Template-based Reconstruction of
Complex Refactorings

Kyle Prete, Napol Rachatasumrit, Nikita Sudan, Miryung Kim

Electrical and Computer Engineering
The University of Texas at Austin




Problem:
Refactoring Reconstruction

Existing refactoring reconstruction techniques
cannot easily identify complex refactorings,
which consist of a set of atomic refactorings




Solution: Ref-Finder

® Ref-Finder expresses each refactoring type in
terms of template logic rules.

® [t uses a logic programming engine to
infer concrete refactoring instances

® |t covers 63 of the 72 refactoring types in
Fowler’s catalog, showing the most
comprehensive coverage.




Outline

® Motivation and a survey of existing
techniques

® A template-based reconstruction approach

® Evaluation

® Conclusions and future work




Motivation

® |nferred refactorings can help developers
understand other developers’ modifications

e to adapt broken client applications

e to empirically study refactorings when the
documentation about past refactorings is
unavailable




A Survey of Refactoring
Reconstruction Techniques

. Demeyer et al.
. Malpohl

. Van Rysselberghe and
Demeyer

. Antoniol et al.

. S.Kim et al.

. Xing and Stroulia’s
UMLdiff and change-fact
queries

/. Zou and Godfrey

8. Dig et al’s Refactoring
Crawler

9. Weil3gerber and Diehl

|0. Fluri et al’s Change
Distiller

| |.Dagenais and Robillard
12.M. Kim et al.




Extract Method

Extract Subclass

Move Class

Move Field

Move Interface

Move Method

Rename Method

Replace Package

Replace Class

AN AV AVANVNANAN AN AN AN

Replace Return

Replace Input Signature

v
v
v
v
v
v
v
O
%

Add Parameter

SIS SIS SIS SIS K]S

SISCISCISN NN SIS ]S

SISISISINISINISS]S

SIS IN NSNS

SISISISNISISSNISN]S

SISISINININISISINS

SIS SISO N[OOI

SISCISINININISSNS

Extract Superclass

Pull Up Field

Pull Up Method

Push Down Field

Push Down Method

Remove Parameter

Hide Method

Unhide Method

U Y AYAYAYASA

SISISISISISISISISINICISISISNIN|SIN]SN]K | e




o

Extract Subsystem

Inline Subsystem

Form Template Method

Replace Inheritance
with Delegation

Replace Delegation with
Inheritance

Inline Class

Convert Anonymous
Class into Inner Class

Introduce Factory
Method

Introduce Parameter
Object

Encapsulate Field

BN | S | S ST SIS NS

Preserve Whole Object

The remaining 40 refactoring types in Fowler’s catalog are
not handled by any of existing techniques.




Challenges of Complex
Refactoring Reconstruction

® Must find pre-requisite refactorings to
identify composite refactorings

® Require information about changes within
method bodies

® Require the knowledge of changes to the
control structure of a program




Outline

® Motivation and a survey of existing
techniques

® A template-based reconstruction
approach

® FEvaluation

® Conclusions and future work




Approach Overview

Step |. Encode each refactoring type as a
template logic rule

Step 2. Extract change-facts from two input
program versions

Step 3. Refactoring identification via logic queries

® Ref-Finder orders pre-requisite refactorings
before composite refactorings




Predicates

LSdiff Predicates Extended Predicates

package type methodbody conditional

method field cast trycatch

return fieldoftype throws variabledeclation

typeintype accesses methodmodifiers fieldmodifiers

calls subtype parameter similarbody(0O) *

inheritedfield getter setter

inheritedmethod addedparameter deletedparameter




Fact-Level Differences

Old Program before_*
type(“Foo”,..)
method (“Foo.main”, "main”, "Foo")
conditional (“date.before (SUMMER START)...)

methodbody (“Foo.main”, ...)

New Program after_*

type(“Foo”,..)
method (“Foo.main” ,”main” , "Foo"”)
method (“Foo.notSummer (Date)”, “notSummer”, “Foo”)




Fact-Level Differences

Old Program before_*
type(“Foo”,..)
method (“Foo.main”,”main” , "Foo”)
conditional (“date.before (SUMMER START)...)

methodbody (“Foo.main”, ...)
difference

New Program after_*

type(“Foo”,..)
method (“Foo.main” ,”main” , "Foo")
method (“Foo.notSummer (Date)”, “notSummer”, “Foo”)

Differences (AFB) added_%* / deleted_*
added method (“Foo.summerCharge”, ...)
added method (“Foo.notSummer”, ...)
deleted conditional (“date.before(SUMMER_START)..

-)




Rule Syntax

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.




Rule Syntax

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

A rule’s consequent refers to a target refactoring to be inferred.

(deleted subtype(tl,t2)
A(pull up field(f,t2,tl) VvV pull up method(m,t2,tl)))
V(before subtype(tl,t2) A deleted type(tl,n,p)
A(push down field(f,tl,t2) VvV push down method(m,tl,t2))
=collapse hierarchy(tl,t2)




Rule Syntax

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

A rule’s antecedent refers to the structural constraints before and
after the target refactoring.

(deleted subtype(tl,t2)
A(pull up field(f,t2,tl) V pull up method(m,t2,tl)))
V(before subtype(tl,t2) A deleted type(tl,n,p)
A(push_down field(f,t1,t2) V push down method(m,tl,t2))
=collapse hierarchy(tl,t2)




Rule Syntax

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

A rule’s antecedent may refer to pre-requisite refactorings.

(deleted subtype(tl,t2)
A(pull up field(f,t2,tl) V pull up method(m,t2,tl)))
V(before subtype(tl,t2) A deleted type(tl,n,p)

A(push_down field(f,t1,t2) V push down method(m,tl,t2))
=collapse hierarchy(tl,t2)




Rule Syntax

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

The structural constraints are represented in Boolean logic.

(deleted subtype(tl,t2)
A(pull up field(f,t2,tl) V pull up method(m,t2,tl)))
V(before subtype(tl,t2) A deleted type(tl,n,p)
A(push down field(f,tl,t2) V push down method(m,tl,t2))
=>collapse hierarchy(tl,t2)




Rule Syntax

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

(deleted subtype(tl,t2)
A(pull up field(f,t2,tl) V pull up method(m,t2,tl)))
V(before subtype(tl,t2) A deleted type(tl,n,p)
A(push_down field(f,t1,t2) V push down method(m,tl,t2))
=collapse hierarchy(tl,t2)




Encoding Fowler’s Refactorings

® We encoded 63 types but excluded a few
because

® they are too ambiguous,
® require accurate alias analysis, or
® require clone detection at an arbitrary granularity.

® Catalog of Template Refactoring Rules, Kyle Prete, Napol
Rachatasumrit, Miryung Kim, Technical Report, UT Austin




Refactoring Inference Order

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

Collapse Hierarchy

g

Push Down Method Pull Up Method Pull Up Field Push Down Field

i \/

Move Method Move Field




Refactoring Inference Order

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

Collapse Hierarchy

g

Push Down Method Pull Up Method Pull Up Field Push Down Field

Move Method Move Field




Refactoring Inference Order

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

Collapse Hierarchy

Push Down Method Pull Up Method Pull Up Field Push Down Field

Move Method Move Field




Refactoring Inference Order

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

Collapse Hierarchy

g

Push Down Method Pull Up Method Pull Up Field Push Down Field

i \/

Move Method Move Field




Collapse Hierarchy Inference

deleted field(fl, £, t1)

A deleted access(fl, ml)

ﬁe’d refactori ng A added_access (£f2, ml)
= move_ field(f, tl1l, t2)

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, *“color”, “PieChart”)
added field(“”Chart.color”, *“color”, *“Chart”)

deleted access(“PieChart.color”, “Chart.draw”)

added access(“Chart.color”, “Chart.draw”)

Collapse

1

Pull Up

o




Collapse Hierarchy Inference

Collapse

1

Pull Up

o

deleted field(fl, £, t1)

A deleted access(fl, ml)

ﬁe’d refactori ng A added_access(£f2, ml)
= move_ field(f, tl1l, t2)

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, *“color”, “PieChart”)
added field(“”Chart.color”, *“color”, *“Chart”)

deleted access(“PieChart.color”, “Chart.draw”)

added access(“Chart.color”, “Chart.draw”)




Collapse

Collapse Hierarchy Inference pul up

o

=0 A IR TR R [ O g TR RS D

Invoke a move- deleted field(fl, £, tl)
A added field(f2, £, t2)
ﬁe’d Clue")’ A deleted access(fl, ml)

A added access(f2, ml)?

before subtype(“Chart”,”PieChart”)

deleted subt “Chart”,”PieChart”

deleted field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, “Chart”)

deleted access(“PieChart.color”, “Chart.draw”)

added access(“Chart.color”, “Chart.draw”)




Collapse

1

Collapse Hierarchy Inference (ruive
p y C=a

f="color”,

Create a new move tl="PieChart”,
t2="Chart”

ﬁ@’d fact move_ field(“color”, “PieChart”,
“Chart”)

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, *“color”, “PieChart”)
added field(“”Chart.color”, *“color”, *“Chart”)

deleted access(“PieChart.color”, “Chart.draw”)

added access(“Chart.color”, “Chart.draw”
move field(”“color”, “PieChart”, “Chart”)




Collapse

Collapse Hierarchy Inference K

Move

TO ﬁnd a pu" up move field(f, tl, t2)
A before subtype(t2,tl)

field refactoring = pull up_field(f, tl, t2)

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, *“color”, “PieChart”)
added field(“”Chart.color”, *“color”, *“Chart”)

deleted access(“PieChart.color”, “Chart.draw”)

added access(“Chart.color”, “Chart.draw”)

move field(“color”, “PieChart”, “Chart”)




Collapse
A

Collapse Hierarchy Inference @&
P y o

TO ﬁnd a pu" up move field(f, tl1, t2)
A before subtype(t2,tl)

field refactoring S pull up field(f, tI, t2)

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, *“color”, “PieChart”)
added field(“”Chart.color”, *“color”, *“Chart”)

deleted access(“PieChart.color”, “Chart.draw”)

added access(“Chart.color”, “Chart.draw”)

move field(“color”, “PieChart”, “Chart”)




Collapse
A

Collapse Hierarchy Inference GEE

Move

Invoke a pull up 2
move_field(f, tl, t2)

ﬁE’d query A before subtype(t2,tl)?

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, *“color”, “PieChart”)
added field(“”Chart.color”, *“color”, *“Chart”)

deleted access(“PieChart.color”, “Chart.draw”)

added access(“Chart.color”, “Chart.draw”
move field(”“color”, “PieChart”, “Chart”)




Collapse

Collapse Hierarchy Inference pu up

Move

f="color”,

Create a new tl="PieChart”,
t2="Chart”

pull up field fact pull up field(“color”, “PieChart”,
“Chart”)

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, *“color”, *“PieChart”)
added field(“”Chart.color”, *“color”, “Chart”)

deleted access(”“PieChart.color”, “Chart.draw”)

added access(“Chart.color”, “Chart.draw”)

move field(“color”, “PieChart”, *“Chart”
pull up field(“color”, “PieChart”, “Chart”)




Collapse

Collapse Hierarchy Inference GEE

Move

Create d hew collapse hierarchy(“Chart”,
CO"apSe “PieChart”)

hierarchy fact

before subtvpe(#“Chart”,”PieChart”

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, *“color”, “PieChart”)
added field(“”Chart.color”, *“color”, “Chart”)

deleted access(”“PieChart.color”, “Chart.draw”)

added access(“Chart.color”, “Chart.draw”)

move field(“color”, “PieChart”, *“Chart”
pull up field(“color”, “PieChart”, “Chart”)




Collapse Hierarchy Inference

Create a new
collapse
hierarchy fact

before subtype(“Chart”,”PieChart”)

deleted subtype(“Chart”,”PieChart”)

deleted field(“PieChart.color”, *“color”, *“PieChart”)
added field(“”Chart.color”, *“color”, “Chart”)

deleted access(”“PieChart.color”, “Chart.draw”)

added access(“Chart.color”, “Chart.draw”)

move field(“color”, “PieChart”, *“Chart”)

pull up field(“color”, “PieChart”, “Chart”)
collapse hierarchy(“Chart”, “PieChart”)

Collapse

Pull Up

Move




Ref-Finder Eclipse Plug-In

jEdit_4.3.1/src/org/qgjt/sp/jedit/bsh/LHS.java

public Object assign( Object val,
throws UtilEvalError

boolean strictlava )

{

Ef C type == VARIABLE ) {|
1f ( localVar ) nameSpace.s

else nameSpace.setVariable( varName,
}Ielse if ( type == FIELD ) {I(;

1Variable( wvarN:
strict.

try {

t_ Problems | @ Javadoc |Jq Declaration | ] Refactorings 3

Replace conditional with polymorphism
Replace conditional with polymorphism
Remove parameter

Extract hierarchy

Remove parameter

Remove parameter

Replace conditional with polymorphism
Remove parameter

Remove parameter

Remove parameter

Remove parameter

Remove assignment to parameters
Replace conditional with polymorphism
Remove parameter

Object fieldVal = val instanceof Primitive ?
((Primitive)val).getValue() :

val;

4 »

1 Rules View

jEdit_4.3.1+/srcforg/gjt/sp/jedit/bsh/LHS.java
public Object assign( Object val,
throws UtilEvalError

boolean strictlava

throw new InterpreterError("unknown lhs");

Conditionals that check the ' {

type of an object are 37 "Field - "sficld.tostringOi - []

rep|aced by polymorphwm 1 ?2 " varName = "+varName: "")| *
f\numc_apu\.c -nu'll 2" nomeSpacc - "+nameSpacc M

——— —3 <>

= 0

Replace conditional with polymorphism
("org.gjt.sp.jedit.bsh¥.LHS#assign()","org.gjt.sp.jedit.bsh%.LHSIndex")

deleted_conditional(“type==FIELD","tryObjectfieldVal=valinstanceofPrimitive?((...
AND
before_method("org.gjt.sp.jedit.bsh¥.LHS#assign()"

AND

,"assign()","org.gjt.sp.jedit...
.
.
.

added_method("org.gjt.sp.jedit.bsh%.LHSIndex#assign()","assign()","org.gjt.sp...

AND

similar_body("org.gjt.sp.jedit.bsh¥.LHSIndex#assign()","org.gjt.sp.jedit...

Qld.

P |org.gjt.sp.jedit.bsh%.LHS#assign(] |

Refactoring details are linked
to code elements

Logic query is filled

new, and expanded

Jora.gjt.sp.jedit.bsh%.LHS#assign() |




Outline

® Motivation and a survey of existing
techniques

® A template-based reconstruction approach
® Evaluation

® Conclusions and future work




Evaluation: Two Case Studies

|. Code examples from Fowler’s book

2. Open source projects

Version Pairs

Factbase Size

jEdit

3 releases

110151~121931

columba

2 revisions

374016~381893

carol

9 revisions

12869~39353




Evaluation: Criteria

® Precision—how accurate are the identified
refactorings?

® Recall—how many known refactorings were
detected!?




Evaluation: Fowler’s

Ref-Finder finds refactorings with 97% precision and 94% recall.

Expected

Found

Precision

Recall

False negatives

False Positives

8

19

1.00

1.00

9

20

0.95

1.00

extract method

9

12

1.00

1.00

13

1.00

0.90

preserve whole objects

1.00

0.89

replace conditionals
with polymorphism

1.00

0.90

replace parameters
with explicit methods

replace type code with
state

replace magic number
with symbolic
constants,
extract method




Evaluation: Fowler’s

® False positives:
® [Extract Method
® Replace Magic Number with Constant

® False negative resulted from not being able to find
similarbody facts.




Evaluation Method:
Open Source Software

® Precision:Ve randomly sampled at most 50 refactorings
per version pair (0=0.85).

Recall:We used a threshold (0 =0.65) and manually
inspected them until we found 10 correct refactorings.

Then we used a stricter threshold (0=0.85) and
compared the results with this set.




Evaluation:
Open Source Projects

Ref-Finder finds refactorings with 74% precision and 96% recall.

Versions # Found Prec.

3.0-3.0.1 10 0.75
jEdit 3.0.1-3.0.2 | 1.00
3.0.2-3. 0.45
300-352 43 0.52
352-449 091

62-63 12 1.00
389-42| 8 0.63
421-422 0.64
429-430 48 0.85
430-480 37 0.8!
480-48| |l 0.91
548-576 1.00
576-764 0.85

0.74

Columba




True Positive Example:
Hide Delegate (jEdit 3.0.2-3.1)

public class TextUtilities {
public static int findMatchingBracket (Buffer buffer,

int line, int offset, int startLine, int endLine)
throws BadLocationException{

TokenMarker tokenMarker = buffer.getTokenMarker();

TokenMarker.LineInfo lineInfo = tokenMarker

.markTokens (buffer,line);

Token lineTokens = lineInfo.firstToken;

Buffer.LineInfo lineInfo = buffer.markTokens(line);

Token lineTokens = lineInfo.getFirstToken();

hide delegate(”“TokenMarker”, “Buffer”, “TextUtilities”)




Limitations

® Propagation of incorrect inferred refactorings
® Our rule encoding is subject to bias

® Better clone detection mechanisms and APIl-level
refactoring detection needed




Future Work

® |nvestigate robustness of Ref-Finder in case of
floss refactorings [Murphy-Hill et al. 2009]

® Discover refactorings seeded by IDFE’s
refactoring features

® Compare reconstructed refactorings with
recorded refactorings in IDE [Robbes et al.
2008]




Related Work

® |ogic-based program representation

® source code navigation (e.g., Grok, JQuery, CodeQuest, Intentional
View)

design pattern detection (e.g., DeMIMA)
bad-smell detection (e.g., Tourweé et al.)

conformance checking (e.g., Eichberg et al.)




Summary

® Ref-Finder uses a template-logic query based
approach

® |t supports 63 refactoring types out of 72 in
Fowler’s catalog.

It detects complex refactorings by knitting
together pre-requisite atomic refactorings with
other structural constraints.

Its overall precision and recall are 0.79 and 0.95.




Questions!




