BigDebug: Debugging Primitives for Interactive Big Data Processing in Spark

Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep Tetali, Tyson Condie, Todd Millstein, Miryung Kim

University of California, Los Angeles
Developing Big Data Analytics

• Big Data Analytics is becoming increasingly important.

• Big Data Analytics are built using data intensive computing platforms such as Map Reduce, Hadoop, and Apache Spark.
Apache Spark: Next Generation Map Reduce

• Apache Spark is up to 100X faster than Hadoop MapReduce
• It is open source and over 800 developers have contributed in its development
• 200+ companies are currently using Spark
• Spark also provides libraries such as SparkSQL and Mllib
Running a Map Reduce Job on Cluster

A user submits a job

A job is distributed to workers in cluster

Each worker performs pipelined transformations on a partition with millions of records
Motivating Scenario: Election Record Analysis

- Alice writes a Spark program that runs correctly on local machine (100MB data) but crashes on cluster (1TB)
- Alice cannot see the crash-inducing intermediate result.
- Alice cannot identify which input from 1TB causing crash
- When crash occurs, all intermediate results are thrown away.

```
val log = "s3n://poll.log"
val text_file = spark.textFile(log)
val count = text_file
  .filter(line => line.split()[3].toInt > 1440012701)
  .map(line => (line.split()[1], 1))
  .reduceByKey(_ + _).collect()
```

<table>
<thead>
<tr>
<th>VoterID</th>
<th>Candidate</th>
<th>State</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>9213</td>
<td>Sanders</td>
<td>TX</td>
<td>1440023087</td>
</tr>
</tbody>
</table>
Motivating Scenario: Election Record Analysis

• Alice writes a Spark program that runs correctly on local machine (100MB data) but crashes on cluster (1TB)

• Alice cannot see the crash-inducing intermediate result.

• Alice cannot identify which input from 1TB causing crash

• When crash occurs, all intermediate results are thrown away.

VoterID Candidate State Time
9213 Sanders TX 1440023087

1 val log = "s3n://poll.log"
2 val text_file = spark.textFile(log)
3 val count = text_file
4 .filter(line => line.split()[3].toInt > 1440012701)
5 .map(line => (line.split()[1], 1))
6 .reduceByKey(_ + _).collect()

Task 31 failed 3 times; aborting job
ERROR Executor: Exception in task 31 in stage 0 (TID 31)
java.lang.NumberFormatException
BigDebug: Interactive Debugger Features

1. Simulated Breakpoint

2. Guarded Watchpoint

3. Crash Culprit Identification

4. Backward and Forward Tracing

Crashing at transformation 2
Crashing Record: "Sanders"
ArrayIndexOutOfBoundsException
Outline

• Interactive Debugging Primitives
 1. Simulated Breakpoint
 2. On-Demand Watchpoint
 3. Crash Culprit Identification
 4. Backward and Forward Tracing
 5. Fine Grained Latency Alert

• Performance Evaluation
Why Traditional Debug Primitives Do Not Work for Apache Spark?

Enabling interactive debugging requires us to **re-think the features of traditional debugger** such as GDB

- Pausing the entire computation on the cloud could reduce throughput
- It is clearly infeasible for a user to inspect billion of records through a regular watchpoint
- Even launching remote JVM debuggers to individual worker nodes cannot scale for big data computing
Spark Program with Transformations
Spark Program Scheduled as Stages

Stage 1: Flatmap → Map
Stage 2: ReduceByKey → Map → ReduceByKey → Filter
Stage 3: (Blank)
Materialization Points in Spark

Stage 1:
- Flatmap
- Map

Stage 2:
- ReduceByKey
- Map

Stage 3:
- ReduceByKey
- Filter

Stored data records
1. Simulated Breakpoint
1. Simulated Breakpoint

![Diagram of data processing stages with a break point]
1. Simulated Breakpoint

Simulated breakpoint replays computation from the latest materialization point where data is stored in memory
1. Simulated Breakpoint – Realtime Code Fix

Allow a user to fix code after the breakpoint
2. On-Demand Guarded Watchpoint

Watchpoint captures individual data records matching a user-provided guard
2. On-Demand Guarded Watchpoint

Watchpoint captures individual data records matching a user-provided guard

state.equals("TX") || state.equals("CA")
2. On-Demand Guarded Watchpoint

Watchpoint captures individual data records matching a user-provided guard

Example: state.equals("CA")
Crash in Apache Spark

A job failure in Spark throws away the intermediate results of correctly computed stages.

Task 31 failed 3 times; aborting job
ERROR Executor: Exception in task 31 in stage 0 (TID 31)
java.lang.NumberFormatException

To recover from crash, a user needs to find input causing crash and re-execute the whole job.
3. Crash Culprit Identification

A user can see the crash-causing intermediate record and trace the original inputs leading to the crash.
3. Crash Culprit Remediation

A user can either correct the crashed record, skip the crash culprit, or supply a code fix to repair the crash culprit.
4. Backward and Forward Tracing

A user can also issue tracing queries on intermediate records at realtime
4. Backward and Forward Tracing

A user can also issue tracing queries on intermediate records at realtime
Titian: Data Provenance for Spark [PVLDB2016]

Titian instruments Spark jobs with tracing agents to generate fine grained tracing tables

Titian logically reconstructs mapping from output to input records by recursively joining the provenance tables
5. Fine Grained Latency Alert

A latency alert is issued if the processing time is greater than k standard deviations above the moving average.
5. Fine Grained Latency Alert

A latency alert is issued if the processing time is greater than k standard deviations above the moving average.
Evaluation

• Q1 : How does BigDebug **scale** to massive data?

• Q2 : What is the performance **overhead** of instrumentation and communication for debugging primitives?

• Q3 : How much **time saving** does BigDebug provide through its runtime crash remediation, in comparison to an existing replay debugger?
Q1: How does BigDebug scale to massive data?

![BigDebug Scale Up Graph](image)

- **Time (s)**
- **Dataset Size (GB)**
- **BigDebug Scale Up**
 - Spark
Q1: How does BigDebug scale to massive data?

BigDebug retains scale up property of Spark. This property is critical for Big Data processing frameworks.
Q1 : How does BigDebug scale to massive data?

![BigDebug Scale Out](chart)

- **Spark 10GB**
- **Spark 30GB**
- **Spark 50GB**

(Number of Workers vs. Time (s))
Q1: How does BigDebug scale to massive data?

BigDebug retains scale out property of Spark. This property is critical for Big Data processing frameworks.
Q2 : What is the performance overhead of debugging primitives?

<table>
<thead>
<tr>
<th>Program</th>
<th>Dataset size (GB)</th>
<th>Max</th>
<th>Max w/o Latency Alert</th>
<th>Watchpoint</th>
<th>Crash Culprit</th>
<th>Tracing</th>
</tr>
</thead>
<tbody>
<tr>
<td>WordCount</td>
<td>0.5 - 1000</td>
<td>2.5X</td>
<td>1.34X</td>
<td>1.09X</td>
<td>1.18X</td>
<td>1.22X</td>
</tr>
<tr>
<td>Grep</td>
<td>20 - 90</td>
<td>1.76X</td>
<td>1.07X</td>
<td>1.05X</td>
<td>1.04X</td>
<td>1.05X</td>
</tr>
<tr>
<td>PigMix-L1</td>
<td>1 - 200</td>
<td>1.38X</td>
<td>1.29X</td>
<td>1.03X</td>
<td>1.19X</td>
<td>1.24X</td>
</tr>
</tbody>
</table>

Max : All the features of BigDebug are enabled

BigDebug poses at most 2.5X overhead with the maximum instrumentation setting.
Q3 : How much time saving does BigDebug provide when resolving crash?

Suppose that a user wants to skip or correct the crash causing inputs.

Arthur

The first run crashes
Q3 : How much time saving does BigDebug provide when resolving crash?

Suppose that a user wants to skip or correct the crash causing inputs.

Arthur

The first run crashes

The second run instruments all records leading to a crash

The third run removes the crash inducing records from the inputs.
Q3: How much time saving does BigDebug provide when resolving crash?

Suppose that a user wants to skip or correct the crash causing inputs.

Arthur

The first run crashes

The second run instruments all records leading to a crash

The third run removes the crash inducing records from the inputs.

BigDebug

A single run can detect and remove the crash culprit and resumes the job.
Q3: How much time saving does BigDebug provide?

BigDebug finds a crash inducing record with 100% accuracy and saves up to 100% time saving through runtime crash remediation.
Conclusion

- Debugging big data applications is painstaking and expensive
- BigDebug provides interactive debugging primitives for high performance in-memory processing in Spark
- BigDebug offers simulated breakpoints and guarded watchpoints with little performance overhead
- It scales to massive data in the order of terabytes, its record level tracing poses 25% overhead and provides up to 100% time saving
- BigDebug is publically available at https://sites.google.com/site/sparkbigdebug/