
Template-based Reconstruction of
Complex Refactorings

Kyle Prete, Napol Rachatasumrit, Nikita Sudan, Miryung Kim

Electrical and Computer Engineering
The University of Texas at Austin

Problem:
Refactoring Reconstruction

Existing refactoring reconstruction techniques
cannot easily identify complex refactorings,
which consist of a set of atomic refactorings

Solution: Ref-Finder

• Ref-Finder expresses each refactoring type in
terms of template logic rules.

• It uses a logic programming engine to
infer concrete refactoring instances

• It covers 63 of the 72 refactoring types in
Fowler’s catalog, showing the most
comprehensive coverage.

Outline

• Motivation and a survey of existing
techniques

• A template-based reconstruction approach

• Evaluation

• Conclusions and future work

Motivation

• Inferred refactorings can help developers
understand other developers’ modifications

• to adapt broken client applications

• to empirically study refactorings when the
documentation about past refactorings is
unavailable

A Survey of Refactoring
Reconstruction Techniques

1. Demeyer et al.

2. Malpohl

3. Van Rysselberghe and
Demeyer

4. Antoniol et al.

5. S. Kim et al.

6. Xing and Stroulia’s
UMLdiff and change-fact
queries

7. Zou and Godfrey

8. Dig et al.’s Refactoring
Crawler

9. Weißgerber and Diehl

10.Fluri et al.’s Change
Distiller

11.Dagenais and Robillard

12.M. Kim et al.

1 2 3 4 5 6 7 8 9 10 11 12

Extract Method ✔ ✔ ♢ ♢ ♢ ✔ ✔ ✔ ✔ ✔ ✔ ♢
Extract Subclass ✔ ✔

Move Class ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ♢ ✔

Move Field ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ♢ ✔

Move Interface ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ♢ ✔

Move Method ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Rename Method ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Replace Package ✔ ♢ ✔ ♢ ✔ ✔ ✔ ✔ ✔ ✔ ♢ ✔

Replace Class ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ♢ ✔

Replace Return ♢ ♢ ♢ ♢ ♢ ✔ ♢ ✔ ✔ ♢ ✔

Replace Input Signature ✔ ♢ ♢ ♢ ♢ ✔ ✔ ♢ ✔ ✔ ✔ ♢
Add Parameter ✔ ♢ ♢ ✔ ✔ ✔ ✔ ♢ ✔ ♢ ✔

Extract Superclass ✔ ✔

Pull Up Field ✔ ✔

Pull Up Method ✔ ✔

Push Down Field ✔ ✔

Push Down Method ✔ ✔

Remove Parameter ✔ ♢ ✔ ✔ ✔ ✔ ✔ ♢ ♢ ✔

Hide Method ♢ ♢ ✔ ✔ ✔ ♢ ♢
Unhide Method ♢ ♢ ✔ ✔ ✔ ♢ ♢

1 2 3 4 5 6 7 8 9 10 11 12

Extract Subsystem ♢ ✔ ♢ ♢ ♢ ♢ ♢

Inline Subsystem ♢ ♢ ✔ ♢ ♢ ♢ ♢ ♢

Form Template Method ♢ ♢ ♢ ✔ ✔ ♢ ♢

Replace Inheritance
with Delegation

✔

Replace Delegation with
Inheritance

✔

Inline Class ✔ ✔ ✔

Convert Anonymous
Class into Inner Class

✔

Introduce Factory
Method

✔

Introduce Parameter
Object

✔

Encapsulate Field ✔

Preserve Whole Object ♢ ✔ ♢ ♢

The remaining 40 refactoring types in Fowler’s catalog are
not handled by any of existing techniques.

Challenges of Complex
Refactoring Reconstruction

• Must find pre-requisite refactorings to
identify composite refactorings

• Require information about changes within
method bodies

• Require the knowledge of changes to the
control structure of a program

Outline

• Motivation and a survey of existing
techniques

• A template-based reconstruction
approach

• Evaluation

• Conclusions and future work

Approach Overview

• Step 1. Encode each refactoring type as a
template logic rule

• Step 2. Extract change-facts from two input
program versions

• Step 3. Refactoring identification via logic queries

• Ref-Finder orders pre-requisite refactorings
before composite refactorings

Predicates

LSdiff PredicatesLSdiff Predicates Extended PredicatesExtended Predicates
package type methodbody conditional

method field cast trycatch

return fieldoftype throws variabledeclation

typeintype accesses methodmodifiers fieldmodifiers

calls subtype parameter similarbody(σ)*

inheritedfieldinheritedfield getter setter

inheritedmethodinheritedmethod addedparameter deletedparameter

Old Program (FBo)

New Program after_*

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
access(“Key.on”,”Bus.start”)
method(“Key.out”,”out”,”Key”)...

type(“Foo”,..)
method(“Foo.main”,”main”,”Foo”)
conditional(“date.before(SUMMER_START)...)
methodbody(“Foo.main”, ...)

Old Program before_*

type(“Foo”,..)
method(“Foo.main”,”main”,”Foo”)
method (“Foo.notSummer(Date)”, “notSummer”, “Foo”)

Fact-Level Differences

- set
difference

added_method(“Foo.summerCharge”, ...)
added_method(“Foo.notSummer”, ...)
deleted_conditional(“date.before(SUMMER_START)..
.)

Differences (∆FB) added_* / deleted_*

Fact-Level Differences

=

New Program after_*

type(“Bus”,..)
method(“Bus.start”,”start”,”Bus”)
access(“Key.on”,”Bus.start”)
method(“Key.out”,”out”,”Key”)...

type(“Foo”,..)
method(“Foo.main”,”main”,”Foo”)
conditional(“date.before(SUMMER_START)...)
methodbody(“Foo.main”, ...)

Old Program before_*

type(“Foo”,..)
method(“Foo.main”,”main”,”Foo”)
method (“Foo.notSummer(Date)”, “notSummer”, “Foo”)

Rule Syntax

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

Rule Syntax

A rule’s consequent refers to a target refactoring to be inferred.

(deleted_subtype(t1,t2)
∧(pull_up_field(f,t2,t1) ∨ pull_up_method(m,t2,t1)))
∨(before_subtype(t1,t2) ∧ deleted_type(t1,n,p)
∧(push_down_field(f,t1,t2) ∨ push_down_method(m,t1,t2))

⇒collapse_hierarchy(t1,t2)

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

Rule Syntax

A rule’s consequent refers to a target refactoring to be inferred.
A rule’s antecedent refers to the structural constraints before and

after the target refactoring.

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

(deleted_subtype(t1,t2)
∧(pull_up_field(f,t2,t1) ∨ pull_up_method(m,t2,t1)))
∨(before_subtype(t1,t2) ∧ deleted_type(t1,n,p)
∧(push_down_field(f,t1,t2) ∨ push_down_method(m,t1,t2))

⇒collapse_hierarchy(t1,t2)

Rule Syntax

A rule’s consequent refers to a target refactoring to be inferred. A rule’s antecedent may refer to pre-requisite refactorings.

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

(deleted_subtype(t1,t2)
∧(pull_up_field(f,t2,t1) ∨ pull_up_method(m,t2,t1)))
∨(before_subtype(t1,t2) ∧ deleted_type(t1,n,p)
∧(push_down_field(f,t1,t2) ∨ push_down_method(m,t1,t2))

⇒collapse_hierarchy(t1,t2)

Rule Syntax

A rule’s consequent refers to a target refactoring to be inferred. The structural constraints are represented in Boolean logic.

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

(deleted_subtype(t1,t2)
∧(pull_up_field(f,t2,t1) ∨ pull_up_method(m,t2,t1)))
∨(before_subtype(t1,t2) ∧ deleted_type(t1,n,p)
∧(push_down_field(f,t1,t2) ∨ push_down_method(m,t1,t2))

⇒collapse_hierarchy(t1,t2)

Rule Syntax

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

(deleted_subtype(t1,t2)
∧(pull_up_field(f,t2,t1) ∨ pull_up_method(m,t2,t1)))
∨(before_subtype(t1,t2) ∧ deleted_type(t1,n,p)
∧(push_down_field(f,t1,t2) ∨ push_down_method(m,t1,t2))

⇒collapse_hierarchy(t1,t2)

Encoding Fowler’s Refactorings

• We encoded 63 types but excluded a few
because

• they are too ambiguous,

• require accurate alias analysis, or

• require clone detection at an arbitrary granularity.

• Catalog of Template Refactoring Rules, Kyle Prete, Napol
Rachatasumrit, Miryung Kim, Technical Report, UT Austin

Refactoring Inference Order

Collapse Hierarchy

Pull Up Method Pull Up Field

Move Method Move Field

Push Down Method Push Down Field

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

Collapse Hierarchy

Pull Up Method Pull Up Field

Move Method Move Field

Push Down Method Push Down Field

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

Refactoring Inference Order

Collapse Hierarchy

Pull Up Method Pull Up Field

Move Method Move Field

Push Down Method Push Down Field

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

Refactoring Inference Order

Collapse Hierarchy

Pull Up Method Pull Up Field

Move Method Move Field

Push Down Method Push Down Field

Example: collapse hierarchy refactoring—a superclass and its
subclass are not very different. Merge them together.

Refactoring Inference Order

before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)
added_access(“Chart.color”, “Chart.draw”)

Fact-base

deleted_field(f1, f, t1)
∧ added_field(f2, f, t2)
∧ deleted_access(f1, m1)
∧ added_access(f2, m1)
⇒ move_field(f, t1, t2)

To find a move
field refactoring

Collapse

Move

Pull UpCollapse Hierarchy Inference

before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)
added_access(“Chart.color”, “Chart.draw”)

Fact-base

deleted_field(f1, f, t1)
∧ added_field(f2, f, t2)
∧ deleted_access(f1, m1)
∧ added_access(f2, m1)
⇒ move_field(f, t1, t2)

To find a move
field refactoring

Collapse

Move

Pull UpCollapse Hierarchy Inference

before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)
added_access(“Chart.color”, “Chart.draw”)

Fact-base

∃ f1, ∃ f, ∃ t1, ∃ t2, ∃ f2, ∃ m1,
deleted_field(f1, f, t1)
∧ added_field(f2, f, t2)
∧ deleted_access(f1, m1)
∧ added_access(f2, m1)?

Invoke a move-
field query

Collapse

Move

Pull UpCollapse Hierarchy Inference

before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)
added_access(“Chart.color”, “Chart.draw”)
move_field(“color”, “PieChart”, “Chart”)

Fact-base

f=”color”,
t1=”PieChart”,
t2=”Chart”
move_field(“color”, “PieChart”,
“Chart”)

Create a new move
field fact

Collapse

Move

Pull UpCollapse Hierarchy Inference

before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)
added_access(“Chart.color”, “Chart.draw”)
move_field(“color”, “PieChart”, “Chart”)

Fact-base

To find a pull up
field refactoring

move_field(f, t1, t2)
∧ before_subtype(t2,t1)
⇒ pull_up_field(f, t1, t2)

Collapse

Move

Pull UpCollapse Hierarchy Inference

To find a pull up
field refactoring

move_field(f, t1, t2)
∧ before_subtype(t2,t1)
⇒ pull_up_field(f, t1, t2)

before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)
added_access(“Chart.color”, “Chart.draw”)
move_field(“color”, “PieChart”, “Chart”)

Fact-base

Collapse

Move

Collapse Hierarchy Inference Pull Up

before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)
added_access(“Chart.color”, “Chart.draw”)
move_field(“color”, “PieChart”, “Chart”)

Fact-base

Invoke a pull up
field query

∃ f, ∃ t1, ∃ t2,
move_field(f, t1, t2)
∧ before_subtype(t2,t1)?

Collapse

Move

Collapse Hierarchy Inference Pull Up

before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)
added_access(“Chart.color”, “Chart.draw”)
move_field(“color”, “PieChart”, “Chart”)
pull_up_field(“color”, “PieChart”, “Chart”)

Fact-base

f=”color”,
t1=”PieChart”,
t2=”Chart”
pull_up_field(“color”, “PieChart”,
“Chart”)

Create a new
pull up field fact

Collapse

Move

Collapse Hierarchy Inference Pull Up

before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)
added_access(“Chart.color”, “Chart.draw”)
move_field(“color”, “PieChart”, “Chart”)
pull_up_field(“color”, “PieChart”, “Chart”)

Fact-base

Create a new
collapse

hierarchy fact

collapse_hierarchy(“Chart”,
“PieChart”)

Collapse

Move

Collapse Hierarchy Inference Pull Up

before_subtype(“Chart”,”PieChart”)
deleted_subtype(“Chart”,”PieChart”)
deleted_field(“PieChart.color”, “color”, “PieChart”)
added_field(“Chart.color”, “color”, “Chart”)
deleted_access(“PieChart.color”, “Chart.draw”)
added_access(“Chart.color”, “Chart.draw”)
move_field(“color”, “PieChart”, “Chart”)
pull_up_field(“color”, “PieChart”, “Chart”)
collapse_hierarchy(“Chart”, “PieChart”)

Fact-base

Create a new
collapse

hierarchy fact

Move

Collapse Hierarchy Inference Pull Up

Collapse

Ref-Finder Eclipse Plug-In

Outline

• Motivation and a survey of existing
techniques

• A template-based reconstruction approach

• Evaluation

• Conclusions and future work

Evaluation: Two Case Studies

1. Code examples from Fowler’s book

2. Open source projects

Version Pairs Factbase Size

jEdit 3 releases 110151~121931

columba 2 revisions 374016~381893

carol 9 revisions 12869~39353

Evaluation: Criteria

• Precision—how accurate are the identified
refactorings?

• Recall—how many known refactorings were
detected?

Evaluation: Fowler’s

Types Expected Found Precision Recall False negatives False Positives
1-10 8 19 1.00 1.00

11-20 9 20 0.95 1.00 extract method

21-30 9 12 1.00 1.00

31-40 10 13 1.00 0.90 preserve whole objects

41-50 9 11 1.00 0.89
replace conditionals
with polymorphism

51-60 10 11 1.00 0.90
replace parameters

with explicit methods

61-72 8 14 0.86 0.88
replace type code with

state

replace magic number
with symbolic

constants,
extract method

Total 63 100 0.97 0.94

Ref-Finder finds refactorings with 97% precision and 94% recall.

Evaluation: Fowler’s

• False positives:

• Extract Method

• Replace Magic Number with Constant

• False negative resulted from not being able to find
similarbody facts.

Evaluation Method:
Open Source Software

• Precision: We randomly sampled at most 50 refactorings
per version pair (σ=0.85).

• Recall: We used a threshold (σ =0.65) and manually
inspected them until we found 10 correct refactorings.
Then we used a stricter threshold (σ=0.85) and
compared the results with this set.

Versions # Found Prec. Recall

jEdit
3.0-3.0.1 10 0.75 0.78

jEdit 3.0.1-3.0.2 1 1.00 1.00jEdit
3.0.2-3.1 214 0.45 1.00

Columba 300-352 43 0.52 0.90Columba
352-449 209 0.91 1.00

Carol

62-63 12 1.00 1.00

Carol

389-421 8 0.63 1.00

Carol

421-422 147 0.64 0.90

Carol 429-430 48 0.85 1.00Carol
430-480 37 0.81 1.00

Carol

480-481 11 0.91 0.90

Carol

548-576 20 1.00 1.00

Carol

576-764 14 0.85 1.00

Total 774 0.74 0.96

Ref-Finder finds refactorings with 74% precision and 96% recall.

Evaluation:
Open Source Projects

True Positive Example:
Hide Delegate (jEdit 3.0.2-3.1)

public class TextUtilities {
 public static int findMatchingBracket(Buffer buffer,
 int line, int offset, int startLine, int endLine)
 throws BadLocationException{
 ...
- TokenMarker tokenMarker = buffer.getTokenMarker();
- TokenMarker.LineInfo lineInfo = tokenMarker
- .markTokens(buffer,line);
- Token lineTokens = lineInfo.firstToken;
+ Buffer.LineInfo lineInfo = buffer.markTokens(line);
+ Token lineTokens = lineInfo.getFirstToken();
 ...
}

hide_delegate(“TokenMarker”, “Buffer”, “TextUtilities”)

Limitations

• Propagation of incorrect inferred refactorings

• Our rule encoding is subject to bias

• Better clone detection mechanisms and API-level
refactoring detection needed

Future Work

• Investigate robustness of Ref-Finder in case of
floss refactorings [Murphy-Hill et al. 2009]

• Discover refactorings seeded by IDE’s
refactoring features

• Compare reconstructed refactorings with
recorded refactorings in IDE [Robbes et al.
2008]

Related Work

• Logic-based program representation

• source code navigation (e.g., Grok, JQuery, CodeQuest, Intentional
View)

• design pattern detection (e.g., DeMIMA)

• bad-smell detection (e.g., Tourwé et al.)

• conformance checking (e.g., Eichberg et al.)

Summary

• Ref-Finder uses a template-logic query based
approach

• It supports 63 refactoring types out of 72 in
Fowler’s catalog.

• It detects complex refactorings by knitting
together pre-requisite atomic refactorings with
other structural constraints.

• Its overall precision and recall are 0.79 and 0.95.

Questions?

