋃
∀𝑛∈𝑆

𝐷 (𝑛)

1 case class TaintedString(value: String , t: Taints){

2 // A Tainted String class

3 def concat(other: String): TaintedString =

4 return new TaintedString(value.concat(other), t)

5

6 def concat(other: TaintedString): TaintedString =

7 return new TaintedString(

8 value.concat(x.value),

9 union(t,x.t)

10)

11 ... // more overloaded operators

Figure 6: Taint analysis enabled String type in Scala

Finally, we characterize co-dependency among input regions as a
set of tuples, 𝐶

𝐶 = {(𝑜, 𝑅) | 𝑅 ⊆ 𝑆 ′,∀𝑜 ∈ 𝑂}
The first element, 𝑜 , is an operator in the dataflow graph; and the
second element, 𝑅, is a subset of the regions in the input datasets
that are co-dependent due to operator 𝑜 . Let 𝐼 (𝑜) be the incoming
data to an operator 𝑜 . Since co-dependence can only occur between
regions of the original datasets, we must extract 𝑅 from 𝐼 (𝑜), which
can be any arbitrary byte sequence in the incoming datanode of
operator 𝑜 . To extract such information, we define monitors that
are concretely explained in Section 3.1.

𝑀𝑜 : 𝐼 (𝑜) → P(𝑆 ′)
where P(𝑆 ′) is the powerset of 𝑆 ′. A monitor,𝑀𝑜 , is an operator-
specific function that takes 𝐼 (𝑜) as input and outputs a set of byte
sequences (i.e., input regions) from the original input datasets con-
sidered co-dependentw.r.t. given operator. The precise logic behind
this mapping depends on the semantics of the operators, which we
capture using dynamic tainting in DepFuzz. Take for example a
== operation in a.substr(0,5) == b.substr(0,5). The monitor,
𝑀==, should yield {a.substr(0,5), b.substr(0,5)}, resulting
in a co-dependence tuple (==, {a.substr(0,5), b.substr(0,5)
}). Table 1 lists concrete examples of operators, their monitors𝑀 ,
and the respective mutation strategies.

3.1 Phase I: Enabling Fine-Grained Taint

Analysis

Phase I instruments a given input program to enable taint analysis
and to capture co-dependence information.

Enabling taint analysis via instrumentation. DepFuzz uses taint
analysis to identify precise columns and rows in the input datasets
contributing towards a specific intermediate output or a final out-
put. DepFuzz first replaces primitive data types with equivalent
tainted types. The tainted data type is a tuple of an original type and
a list of offsets representing taints, (Value[T], List[Offset]).
DepFuzz overrides all APIs of the original data type with taint-
enabled equivalent versions to propagate their taints. For example,
concat in tstr1.concat(tstr2) concatenates two tainted strings,
tstr1 and tstr2, and attaches a new taint with the union on the
two corresponding taints. Figure 6 shows the implementation of
concat in TaintedString. DepFuzz provides an instrumented ver-
sion of data loading APIs that read the input datasets in tainted
types instead of primitive types. Similarly, we instrument APIs for
Int, Float, Double and Boolean. Apache Spark’s textFile API

Co-dependence Aware Fuzzing for Dataflow-Based Big Data Analytics ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

val dataset1 = fileWithTaint("classes")
val dataset2 = fileWithTaint("rooms")
dataset1

.map(s => s.split(regex=",|:"))

.map {
(code,title,name,section) =>

val key = code.concat(s":$section")
return (key, title)

}
dataset2

.map(s => s.split(","))

.join(dataset1)

Data
Taint

(Dataset ID,Column,Row)
CS365:Algorithms,John Smith,S1 (0, 0, 0)
CS365:Algorithms,Jane Doe,S2 (0, 0, 1)
CS563:Advanced OS,Jack Joe,S1 (0, 0, 2)

Data Taint
CS365:S1,Room 234 (1,0,0)
CS365:S2,Room 121 (1,0,1)
CS563:S1,Room 404 (1,0,2)

Data Taint Data Taint Data Taint Data Taint
CS365 (0,0,0) Algorithms (0,1,0) John Smith (0,2,0) S1 (0,3,0)
CS365 (0,0,1) Algorithms (0,1,1) Jane Doe (0,2,1) S2 (0,3,1)
CS563 (0,0,2) Advanced OS(0,1,2) Jack Joe (0,2,2) S1 (0,3,2)

Data Taint Data Taint

CS365:S1 (0,0,0) | (0,3,0) Algorithms (0,1,0)
CS365:S2 (0,0,1) | (0,3,1) Algorithms (0,1,1)
CS563:S1 (0,0,2) | (0,3,2) Advanced OS (0,1,2) Data Taint Data Taint

CS365:S1 (1,0,0) Room 234 (1,1,0)
CS365:S2 (1,0,1) Room 121 (1,1,1)
CS563:S1 (1,0,2) Room 404 (1,1,2)

Data Taint Data Taint
CS365:S1 (1,0,0) | (0,0,0) | (0,3,0) Room 234 (1,1,0)
CS365:S2 (1,0,1) | (0,0,1) | (0,3,1) Room 121 (1,1,1)
CS563:S1 (1,0,2) | (0,0,2) | (0,3,2) Room 404 (1,1,2)

Dataset1 Dataset2

Figure 7: Taint propagation through a simple dataflow program. Yellow colored highlighted text is the provenance of red

colored text at the bottom left table.

reads each row as a String, while the taint-analysis equivalent
version reads each row as a TaintedString with a row offset and
a dataset ID.

Taint propagation at the level of rows, columns, and datasets. Ran-
domly mutating the entire row will likely mutate non-participating
regions in the input. In Figure 1, the second, third, fourth, and sev-
enth columns in the first dataset are never used by the application
code. DepFuzz implements an extended taint analysis at the level
of a dataset ID, a column offset, and a row offset i.e.,(Value[T],
List[(DatasetID, ColOffset, RowOffset)]. For example, in
Figure 7, CS363:Advanced OS, Jack Joe, S1 has a taint [0,0,2]
meaning the data is from the first dataset, the first column, and the
third row. To reduce the storage overhead of attaching a tainted
object,DepFuzz encodes the three offsets into a single 32-bit integer.

Co-dependence monitors. In order to associate taints at the level
of branches and dataflow operators,DepFuzz injects co-dependence
monitors at each dataflow operator and at each branch predicate
within UDFs, as shown in Figure 5. For example, this process re-
places a dataflow operator join with monitoredJoin and replaces
if(p) with if(monitoredPredicate(p)) within UDFs. This co-
dependence monitor injection enables DepFuzz to identify which
rows and columns from which datasets directly influence individ-
ual branching decisions. Branches in a DISC application include
both an explicit control predicate from an if statement or a for
loop in user-defined functions and implicit branches from dataflow
operators (e.g., join and filter).

3.2 Phase II: Fine-Grained Taint Tracking

DepFuzz runs the instrumented, taint-analysis enabled version
from Phase I on the original datasets. Figure 7 shows how data is
tracked through the execution of a taint-enabled program.

Co-Dependence detection. Dataflow operators and UDFs pose im-
plicit and explicit co-dependence constraints. For instance, join
enforces an implicit constraint that, for each output row, the keys
of the two joining datasets must be equal. Similarly, if(airporta
== airportb) imposes an explicit constraint that the airporta
and airportb (derived from specific rows and columns of input
datasets) are equal. Co-dependence also arises between the rows

of the same dataset. For example, aggregation operators such as
reduceByKey and groupByKey result in co-dependence where one
or more rows must have the same key to have an output row
with the same key. Our insight is that while random mutations
are unlikely to satisfy co-dependence constraints by chance, coor-
dinated mutations to specific row and column offsets that respect
co-dependency constraints are likely to reach deeper code.

Exactly how taints are transformed into co-dependence con-
straints depends on the monitored dataflow operator type. For ex-
ample, for join, the key columns of the two participating datasets
must be the same (equality). For an if condition if(column0 >
column5), the co-dependence is a "greater than" relationship.

Once the instrumented application’s execution on the original
datasets completes, DepFuzz consolidates co-dependence infor-
mation, documenting each monitor’s relative position in terms of
dataflow operator depth and the list of taints containing offsets at
the level of rows, columns, and dataset IDs. For example, in Figure 1,
join 4 has a depth of two and forms a co-dependence between col-
umn 5 of flights and column 0 of airports which act as the keys
for the join. Note that DepFuzz can detect transitive co-dependence
when there are overlapping constraints across multiple operators.
For example, Figure 1 has a three-way co-dependence among three
input regions since airports column 0 overlaps with join 5 .

3.3 Phase III: Row Selection for Data Size

Reduction

To speed up fuzzing, DepFuzz identifies a small subset of data rows
that retain the same branch coverage as the original dataset. This
reduces large-scale datasets to a set of seed inputs that are small
enough for iterative fuzzing. Because the original input data may
be very large with millions of rows, this step significantly reduce
the scope of potential locations to mutate, increasing efficiency. For
each branch,DepFuzz reduces the original input datasets to a subset
of rows reaching that particular branch. It then consolidates the
corresponding rows for all branches. Figure 5 (a) shows an example
of how row selection creates a smaller, effective seed. A filter
operator removes all flights departing before 13:00 on a given day.
Therefore, the rows highlighted in red will not influence any code

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar

Operator Class Sample Operators Example of Identified Constraint Mutation strategy

Fusions
data1.join(data2)
data1.intersection(data2)
data1.cogroup(data2)

𝑀𝑗𝑜𝑖𝑛 ({𝑑𝑎𝑡𝑎1, 𝑑𝑎𝑡𝑎2}).
Possible output of𝑀𝑗𝑜𝑖𝑛 :

{data1.row[1].col[3], data2.row[23].col[0]}
{data1.row[31].col[3], data2.row[52].col[0]}
Co-dependence tuples:

(== , {data1.row[1].col[3], data2.row[23].col[0]})
(== , {data1.row[31].col[3], data2.row[52].col[0]})

Any mutation applied to data1.row[1].col[3]
must also be applied to data2.row[23].col[0].
If no rows with matching keys exists, select a
row from data1 and copy data1.col[3] to
data2.col[0].

Aggregations

data.aggregateByKey(udf)
data.reduceByKey(udf)
data.groupByKey()
data.countByKey()

𝑀𝑟𝑒𝑑𝑢𝑐𝑒𝐵𝑦𝐾𝑒𝑦 ({𝑑𝑎𝑡𝑎}).
Possible output of𝑀𝑟𝑒𝑑𝑢𝑐𝑒𝐵𝑦𝐾𝑒𝑦 :

{data.row[2].col[2],
data.row[43].col[2],
data.row[63].col[2]}
Co-dependence tuple:

(== , {data.row[2].col[2],
data.row[43].col[2],
data.row[63].col[2]})

Any mutation applied to data[row=2,col=2]
must also be applied to data[row=43,col=2].
Duplicate rows and apply same mutation to
key columns of duplicates.

Filters data.filter(col0 > col5)

𝑀𝑓 𝑖𝑙𝑡𝑒𝑟 ({𝑑𝑎𝑡𝑎}).
Possible output of𝑀𝑓 𝑖𝑙𝑡𝑒𝑟 :

{data.row[23].col[0], data2.row[23].col[5]}
{data.row[31].col[0], data2.row[31].col[5]}
Co-dependence tuples:

(> , {data1.row[23].col[0], data2.row[23].col[5]})
(> , {data1.row[31].col[3], data2.row[31].col[5]})

Any mutation applied to data.col[0] and
data.col[5] must ensure that there is a
true and false row for the predicate.

UDF Operators
if(a.contains(b))
if(a != b)
if(a > b)

𝑀𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 ({𝑎, 𝑏}).
Possible output of𝑀𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 :

{data.row[1].col[0], data2.row[1].col[2]}
Co-dependence tuples:

(𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 , {data1.row[1].col[0], data2.row[1].col[2]})

Any mutation applied to data.col[0] and
data.col[2] must ensure that string a
contains b for some mutations. It must also
ensure it occasionally creates inputs that
violate this.

Table 1: Summary of how each class of operators produces co-dependent regions in the input dataset. For simplicity, we use

row[1].col[3] as a human-readable representation of input byte region 𝑏𝑖 , ...𝑏 𝑗 , where 0 < 𝑖 < 𝑗 < 𝑠𝑖𝑧𝑒 (𝑑𝑎𝑡𝑎𝑠𝑒𝑡)

beyond the first filter. DepFuzz thus retains only the green row
in the seed input for subsequent fuzzing iterations.

3.4 Phase IV: Co-Dependence Aware Mutation

Phase IV performs a grey-box fuzzing campaign by designing new
mutations that target various co-dependence types. The output of
DepFuzz is a list of errors and test inputs revealing those errors. Dif-
ferent from standard grey-box fuzzing, DepFuzz prioritizes where
to apply input mutations based on fine-grained taint tracking at
the level of rows, columns, and datasets. DepFuzz designs a novel
input mutation strategy that maintains co-dependency. Based on
the co-dependent constraints, we categorize dataflow operators
into four classes: Fusions, Aggregations, Filters, and UDF Operators.
Table 1 summarizes mutation strategies for each class of operator.

• For fusion operators like join, DepFuzz applies the same set
of mutations on the key columns of the two joining datasets
to ensure equality. In Figure 1 (c), whenDepFuzzmutates KRO
in row 0 of the flights dataset, it applies the samemutations
to KRO in row 3 of airports, ensuring a non-empty output
for join.

• For aggregation operators like reduceByKey, DepFuzz dupli-
cates a row and applies the same set of mutations on the key
column of those rows, ensuring at least 2 rows in each out-
put group. Suppose if reduceByKey is applied on the fourth
column of flights in Figure 1. DepFuzz duplicates a row
>1 times and applies the same mutation on the key of the
original and duplicated rows.

• For filter operators like filter, DepFuzz applies mutation
on the columns used in the filtering predicate. In case of

filter(data.col[0]) > data.col[1], DepFuzz can cre-
ate at least one row where this predicate can be true or at
least one row where this predicate is false.

• For UDF operators like map and flatMap that take UDFs
as arguments, DepFuzz handles control predicates in user-
defined functions similar to filter. For example, in the case
of a.contains(b),DepFuzz identifies the provenance of the
strings a and b as data.col[0] and data.col[3] respec-
tively.DepFuzz then enforces the true path for this condition
by embedding b in a during the mutation process.

4 EVALUATION RESULTS

We evaluate DepFuzz on four criteria: code coverage, fault detec-
tion, fault depth, and testing speed, transcribed into the research
questions below.
RQ1:What isDepFuzz’s test coverage compared to baseline fuzzers?
RQ2:Howmany errors can DepFuzz detect compared to baselines?
RQ3: Can DepFuzz detect errors located in deeper code regions?
RQ4: How much overhead does DepFuzz’s instrumentation incur?
RQ5: Does DepFuzz achieve code coverage faster than baselines?

Benchmarks. Existing dataflow benchmarks like TPC-DS [5] or
Big Data Benchmark [4] are purely performance benchmarks writ-
ten in SQL and therefore do not contain UDFs and non-relational
dataflow operators. In contrast, the subject programs introduced
by prior work on fuzzing in DISC only operate on a single dataset,
omitting an entire class of operators related to real-world multiple
dataset analytics. Therefore, we evaluate DepFuzz on 17 unique
big data applications accumulated from nearly all publicly avail-
able prior work on DISC testing [19, 52], DISC debugging [48],

Co-dependence Aware Fuzzing for Dataflow-Based Big Data Analytics ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

ID Program Description Datasets# of

Opt.

Max

Depth

Total

Rows

Operators Used

P1 Webpage Segmentation [10, 15] Find overlapping UI components on a webpage 2 9 6 1M map, groupByKey, join, filter
P2 Customer Rewards [8] Find the top-3 customers w.r.t purchase history 2 9 8 2M map, groupByKey, join, filter, sortBy
P3 Flight Distance [6] Compute distance travelled by a given flight 2 9 5 500K map, join
P4 Bus Delays [35] Identify bus routes that are delayed frequently 2 9 8 2M flatMap, join, reduceByKey, filter
P5 Commute Type [19] Identify the transportation type used on a trip 2 4 4 1M map, mapValues aggregateByKey
P6 WordCount [19] Find the frequency of words 1 2 2 1M map, flatMap, reduceByKey
P7 Delivery Faults [36] Identify vendor sets leading to faulty deliveries 1 5 5 1M map, groupByKey, filter
P8 ExternalCall [52] Find the frequency of words 1 3 3 1M map, flatMap, reduceByKey, filter
P9 FindSalary [52] Total income of individuals earning ≤ $300 weekly 1 4 4 1M map, filter, reduce
P10 StudentGrade [52] List of classes with more than 5 failing students 1 4 4 1M map,reduceByKey, filter
P11 MovieRating [19] Total number of movies with rating ≥ 4 1 3 3 1M map,reduceByKey, filter
P12 InsideCircle [52] Check whether the point (x,y) is in a circle 1 2 2 1M map,filter
P13 MapString [52] String mapping 1 1 1 1M map
P14 NumberSeries [52] Find the numbers whose 3n+1 series’ length is 25 1 3 3 1M map,filter
P15 AgeAnalysis [52] Total number of people with different age ranges 1 3 3 1M map,filter
P16 IncomeAggregation [19] Average income per age range in a district 1 5 5 1M map, mapValues filter, reduceByKey
P17 LoanType [52] The count of loan type within a region 1 2 2 1M map

Table 2: Subject programs used in DepFuzz’s evaluation. All programs represent real-world DISC use cases and are adopted

from prior work. The data and code characteristics of benchmark programs are also shown.

and real-world DISC use cases [6, 8, 10, 15, 35, 36]. Collectively,
our benchmark programs comprise (1) a variety of dataflow opera-
tors transformation (flatMap, map), fusion (join), and aggregation
(reduce, group) operators, (2) UDFs, which are integral to DISC
applications, and (3) both single and multiple input datasets, which
are critical for practical data analysis.

The complete list of subject programs is shown in Table 2. For ex-
ample, P7 [36] identifies the type of transportation used to perform
the daily commutes i.e., bus, car, or walk. It consolidates informa-
tion on trips from two datasets to find the starting and destination
zip codes, the distance traveled for the trip, and the time it took to
cover this distance. Another program P2 is inspired by a commer-
cial case study of Apache Spark [8]. It analyzes customer purchase
history and rewards eligible customers (more than three instances
of $100 spending in the current year) with coupons valued propor-
tionally to spending. This is a multi-dataset program that joins the
customer information table with the purchase history table. Overall,
the benchmark programs’ size is comparable to real-world industry
DISC applications [50], which are in the order of hundreds of LOC
but closed-sourced.

Baselines. We compareDepFuzz against two baselines: (1) a state-
of-art schema-aware DISC application fuzzer, BigFuzz [52]; and (2)
the most advanced commercial-grade coverage guided fuzzer for
the JVM, Jazzer [24], developed in part by Google. We compare
against these baselines because they are the state-of-the-art fuzzers
for DISC applications and JVM-based applications, respectively. We
use scoverage [43] to monitor Scala statement coverage of the
applications. We provide BigFuzz with a seed input constructed by
randomly sampling a row from the dataset, along with a schema of
the dataset as in the original paper. For Jazzer, we write interfacing
code that converts the random byte stream generated by Jazzer
into formatted datasets expected by the DISC application.

Evaluation Environment. We run each tool for up to 24 hours,
which is a standard experimental setting for fuzzing benchmarks,
and measure statement coverage (%), cumulative error detection
(%), and error depth (# of operators) in the dataflow graph of the
benchmark programs. We perform these experiments on a 13-node

cluster computing environment with 112 cores at 3.10GHz, 52TB
storage, and 832GB memory. We run our experiments on Apache
Spark 3.0 and HDFS 2.7.

4.1 Test Coverage Against Baseline

Figure 8 shows how cumulative statement coverage increases through-
out the 24-hour fuzzing campaign with DepFuzz and the two
baselines. Y-axis represents the percentage of statement coverage
achieved, and the X-axis represents the time elapsed in seconds.
DepFuzz significantly outperforms baselines for programs ingest-
ing multiple input datasets and containing fusion, aggregation, and
filter operators) such as P1-P5. For programs that ingest only a sin-
gle dataset (i.e., P6-P17),DepFuzz shows slightly better performance
on average in terms of coverage.

Program P1’s seventh operator is join, where each dataset’s
key is a concatenation of three columns. Since there are six co-
dependent columns related by this equality and both baseline fuzzers
mutate each of the six columns independently of the others, they
fail to generate even a single input with matching keys to pass
this join. Even with its schema-aware mutations, BigFuzz only
achieves 28% coverage. Similarly, Jazzer struggles to push beyond
20% coverage with its byte-level mutations. DepFuzz manages to
capture the co-dependence between six columns created by join. It
immediately satisfies the constraints early in the fuzzing campaign
through tailored mutations for fusion operators. DepFuzz achieves
99% coverage within 24 hours of fuzzing.

In P7, we observe a drastic increase in statement coverage in
the first iteration of DepFuzz, compared to the baselines. This
program uses an aggregation operator, groupByKey, followed by
filter that requires a minimum number of rows with the same
key to exercise the code after filter. Mutations that randomly
duplicate any row are unaware of the aggregation’s key column.
Thus, baseline fuzzers do not generate the required rows to pass
through filter. DepFuzz identifies the groupByKey along with
the input column that influences the key. It then duplicates input
rows to satisfy the joint constraint imposed by aggregation and
filter.DepFuzz’s superior performance in P2-P4 can be attributed
to similar reasons.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar

100 102 104
0
20
40
60
80
100

St
at
em

en
tC

ov
er
ag
e
(%
)

P1

100 102 104
0
20
40
60
80
100

P2

100 102 104
0
20
40
60
80
100

P3

100 102 104
0
20
40
60
80
100

P4

100 102 104
0
20
40
60
80
100

P5

100 102 104
0
20
40
60
80
100

P6

100 102 104
0
20
40
60
80
100

St
at
em

en
tC

ov
er
ag
e
(%
)

P7

100 102 104
0
20
40
60
80
100

P8

100 102 104
0
20
40
60
80
100

P9

100 102 104
0
20
40
60
80
100

P10

100 102 104
0
20
40
60
80
100

P11

100 102 104
0
20
40
60
80
100

P12

100 102 104
0
20
40
60
80
100

Time (s)

St
at
em

en
tC

ov
er
ag
e
(%
)

P13

100 102 104
0
20
40
60
80
100

Time (s)

P14

100 102 104
0
20
40
60
80
100

Time (s)

P15

100 102 104
0
20
40
60
80
100

Time (s)

P16

100 102 104
0
20
40
60
80
100

Time (s)

P17

DepFuzz BigFuzz Jazzer

Figure 8: Statement coverage of three tools on 17 benchmark programs during 24 hours

DepFuzz also performs better for single dataset applications P6-
P17 that do not have any fusion operators (due to only one input
dataset), and their average dataflow operator depth is only three.
DepFuzz performs 140K fewer but more effective fuzzing iterations
than baselines on average due to the higher algorithmic complexity
of applying co-dependent mutations. The baseline Jazzer performs
better in P16 because some statements in the program are only
reachable on one specific input value. The chances of reaching such
statements (e.g., stmt1 in if(45<x<60){stmt1}) are purely ran-
dom. Thus, the technique with a higher number of iterations is
more likely to reach these statements. In P16, Jazzer performs
twice as many iterations as DepFuzz, which increases its likeli-
hood of arbitrarily changing the input row from 90024,28,10990
to 90024,46,10990, achieving additional statement coverage. In a
24-hour fuzzing campaign, DepFuzz achieves 29% higher coverage
than Jazzer and 13% higher coverage than BigFuzz.

To answer RQ5, we evaluate how quickly DepFuzz achieves
coverage compare to baselines by performing curve fitting with
𝑦 =𝑚𝑥 as the objective function on the cumulative coverage graphs
since the gradient of this line represents the average rate of gain
of coverage over the course of the entire campaign. We find that
DepFuzz is 1.3× faster than BigFuzz and 2.1× faster than Jazzer
in terms of the coverage increase rate.

4.2 Fault Detection

We measure the fault detection capability of DepFuzz compared
to the baselines. For this experiment, in each subject program, we
inject one fault at each depth of a dataflow graph and then record
the number of faults. We define a fault’s depth as the number of
dataflow operators an input row has to go through before reaching
a faulty statement. For example, if a fault is seeded in a UDF 𝑓 ,
where 𝑓 is an argument to 𝑛𝑡ℎ dataflow operator, the fault is seeded
at depth 𝑛. For example, the fault in 9 -Figure 1 has a depth of five
because there are five dataflow operators before the faulty code. We
count only the faults triggered from correctly-formatted inputs, as
Jazzer generates a massive number of ill-formatted inputs that all
lead to parsing errors such as ArrayIndexOutOfBound exception
from split(",")[k] due to missing k𝑡ℎ column in input data.
Parsing errors are caused by processing ill-formatted inputs in
a program. These errors normally appear in the first operation
of a DISC application that takes a raw, unstructured input and
parses it into individual data fields and their types e.g., keys and
values, similar to the first map applied on dataset1 and dataset2
in Figure 7. These errors do not appear if the input data format
conforms to the program’s parsing logic.We evaluate fault detection
on two levels: 1) the total number of unique faults detected and 2)
the depth within the dataflow graph at which a fault is detected.
Note that each dataflow operator takes a UDF as an argument.

Co-dependence Aware Fuzzing for Dataflow-Based Big Data Analytics ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

100 101 102 103 104
0
20
40
60
80
100

Fa
ul
ts
D
et
ec
te
d
(%
)

(c) Total Average

100 101 102 103 104
0
20
40
60
80
100

Time (s)

(b) Single Dataset Average

100 101 102 103 104
0
20
40
60
80
100

(a) Multi Dataset Average

DepFuzz Jazzer BigFuzz

Figure 9: Cumulative number of faults detected during 24 hours averaged across 17 programs. (b) shows the average for P5-P17

which ingest a single dataset, and (c) shows average for P1-P4 which take multiple datasets as input.

101 102 103 104
1
2
3
4
5
6
7
8

Time (s)

D
at
afl
ow

D
ep
th

DepFuzz BigFuzz Jazzer # of Faults: 35 19 8

Figure 10: Depth vs Time for all faults detected by DepFuzz

and baselines.
⊗

denotes centroids of each tool. DepFuzz has

more points near the top left corner, which means it detects

deeper faults faster than baselines.DepFuzz findsmore faults
than baselines.

Fault Injection. We manually inject faults into the subject pro-
grams by randomly replacing arithmetic operators, binary opera-
tors, and constants [26]. For example, sqrt(1-a) becomes sqrt(.1-a)
after injecting a fault, which can lead to NaN error. Similarly, replac-
ing operators like + with / will inject a division-by-zero error. Prior
work on Apache Spark recognizes the presence of such faults in
real-world DISC applications [19]. We also add faults by employ-
ing a range check that throws RuntimeException if a particular
column value falls within a narrow range. For example, a faulty
program throws an exception if a string value in a column starts
with "&%".

Fault injection is widely used in practice to evaluate new testing
techniques. Automated fault injection tools such as LAVA [14] and
Apocalypse [44] devise a set of principles that mimic properties
of real-world faults. When injecting faults, we also follow these
principles, which are as follows.

• Rare: The injected faults manifest for only a small fraction
of possible inputs. We inject a fault that is triggered if the
first column starts with the characters "&%". The number of
inputs that can trigger this fault is ≈ 25618. Assuming all
inputs are equally likely, the probability of randommutations
triggering this fault is ≈ 0.00002, assuming the row length
of 20 ASCII characters. Note that this is an overestimate
since, depending on where the fault is injected, several other
control flow and data flow criteria will need to be met for

the execution to reach the injected fault, further restricting
the space of inputs that can trigger this fault.

• Uncorrelated: Finding one injected fault neither increases nor
decreases the likelihood of finding any other faults.

• Reproducible: The faults are deterministic and reproducible
in that a single input can prove the existence of a fault.

• Fair: The faults are injected in locations that can be feasibly
reached by an automated technique. For example, no fault
is guarded by a branch that requires solving an infeasible
mathematical problem, such as factoring a large integer into
its constituent primes.

In total, we inject 45 faults across 17 benchmark programs. Since the
location of a fault may favor certain techniques, we ensure fairness
in fault injection by injecting a fault at each data processing step
in every program.

Fault Detection. Figure 9 shows the cumulative average number
of faults detected on the subject programs. We report a summary of
all detected program faults in Table 3. In Figure 9, the Y-axis repre-
sents the percentage of cumulative faults detected, and the X-axis
represents the fuzzing duration.DepFuzz outperforms baseline tech-
niques in terms of fault detection. For example, the majority of the
inputs produced by Jazzer have an insufficient number of columns,
which leads to data parsing errors (i.e., ArrayIndexOutOfBound ex-
ception) after the split operation. Similarly, in P1, BigFuzz spends
over 50% of its iterations triggering the same four parsing faults
in the first UDF, causing only NumberFormatException. Table 3
lists the total faults detected by DepFuzz, BigFuzz, and Jazzer.
On average, DepFuzz finds 3.4× more faults than Jazzer and 84%
more faults than BigFuzz due to co-dependence aware mutations.
DepFuzz’s strengths in fault detection are noticeable in P1-P4 and
P7, where co-dependence aware mutations help DepFuzz go past
the fusion operators and reach deeper dataflow operators.

Detecting Deeper Program Faults. We stratify the injected faults
by their dataflow operator depth. Figure 10 shows a scatter plot that
visualizes the depth of the faults across 17 programs. The top of the
plot represents deeper, hard-to-reach faults, whereas the bottom
represents faults in the initial phases of the application.

The scatter plot shows that, overall, DepFuzz finds faults that
reside at a deeper dataflow depth. In P1, for instance, DepFuzz
finds a total of 7 faults across three different dataflow depths (3, 4,
and 6), whereas both BigFuzz and Jazzer are unable to find any.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar

Program Application Execution Time Faults Detected

Original Instrumented Overhead DepFuzz BigFuzz Jazzer

P1 9.4 36.2 3.9 7 0 0
P2 15.6 149.2 9.6 3 0 0
P3 54.8 768.4 14.0 3 2 0
P4 11.2 27.8 2.5 1 1 0
P5 17.4 174.2 10.0 1 1 0
P6 7.0 13.0 1.9 1 1 0
P7 7.0 17.6 2.5 1 0 0
P8 7.0 12.8 1.8 2 2 1
P9 5.8 6.6 1.1 2 2 1
P10 6.8 12.0 1.8 3 2 3
P11 6.6 12.0 1.8 4 1 0
P12 4.8 5.8 1.2 1 1 0
P13 5.0 5.6 1.1 1 1 1
P14 5.0 6.0 1.2 2 2 2
P15 5.0 5.8 1.2 1 1 0
P16 6.8 8.0 1.2 1 1 0
P17 4.8 6.0 1.2 1 1 0

Total Faults Detected 35 19 8

Table 3: Running time of the original subject program and

the instrumented program with taint analysis along with

total errors detected by each tool.

The plot also shows that DepFuzz is consistently faster at finding
deep faults than baselines. For example, in P3, the deepest bug is
triggered by BigFuzz a little over an hour into the fuzzing campaign,
whereasDepFuzz finds it within the first minute. Although the time
difference is smaller for single dataset programs (P6-P17), a similar
pattern can be observed. For example, in P14, DepFuzz finds the
deepest bug within the first two minutes, whereas BigFuzz takes
over 13 minutes. Figure 10 also shows the centroids with⊗ for each
tool. The size of ⊗ represents the number of detected faults. Note
that the gaps between the centroids are larger than they appear due
to the log-scaled x-axis. On average, the deepest faults detected by
DepFuzz are 1.1 operators deeper than BigFuzz and 0.9 operators
deeper compared to Jazzer.

4.3 DepFuzz’s Instrumentation Overhead

DepFuzz enables dynamic taint analysis in a trial execution (i.e.,
running an instrumented program on the original input data) to
identify co-dependence relationships. Note that this is a one-time
overhead for the first run and is not a recurring overhead for each
fuzzing iteration because its goal is to infer co-dependence con-
straints from existing data.

Table 3 shows the time difference between an instrumented run
and an uninstrumented run on the original input datasets. For in-
stance, in program P1, the trial execution for dynamic taint analysis
takes 36.2 seconds, whereas the original program takes 9.4 seconds
to process the same amount of data. This overhead is higher in
programs with multiple datasets, aggregator operators, and fusion
operators, P1-P5, as they introduce complex dependencies among
columns and rows. These co-dependences are represented in dense
taint objects (i.e., RoaringBitmaps [11]). Across the 17 programs,
the first instrumented run’s overhead is 1.1× to 14× of the first
uninstrumented run. Note that this overhead is a one-time upfront
cost and the rest of the fuzzing loop does not require running an
instrumented version with taint monitors; therefore, in the long

run, the cost of using DepFuzz becomes negligible compared to
many hours of fuzz testing. DepFuzz’s runtime overhead is on par
with other taint analysis approaches on DISC applications [46].

5 RELATEDWORK

Fuzzing has gained popularity in industry and academia recently
due to its black-box nature and ease of adoption [38]. A common
challenge in fuzzing is generating structurally valid inputs. Zest [40]
attempts to generate valid inputs using parametric generators. Big-
Fuzz [52] uses framework abstraction to reduce fuzz testing latency.
However, BigFuzz is a simple random fuzzer and cannot iden-
tify co-dependent regions in the input. Symbolic execution tech-
niques [19, 29, 30, 37] exist for testing DISC applications. However,
they cannot easily generate constraints that respect co-dependence
relationships within multiple datasets, created by the complex in-
teraction between dataflow operators and UDFs. Random testing
bears similarity to fuzz testing [13, 33, 39, 42]. Randoop [39] and
EvoSuite [16] generate test suites for the program under test to
cause program crashes.

The closest line of work to ours is taint-based fuzzing. At a high
level, all taint analysis techniques attempt to isolate regions within
an input critical to mutate. For example, Bekrar et. al. [7] propose
taint-based fuzzing that identifies input regions to focus mutations.
TaintScope [49] and BuzzFuzz [17] isolate regions of the input inside
a sensitive library and system calls. PATA [32] performs path-aware
taint analysis to mitigate the problems of over-tainting and under-
tainting by employing path information. Although these techniques
isolate critical input regions, none target DISC applications and
none can discover underlying co-dependence relations by analyzing
dataflow operators and UDFs. The inputs to DISC applications are
very large and consist of multiple datasets; so existing taint tracking
at a byte-level is also inefficient. DepFuzz addresses these problems
by handling multiple datasets and by tracking taints at the level of
dataset IDs, columns, and rows from unstructured inputs.

The idea of triggering hard-to-reach regions of the program has
been seen frequently in the literature. FairFuzz [28] is a targeted
mutation strategy that avoids mutating input regions that trigger
rare branches, similar to how DepFuzz analyzes the use of fusion
operators to co-mutate certain regions. However, FairFuzz uses
coverage feedback and a simple masking strategy to freeze contigu-
ous input regions. AFLFast [9] prioritizes inputs that trigger rare
paths in the code. AFLFast instruments program binary and per-
form runtime coverage analysis. Both FairFuzz and AFLFast are not
suitable for DISC applications because they do not analyze dataflow
operator usages and internal UDF semantics to infer co-dependent
input regions in large datasets. Neither perform provenance-aware
duplication to resolve aggregations, which are extremely common
in DISC applications. Driller [47] switches to using symbolic execu-
tion to resolve a difficult branch that AFL fails to pass, causing it to
inherit the limitations of symbolic execution. Steelix [31] attempts
to produce a single input passing a difficult-to-hit branch in the
code and employs source-level instrumentation similar to DepFuzz.
Steelix is not suitable for DISC applications with large inputs due
to a lack of fine-grained data tracking.

TaintStream [51] implements cell-level provenance for Apache
Spark in the context of Policy Enforcement. DepFuzz also tracks

Co-dependence Aware Fuzzing for Dataflow-Based Big Data Analytics ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

provenance at the cell level. However, TaintStream requires ex-
tending the original dataset with tags, whereas DepFuzz’s cell
level tracking is fully automatic and does not require converting
the original dataset. DepFuzz’s taint analysis is similar to that of
FlowDebug [48], as they both instrument primitive data types and
application code and do not require any modifications to the origi-
nal datasets to enable taint analysis. However, FlowDebug concerns
taint analysis only and does not generate test data nor does it iden-
tify co-dependency constraints among input datasets. Furthermore,
existing data provenance techniques [12, 21–23, 34] perform taint
analysis only at the row level, support only a single dataset, and
do not support tracking at the column (cell) level. Spark-specific
data provenance solutions also exist, such as Titian [25], but it is
limited to row-level data provenance for only a single input dataset.
BigSift [18] is an extension of delta debugging for DISC applications
but its isolation works at the level of rows, not the level of dataset
IDs, rows, and columns, unlike DepFuzz.

6 CONCLUSION

Traditional fuzzing is ineffective for DISC applications due to re-
quirements to handle unstructured inputs, a lack of schema, the
inability to handle multiple datasets, and their large input size. In
this work, we introduceDepFuzz, a technique that uses fine-grained
provenance tracking to infer complex co-dependence constraints
created by dataflow operators and user-defined functions. The key
insight behind DepFuzz is to orchestrate co-dependence aware mu-
tations on multiple input datasets in concert. DepFuzz increases
code coverage fast, finds more defects, and finds defects that are
hard to find—29% higher statement coverage, 2.1× faster, and trig-
gering faults that are 0.9 operators deeper than the ones found by
the state of the art commercial fuzzer for JVM.

ACKNOWLEDGEMENTS

This work is supported by the National Science Foundation under
grant numbers 2106420, 1764077, 1956322, 1460325, 2106383 and
2106404. It is also supported in part by funding from Amazon and
Samsung. We want to thank the anonymous reviewers for their
constructive feedback that helped improve the work.

REFERENCES

[1] 2021. American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/. Accessed: 2021-12-
14.

[2] 2022. Apache Hadoop. https://hadoop.apache.org/. Accessed: 2021-12-14.
[3] 2022. Apache Spark. https://spark.apache.org/. Accessed: 2021-12-14.
[4] Accessed: 2022-09-01. Big Data Benchmark. https://amplab.cs.berkeley.edu/

benchmark/
[5] Accessed: 2022-09-01. TPC-DS Version 2 and Version 3. https://www.tpc.org/

tpcds/default5.asp
[6] Accessed: 2023-01-10. Demonstration Database.

https://postgrespro.com/community/demodb.
[7] Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. 2012. A Taint

Based Approach for Smart Fuzzing. In 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation. 818–825. https://doi.org/10.1109/
ICST.2012.182

[8] Alexander Boyce and Mathieu Leger. Accessed: 2023-01-10. Stateful
Streaming with Apache Spark: How to Update Decision Logic at Run-
time. https://www.databricks.com/session_eu20/stateful-streaming-with-
apache-spark-how-to-update-decision-logic-at-runtime

[9] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2019. Coverage-
Based Greybox Fuzzing as Markov Chain. IEEE Transactions on Software Engi-
neering 45, 5 (2019), 489–506. https://doi.org/10.1109/TSE.2017.2785841

[10] Deepayan Chakrabarti, Ravi Kumar, and Kunal Punera. 2008. A Graph-Theoretic
Approach to Webpage Segmentation. In Proceedings of the 17th International
Conference on World Wide Web (Beijing, China) (WWW ’08). Association for
Computing Machinery, New York, NY, USA, 377–386. https://doi.org/10.1145/
1367497.1367549

[11] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. 2016. Better bitmap
performance with roaring bitmaps. Software: practice and experience 46, 5 (2016),
709–719.

[12] Zaheer Chothia, John Liagouris, Frank McSherry, and Timothy Roscoe. 2016.
Explaining Outputs in Modern Data Analytics. Proc. VLDB Endow. 9, 12 (Aug.
2016), 1137–1148. https://doi.org/10.14778/2994509.2994530

[13] Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: an automatic robust-
ness tester for Java. Software: Practice and Experience 34, 11 (2004), 1025–1050.

[14] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,
Wil Robertson, Frederick Ulrich, and Ryan Whelan. 2016. LAVA: Large-Scale
Automated Vulnerability Addition. In 2016 IEEE Symposium on Security and
Privacy (SP). 110–121. https://doi.org/10.1109/SP.2016.15

[15] Fariza Fauzi, Jer-Lang Hong, and Mohammed Belkhatir. 2009. Webpage Seg-
mentation for Extracting Images and Their Surrounding Contextual Information.
In Proceedings of the 17th ACM International Conference on Multimedia (Beijing,
China) (MM ’09). Association for Computing Machinery, New York, NY, USA,
649–652. https://doi.org/10.1145/1631272.1631379

[16] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416–419.

[17] Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based directed whitebox
fuzzing. In 2009 IEEE 31st International Conference on Software Engineering. IEEE,
474–484.

[18] Muhammad Ali Gulzar, Matteo Interlandi, Xueyuan Han, Mingda Li, Tyson
Condie, and Miryung Kim. 2017. Automated debugging in data-intensive scalable
computing. In Proceedings of the 2017 Symposium on Cloud Computing. 520–534.

[19] Muhammad Ali Gulzar, Shaghayegh Mardani, Madanlal Musuvathi, and Miryung
Kim. 2019. White-Box Testing of Big Data Analytics with Complex User-Defined
Functions. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Tallinn, Estonia) (ESEC/FSE 2019). Association for Computing Machinery, New
York, NY, USA, 290–301. https://doi.org/10.1145/3338906.3338953

[20] Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar. 2023. DepFuzz
Tool for "Co-dependence Aware Fuzzing for Dataflow-Based Big Data Analytics".
https://doi.org/10.1145/3580412

[21] R. Ikeda, J. Cho, C. Fang, S. Salihoglu, S. Torikai, and J. Widom. 2012. Provenance-
Based Debugging and Drill-Down in Data-Oriented Workflows. In 2012 IEEE
28th International Conference on Data Engineering. 1249–1252. https://doi.org/
10.1109/ICDE.2012.118

[22] Robert Ikeda, Hyunjung Park, and Jennifer Widom. 2011. Provenance for gen-
eralized map and reduce workflows. In In Proc. Conference on Innovative Data
Systems Research (CIDR).

[23] R. Ikeda, A. Das Sarma, and J. Widom. 2013. Logical provenance in data-oriented
workflows?. In 2013 IEEE 29th International Conference on Data Engineering (ICDE).
877–888. https://doi.org/10.1109/ICDE.2013.6544882

[24] Code Intelligence. 2022. Jazzer. https://github.com/CodeIntelligenceTesting/
jazzer.

[25] Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar, Se-
unghyun Yoo, Miryung Kim, Todd Millstein, and Tyson Condie. 2015. Titian:
Data provenance support in spark. In Proceedings of the VLDB Endowment Inter-
national Conference on Very Large Data Bases, Vol. 9. NIH Public Access, 216.

[26] René Just. 2014. The Major Mutation Framework: Efficient and Scalable Mutation
Analysis for Java. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis (San Jose, CA, USA) (ISSTA 2014). Association for Comput-
ing Machinery, New York, NY, USA, 433–436. https://doi.org/10.1145/2610384.
2628053

[27] Krishna M. Kavi, Bill P. Buckles, and U. Narayan Bhat. 1986. A formal definition
of data flow graph models. IEEE Transactions on computers 35, 11 (1986), 940–948.

[28] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 475–485.

[29] Kaituo Li, Christoph Reichenbach, Yannis Smaragdakis, Yanlei Diao, and
Christoph Csallner. 2013. SEDGE: Symbolic example data generation for dataflow
programs. In 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 235–245. https://doi.org/10.1109/ASE.2013.6693083

[30] Nan Li, Yu Lei, Haider Riaz Khan, Jingshu Liu, and Yun Guo. 2016. Applying
combinatorial test data generation to big data applications. In 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE). 637–647.

[31] Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu,
and Alwen Tiu. 2017. Steelix: program-state based binary fuzzing. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering. 627–637.

[32] J. Liang, M. Wang, C. Zhou, Z. Wu, Y. Jiang, J. Liu, Z. Liu, and J. Sun. 2022. PATA:
Fuzzing with Path Aware Taint Analysis. In 2022 2022 IEEE Symposium on Security

https://lcamtuf.coredump.cx/afl/
https://hadoop.apache.org/
https://spark.apache.org/
https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/
https://www.tpc.org/tpcds/default5.asp
https://www.tpc.org/tpcds/default5.asp
https://doi.org/10.1109/ICST.2012.182
https://doi.org/10.1109/ICST.2012.182
https://www.databricks.com/session_eu20/stateful-streaming-with-apache-spark-how-to-update-decision-logic-at-runtime
https://www.databricks.com/session_eu20/stateful-streaming-with-apache-spark-how-to-update-decision-logic-at-runtime
https://doi.org/10.1109/TSE.2017.2785841
https://doi.org/10.1145/1367497.1367549
https://doi.org/10.1145/1367497.1367549
https://doi.org/10.14778/2994509.2994530
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1145/1631272.1631379
https://doi.org/10.1145/3338906.3338953
https://doi.org/10.1145/3580412
https://doi.org/10.1109/ICDE.2012.118
https://doi.org/10.1109/ICDE.2012.118
https://doi.org/10.1109/ICDE.2013.6544882
https://github.com/CodeIntelligenceTesting/jazzer
https://github.com/CodeIntelligenceTesting/jazzer
https://doi.org/10.1145/2610384.2628053
https://doi.org/10.1145/2610384.2628053
https://doi.org/10.1109/ASE.2013.6693083

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ahmad Humayun, Miryung Kim, and Muhammad Ali Gulzar

and Privacy (SP) (SP). IEEE Computer Society, Los Alamitos, CA, USA, 154–170.
https://doi.org/10.1109/SP46214.2022.00010

[33] Yu Lin, Xucheng Tang, Yuting Chen, and Jianjun Zhao. 2009. A divergence-
oriented approach to adaptive random testing of Java programs. In 2009 IEEE/ACM
International Conference on Automated Software Engineering. IEEE, 221–232.

[34] Dionysios Logothetis, Soumyarupa De, and Kenneth Yocum. 2013. Scalable
lineage capture for debugging DISC analytics. In Proceedings of the 4th annual
Symposium on Cloud Computing. ACM, 17.

[35] Ehsan Mazloumi, Graham Currie, and Geoffrey Rose. 2010. Using GPS data to
gain insight into public transport travel time variability. Journal of transportation
engineering 136, 7 (2010), 623–631.

[36] Farhad Nabhani and Alireza Shokri. 2009. Reducing the delivery lead time in a
food distribution SME through the implementation of six sigma methodology.
Journal of manufacturing technology Management 20, 7 (2009), 957–974.

[37] Christopher Olston, Shubham Chopra, and Utkarsh Srivastava. 2009. Gener-
ating Example Data for Dataflow Programs. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of Data (Providence, Rhode
Island, USA) (SIGMOD ’09). Association for Computing Machinery, New York,
NY, USA, 245–256. https://doi.org/10.1145/1559845.1559873

[38] Alessandro Orso and Gregg Rothermel. 2014. Software testing: a research travel-
ogue (2000–2014). In Future of Software Engineering Proceedings. 117–132.

[39] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed random
testing for Java. In Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion. 815–816.

[40] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic fuzzing with zest. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis. 329–340.

[41] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: fuzzing by
program transformation. In 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 697–710.

[42] IS Prasetya. 2013. T3, a combinator-based random testing tool for java: bench-
marking. In International Workshop on Future Internet Testing. Springer, 101–110.

[43] Roch, Grzegorz Slowikowski, Roland Tritsch, Sam, and Chris Kipp. 2022. scover-
age. https://github.com/scoverage. Accessed: 2022-01-10.

[44] Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt, and Yu Hu. 2018. Bug
Synthesis: Challenging Bug-Finding Tools with Deep Faults. In Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (Lake Buena Vista,
FL, USA) (ESEC/FSE 2018). Association for Computing Machinery, New York, NY,
USA, 224–234. https://doi.org/10.1145/3236024.3236084

[45] Kostya Serebryany. Accessed: 2023-01-29. LibFuzzer – a library for coverage-
guided Fuzz Testing. https://llvm.org/docs/LibFuzzer.html

[46] Dongdong She, Yizheng Chen, Abhishek Shah, Baishakhi Ray, and Suman Jana.
2020. Neutaint: Efficient dynamic taint analysis with neural networks. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 1527–1543.

[47] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting fuzzing through selective symbolic execution.. In
NDSS, Vol. 16. 1–16.

[48] Jason Teoh, Muhammad Ali Gulzar, and Miryung Kim. 2020. Influence-based
provenance for dataflow applications with taint propagation. In Proceedings of
the 11th ACM Symposium on Cloud Computing. 372–386.

[49] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. 2010. TaintScope: A Checksum-
Aware Directed Fuzzing Tool for Automatic Software Vulnerability Detection. In
2010 IEEE Symposium on Security and Privacy. 497–512. https://doi.org/10.1109/
SP.2010.37

[50] Guoqing Harry Xu, Margus Veanes, Michael Barnett, Madan Musuvathi, Todd
Mytkowicz, Ben Zorn, Huan He, and Haibo Lin. 2019. Niijima: Sound and
Automated Computation Consolidation for Efficient Multilingual Data-Parallel
Pipelines. In Proceedings of the 27th ACM Symposium on Operating Systems Prin-
ciples (Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing Ma-
chinery, New York, NY, USA, 306–321. https://doi.org/10.1145/3341301.3359649

[51] Chengxu Yang, Yuanchun Li, Mengwei Xu, Zhenpeng Chen, Yunxin Liu, Gang
Huang, and Xuanzhe Liu. 2021. TaintStream: Fine-Grained Taint Tracking for Big
Data Platforms throughDynamic Code Translation. Association for ComputingMa-
chinery, New York, NY, USA, 806–817. https://doi.org/10.1145/3468264.3468532

[52] Qian Zhang, Jiyuan Wang, Muhammad Ali Gulzar, Rohan Padhye, and Miryung
Kim. 2021. BigFuzz: Efficient Fuzz Testing for Data Analytics Using Framework
Abstraction. In Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering (Virtual Event, Australia) (ASE ’20). Association
for Computing Machinery, New York, NY, USA, 722–733. https://doi.org/10.
1145/3324884.3416641

Received 2023-02-02; accepted 2023-07-27

https://doi.org/10.1109/SP46214.2022.00010
https://doi.org/10.1145/1559845.1559873
https://doi.org/10.1145/3236024.3236084
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1145/3341301.3359649
https://doi.org/10.1145/3468264.3468532
https://doi.org/10.1145/3324884.3416641
https://doi.org/10.1145/3324884.3416641

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Phase I: Enabling Fine-Grained Taint Analysis
	3.2 Phase II: Fine-Grained Taint Tracking
	3.3 Phase III: Row Selection for Data Size Reduction
	3.4 Phase IV: Co-Dependence Aware Mutation

	4 Evaluation Results
	4.1 Test Coverage Against Baseline
	4.2 Fault Detection
	4.3 DepFuzz's Instrumentation Overhead

	5 Related Work
	6 conclusion
	References

