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Abstract—Programmers often need to reason about how a program evolved between two or more program versions. Reasoning
about program changes is challenging as there is a significant gap between how programmers think about changes and how existing
program differencing tools represent such changes. For example, even though modification of a locking protocol is conceptually simple
and systematic at a code level, diff extracts scattered text additions and deletions per file. To enable programmers to reason about
program differences at a high-level, this article proposes a rule-based program differencing approach that automatically discovers
and represents systematic changes as logic rules. To demonstrate the viability of this approach, we instantiated this approach at two
different abstraction levels in Java: first, at the level of application programming interface (API) names and signatures; and second,
at the level of code elements (e.g., types, methods, and fields) and structural dependences (e.g., method-calls, field-accesses, and
subtyping relationships). The benefit of this approach is demonstrated through its application to several open source projects as well
as a focus group study with professional software engineers from a large E-commerce company.
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1 INTRODUCTION

AS software evolves, developers often inspect pro-
gram differences between two versions. For exam-

ple, a team lead reviews modifications done by her team
members to check whether the intended change is imple-
mented correctly. Questions developers ask about code
changes are often of the following style [1], [2]: “What
changed?” “Is anything missing in that change?” and
“Why did this set of code fragments change together?”
To enable developers to reason about program differ-

ences at a high level and to help answer these kinds of
high-level questions about program modifications, this
article proposes a novel rule-based program differencing
approach that automatically discovers and summarizes
systematic code changes as logic rules. This rule infer-
ence approach is based on the observation that high-
level changes such as refactorings, feature additions, and
updates to code clones are often systematic edits—a
group of related edits is required in multiple places
to ensure consistency and completeness of the high-
level change. Consider an example where a programmer
reorganizes a chart-drawing program by the type of a
rendered object, moving axis-drawing classes from the
package chart to the package chart.axis. Then, to
allow toggling of tool tips by the user, she appends a
boolean parameter to a set of chart-creation interfaces.
Even though the goals of these transformations can be
stated concisely in natural language, existing program
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differencing tools, such as diff, would report modified
lines per file, enumerating moved methods and modified
interfaces.
To demonstrate the viability of our rule-based pro-

gram differencing approach, we instantiated change-
rules at two different abstraction levels in Java. The
first level of change-rules describes changes to method-
header names and signatures. For example, the API-level
changes in the preceding scenario are represented as the
following change-rules:

for all x in chart.*Axis*.*(*)
packageRename(x, chart, chart.axis)

Interpretation: All methods with a name “chart.*Axis*.*(*)” moved
from package chart to chart.axis.
for all x in chart.Factory.create*Chart(*Data)
argAppend(x, boolean)

Interpretation: All methods with a name “chart.Factory-
.create*Chart(*Data)” added a new input parameter with the
boolean type.

The second level of change-rules captures changes to
code elements (packages, types, methods, and fields)
and structural dependences (method-calls, field-accesses,
overriding, subtyping, and containment). For each level
of change-rules, we developed a rule-inference algorithm
that explores the space of candidate change-rules. We
refer to the tool implementation of the second rule
inference algorithm as Logical Structural Diff (LSdiff).
During the rule-inference process, to prevent almost-
correct rules from being invalidated by a few miss-
ing or inconsistent change-facts, our approach identifies
these rules but explicitly notes where the few exceptions
occurred. Noting anomalies can help users focus their
attention on possible errors [3]. In our domain, reporting
anomalies can help developers avoid inconsistent or
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incomplete modifications that could lead to bugs.
We applied our rule-based program differencing ap-

proach to the histories of six software projects. We also
conducted a focus group study with professional devel-
opers in a large E-commerce company to understand
the target users’ perspectives on our approach. Our
evaluation shows the following results:

• Most changes to method-header names and signa-
tures are explained by a small portion of change-
rules. This confirms our hypothesis that leveraging
a systematic change structure witnessed by multiple
low-level transformations is a good approach for
concisely representing high-level program differ-
ences.

• By inferring change-rules instead of finding indi-
vidual changes, our technique significantly reduces
the size of change descriptions at the method-
header level by a factor of 3.5, 2.5, and 1.7 times
in JFreeChart, JHotDraw, and jEdit respectively (me-
dian). Our technique also reduces the size of change
descriptions at the level of code elements and struc-
tural dependences by a factor of 5.8, 4.8, and 9.8
times in Carol, Dnsjava, and LSdiff respectively
(median).

• The focus group study participants indicated that
our rule-based program differencing approach can
complement existing uses of diff in code review
tasks by providing a high-level overview and by
helping them to focus their attention to potentially
inconsistent or missing updates.

• Manual inspection of rules with exceptions shows
that the rule exceptions often indicate either bugs
caused by inconsistent edits or benign, yet suspi-
cious, changes that are worthwhile to note.

The objective of our rule-based program differencing
approach is to effectively find a high-level structure of
changes between a program and a modified version
of the program. Meanwhile, other API-matching and
refactoring reconstruction techniques [4]–[9] do not fo-
cus on discovering a high-level structure among pro-
gram changes; thus, a head-to-head comparison of our
approach against others is not possible. Nevertheless,
we compared the precision and recall of method-level
matches with six other approaches to show that our
approach provides a good number of method-header
level matches as a starting point for inferring higher
level structural changes. The comparison demonstrates
that our technique is roughly on par in terms of
method matches compared to other techniques and that
it produces more concise output by inferring higher
level change-rules from these method matches (see Ap-
pendix).
The rest of this article is organized as follows. Section 2

describes related work. Section 3 describes the syntax
and semantics of the change-rules. Section 4 describes
a rule-inference algorithm for each kind of change-rule.
Sections 5 and 6 describe the evaluation of our rule-

based program differencing approach. Section 7 dis-
cusses the limitations of our approach, and Section 8
concludes.

2 RELATED WORK
The novelty of our approach is best seen in the context
of existing approaches that can be used to reason about
software changes.
Program Differencing and Refactoring Reconstruction.
Existing program differencing techniques use similarities
in names and structure to match code elements at a
particular granularity: (1) lines and tokens [10], (2) ab-
stract syntax tree nodes [11]–[14], (3) control flow graph
nodes [15], (4) program dependence graph nodes [16],
[17], etc. For example, the ubiquitous tool diff computes
line-level differences per file using the longest common
subsequence algorithm [10]. As another example, JDiff
computes CFG-node level matches between two pro-
gram versions based on similarity in node labels and
nested hammock structures [15]. While the objective of
these differencing tools is to accurately identify individ-
ual additions and deletions at a particular granularity,
our rule-based approach focuses on recognizing a sys-
tematic structure among individual program differences.
Some approaches attempt to address a similar problem
by grouping program differences by physical locations
(directories and files) [10], by logical locations (packages,
classes, and methods) [4], by structural dependences
(define-use and overriding) [18], or by similarity of
names.
The API-matching problem addressed in our article

is related to the problem of inferring refactorings from
two program versions. Demeyer et al. first inferred
refactorings from two program versions using a set of
ten characteristic metrics, such as LOC and the number
of method calls within a method [19]. Zou and Godfrey
first coined the term origin analysis, which serves as
a basis for refactoring reconstruction by matching code
elements using multiple criteria (e.g., names, signatures,
metric values, callers, and callees) [20]. Their approach
infers merge, split, and rename refactorings.
Van Rysselberghe and Demeyer used a clone detector

to detect moved methods [21]. Antoniol et al. identified
class-level refactorings using a vector space information
retrieval approach [22]. Dig et al.’s approach identifies
refactorings in two stages. First, it finds a list of code
element pairs using shingles (a metric-based fingerprint)
and performs a semantic analysis based on reference
relationships (calls, instantiations, uses of types, import
statements) [9]. Second, it uses an iterative, fix point
algorithm to find refactorings in a top-down order. Xing
et al.’s approach [4] extracts class models from two
versions of a program, traverses the two models, and
identifies corresponding entities based on their name
similarity and structure similarity (i.e., similarity in type
declaration and uses, field accesses, and method calls).
It then reports additions and removals of these enti-
ties, as well as inferred refactorings. Weißgerber and
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Diehl’s approach [5] extracts added and deleted entities
(fields, methods, and classes) by parsing deltas from a
version control system and then compares these entities
based on their name similarity. When it cannot disam-
biguate all refactoring candidates, it uses a clone detector
(CCFinder [23]) to rank these candidates. S. Kim et al.’s
approach [8] considers various information (such as call-
ing relationships, clone detection results, and name simi-
larity) to match method-headers. Wu et al.’s approach [6]
is a hybrid approach that combines the strengths of call-
graph matching and name-similarity based matching.
Nguyen et al.’s approach [7] identifies refactorings in
libraries to support adaptation of the client applications
that use those libraries. Similar to Xing et al.’s approach,
the algorithm matches code elements top-down based
on method name similarity and method body contents.
Fluri et al.’s approach [11] compares two versions of
abstract syntax trees, computes tree-edit operations, and
maps each tree-edit to atomic AST-level change types
(e.g., parameter ordering change). Prete et al.’s approach
extends our rule-based program differencing approach,
and was developed by the first author and her students
to identify complex refactorings [24]. It encodes 63 out of
72 refactoring types in Fowler’s catalog as template logic
rules, and uses a logic-query approach to infer concrete
refactoring instances [24]. While our article focuses on
automatically inferring rules from program differences,
Prete et al. use pre-defined logic rules to detect structural
differences that fit known refactoring types.
The objective of our rule-based approach is to report

structural differences in a concise manner, while many
refactoring reconstruction techniques have different ob-
jectives (e.g., automatically updating API clients using
reconstructed refactorings [7], [9]). This poses different
requirements for the conciseness, precision, and recall of
results that each tool reports.
Source Transformation Languages and Tools. Source-
transformation tools let developers encode systematic
changes in a formal syntax to automate repetitive and
error-prone program updates [25], [26]. For example, iXj
enables developers to easily perform systematic code
transformations by providing a visual language and a
tool [27]. Coccinelle lets developers apply systematic
updates to Linux device drivers [28]. This approach is
appropriate in situations where developers are willing to
plan changes in advance and to learn a transformation
language. While these tools focus on applying systematic
changes to a program, our work focuses on recovering
systematic changes from two program versions.
Identification of Related Changes. Several approaches
use change history to identify code elements that tend
to change together [29]. However, they do not explic-
itly group systematic changes nor report their common
structural characteristics, leaving it to developers to
figure out why some code fragments change together.
Crisp [18], a part of the Chianti change impact analysis
tool [30], computes AST-level structural differences and
groups related differences using four predefined rules,

such as “identify all method additions that refer to a new
field.” Instead of using four pre-defined rules, Logical
Structural Diff (LSdiff) infers change-rules to describe
related changes with similar dependence characteristics
such as “accessing the same field in the classes with the
same name.” Furthermore, while Crisp’s goal is to create
a compilable intermediate version for fault localization,
our approach focuses on recovering a latent systematic
structure in program differences. JUnitMX, an extension
of Chianti, groups syntactic changes at the type, method,
and field levels based on their effect on the regression
test outcomes and coverage information [31]. Unlike
JUnitMX, our approach currently does not consider any
dynamic information, and it remains as a future work
to extend our approach to summarize runtime behavior
differences.
Systematic Code Changes. Our rule-based program
differencing approach is based on the insight that high-
level changes are often systematic—consisting of related
transformations at a code level. The same insight arises
from numerous other research efforts, primarily within
the domain of refactorings and crosscutting concerns.
Refactoring [32]–[34] often consists of one or more el-
ementary transformations, such as “moving the print

method in each Document subclass to its superclass”
or “introduce three abstract visit* methods.” Crosscut-
ting concerns represent secondary design decisions—e.g.,
performance, error handling, and synchronization—that
are generally scattered throughout a program [35], [36].
Modifications to these design decisions involve similar
changes to every occurrence of the design decision. To
cope with evolution of crosscutting concerns, AspectJ
provides language constructs that allow these concerns
to be updated in a modular fashion [35]. Several tech-
niques locate and document crosscutting concerns based
on similarities in a program’s dependence structure,
naming conventions, formatting styles, and ordering of
code in a file [37], [38]. Our approach focuses on sum-
marizing scattered, but related program changes, and thus
is complementary to existing approaches for evolving
crosscutting concerns.

3 RULE-BASED CHANGE REPRESENTATIONS
Change-rules are inferred from two program versions
and represent systematic code changes from one ver-
sion to another. This section describes our change-rule
representations, including their syntax and semantics. A
change-rule consists of a scope, exceptions, and a transforma-
tion.

for all x: code element in (scope)
except (exceptions)
transformation(x)

The scope defines a subset of code elements in the
first program version, the exceptions remove a subset of
these elements, and the transformation describes how the
pertinent elements in the scope changed between the two
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versions. Noting exceptions to the rules prevents almost-
correct rules from being invalidated by a few missing
or inconsistent change-facts during rule inference. Sec-
tion 3.1 describes the syntax of change-rules at a method-
header level, and Section 3.2 describes the syntax of
change-rules at the level of a program’s dependence
structure.

3.1 Definition of API Change-Rule at a Method-
Header Level

The unit of code elements in the scope of an API change-
rule is a method-header, which is defined as a tu-
ple: (package:String, class:String, procedure:String,

input_argument_list:[String], return_type:String).
To represent the scope of a change-rule, we summa-

rize a group of similarly named method-headers using
a wild card pattern-matching operator. For example,
*.*Plot.get*Range() describes methods with any package
name, any class name that ends with Plot, any procedure
name that starts with get and ends with Range, and an
empty argument list. This use of a wild card pattern
is based on the observation that developers tend to
name code elements similarly when they belong to the
same concern [38]. A scope can have disjunctive scope
expressions.
To represent transformations at a method-header level,

we define nine types of transformations that describe
changes to method-header names and signatures (see
Table 1). These transformations can describe both rename
and move refactorings depending on a scope expres-
sion. For example, ‘for all x:chart.*Chart.*(*), packageRename(x,
chart, chart.plot)’ means that all classes with the name
*Chart were moved from package chart to package
chart.plot, while ‘for all x:chart.*.draw(*), methodRename(x, draw,
render)’ means that all draw methods in package chart

were renamed to render. As another example, the follow-
ing rule means that all classes in package chart whose
name ends with Plot moved to package chart.plot.

for all x:method-header in chart.*Plot.*(*)
packageRename(x, chart, chart.plot)

A method-header-level matching between two pro-
gram versions can be described by a set of change-rules.
Method headers that are identical in both versions are
excluded. After rule inference, the methods that are not
matched by any rules are either deleted or added meth-
ods. For example, the five API change-rules in Table 2 (b)
explain seven method-header matches in Table 2 (a).

3.2 Definition of Logical Structural Diff Rules

This section describes change-rules at the level of a pro-
gram’s dependence structure. In Logical Structural Diff
(LSdiff), code elements and their structural dependences
are modeled using the thirteen logic predicates shown in

Table 1.1 In a change-rule, we prefix each predicate with
past or current to denote code elements and structural
dependences in the old or new version, respectively.
To represent the scope of a change-rule (i.e., a sub-

set of code elements), a literal is created by binding
a predicate’s argument to universally quantified vari-
ables or constants. To further refine the scope of a
transformation, one or more literals can be combined
using a conjunction. For example, past method(m, “draw”, t)
∧ past extends(“Plot”, t) represents “all methods m in Plot’s
subclasses in the old version.”
Transformations are represented as deleted facts from

the old version or added facts in the new version.
For example, deleted accesses(m, “Shape.dotted”) means that
method m deleted accesses to field Shape.dotted.
Change-rules follow the syntax of horn clauses, where

the conjunction of one or more literals in the antecedent
implies a single literal in the conclusion. In a change-rule,
all variables are universally quantified and variables do
not appear in the conclusion, unless they are bound
in the antecedent. In addition, the antecedent of a rule
cannot have predicates with different prefixes. By using
only deleted * or added * in a rule’s consequent, change-
rules describe differences between two versions as opposed
to the structural property of a single program version. For
instance, the following rule states that all methods with
a name draw in Plot’s subclasses removed accesses to
Shape’s dotted field.

∀ m, t, past method(m, ”draw”, t) ∧ past extends(t, ”Plot”)
⇒ deleted accesses (m, ”Shape.dotted”)

3.3 Change-Rule Relationships
Table 1 summarizes the syntax of both kinds of change-
rules. While the first kind of change-rules model trans-
formations as replacements of strings within method
signatures, the second kind of change-rules describe
deletions and additions of code elements and associated
structural dependences. While it is possible to define
add and delete transformations at the level of method-
headers, we decided to focus on replacement transforma-
tions because our initial goal was to infer renaming and
moving at or above the level of method-headers rather
than finding systematic change patterns among a group
of deleted or added methods.
In our work, we used the results of API-level change-

rules to filter fact-level differences within method bodies
caused by method rename, move, and change signature
refactorings. Table 2 illustrates this process. After infer-
ring a set of API change-rules shown in Table 2 (b),
these results are used to filter the original fact-level
differences in Table 2 (c). From the remaining set of fact-
level differences in Table 2 (d), two LSdiff change-rules

1. Their detailed definitions, including argument types, are
summarized in the first author’s dissertation, which can be
found at http://users.ece.utexas.edu/∼miryung/Publications/
uw08-dissertation-mkim.pdf
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TABLE 1
The syntax of change-rules

API Rule
Abstraction method-header
Scope a subset of method-headers expressed using a wild-card operator
Transformation 1. packageRename(x:Method, f :String, t:String): change x’s package name from f to t

2. classRename(x:Method, f :String, t:String): change x’s class name from f to t
3. procedureRename(x:Method, f :String, t:String): change x’s procedure name from f to t
4. returnReplace(x:Method, f :String, t:String): change x’s return type from f to t
5. inputSignatureReplace(x:Method,f :List[String], t:List[String]): change x’s input argument list from f to t
6. argReplace(x:Method, f :String, t:String): change argument type f to t in x’s input argument list
7. argAppend(x:Method, t:List[String]): append all of the argument types in t to the end of x’s input argument list
8. argDelete(x:Method, t:String): delete every occurrence of type t in the x’s input argument list
9. typeReplace(x:Method, f :String, t:String): change every occurrence of type f to t in x

LSdiff Change-Rule
Abstraction package, type, method, field
Scope a subset of code elements, expressed in a conjunctive logic literal
Transformation addition and deletion of code elements and structural dependences represented by the following predicates.

1. package (packageFullName)
2. type (typeFullName, typeShortName, packageFullName)
3. method (methodFullName, methodShortName, typeFullName)
4. field (fieldFullName, fieldShortName, typeFullName)
5. return (methodFullName, returnTypeFullName)
6. fieldoftype (fieldFullName, declaredTypeFullName)
7. typeintype (innerTypeFullName, outerTypeFullName)
8. accesses (fieldFullName, accessorMethodFullName)
9. calls (callerMethodFullName, calleeMethodFullName)
10. extends (superTypeFullName, subTypeFullName)
11. implements (superTypeFullName, subTypeFullName)
12. inheritedfield (fieldShortName, superTypeFullName, subTypeFullName)
13. inheritedmethod (methodShortName, superTypeFullName, subTypeFullName)

in Table 2 (e) are inferred. Any remaining change-facts
that are not explained by any of the inferred rules are
shown as is.

4 RULE INFERENCE ALGORITHM
Section 4.1 describes an inference algorithm for API
change-rules and Section 4.2 describes an algorithm
for LSdiff change-rules. Though we have two separate
inference algorithms, the two algorithms share com-
mon characteristics. First, they both compute individual
differences at a chosen abstraction level. Second, they
systematically generate candidate rules, each of which
represents a group of related differences. They then
evaluate the accuracy of each candidate rule with respect
to the two input program versions and select a subset of
the candidate rules. For both kinds of change-rules, we
implemented a set of optimization heuristics to reduce
the search space of candidate rules.

4.1 API Change-Rule Inference
The API change-rule inference algorithm first finds seed
matches. Based on these seeds, the algorithm then gen-
erates candidate rules and iteratively selects the best rule
among the candidate rules. We first describe a naı̈ve
version of our algorithm, followed by our optimization
heuristics.

4.1.1 Identification of Seed Matches
Given the two program versions (P1, P2), we extract two
sets of method headers O and N from the old version

P1 and the new version P2 respectively. Then, for each
method header x in O − N , we find the closest method
header y in N − O in terms of the token-level name
similarity. This seed match generation is purely based on
method name similarity and we do not use other types
of information such as inheritance or call relationships.
We call the resulting set of matches as seed matches
because they are used to derive initial hypotheses about
systematic change patterns.
The token-level similarity measure involves separat-

ing out the package name, class name, method name,
signature, and return type from each header. Each of
these strings is then broken into a list of tokens by
splitting on capital and non-alphabet characters, based
on a camel case naming convention.2 An overall simi-
larity measure is then calculated using a weighted sum
of the similarities of each part, which is based on the
longest common subsequence (LCS) algorithm [10]. A
LCS-based similarity between two strings A and B is
defined as:

S =
len(LCS(A, B))

max(len(A), len(B))
(1)

If the name similarity is over a threshold γ (default
γ=0.7), the pair is added to the initial set of seed matches.
The seeds need not all be correct matches, as our rule
selection algorithm rejects bad seeds and leverages good
seeds. Section 5.3 presents six additional similarity mea-
sures that we implemented to characterize the impact

2. http://msdn.microsoft.com/en-us/library/x2dbyw72(VS.71)
.aspx,http://en.wikipedia.org/wiki/CamelCase
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TABLE 2
Rule-based program differencing example

(a) Textual differences between the old version P1 and the new version P2

package chart .plot ;
public class VerticalPlot extends Plot {
void draw (Graph g, Shape s){
if (s.dotted) {...} } }

package chart;
public class VerticalRenderer {
void draw (Graph g, Shape s) {...} }

package chart .plot ;
public class HorizontalPlot extends Plot {
void draw (Graph g, Shape s) {
s.dotted = true; ...} }

package chart .axis ;
public class HorizontalAxis {
public int height() getHeight() {...} }

package chart .axis ;
public class VerticalAxis {
public int height() getHeight() {...} }

package chart;
public class ChartFactory { . . .
public Chart createAreaChart(Data d, boolean b ) { ...

c.setToolTip(b); ...}

public Chart createPieChart(PieData p, boolean b ) { ...

c.setToolTip(b); ...} }
(b) Inferred API change-rules
for all x:chart.*Plot.*(*), packageRename(x, chart, chart.plot)
for all x:chart.*Axis.*(*), packageRename(x, chart, chart.axis)
for all x:chart.ChartFactory.create*Chart.(*), argAppend(x, {boolean})
for all x:*.*.*(Graph, Shape) except VerticalRenderer.draw(Graph, Shape), argDelete(x, Shape)
for all x:chart.*Axis.height() procedureRename(x, height, getHeight)
(c) ∆FB, the original fact-level differences between P1 and P2.

The deleted and added facts are marked with - and + for presentation purposes.
-type(”chart.VerticalPlot”, ”VerticalPlot”, ”chart”)
+type(”chart.plot.VerticalPlot”, ”VerticalPlot”, ”chart.plot”)
-extends(”chart.Plot”, ”chart.VerticalPlot”)
+extends(”chart.plot.Plot”, ”chart.plot.VerticalPlot”)
-method(”chart.VerticalPlot.draw(Graph, Shape)”, ”draw”, ”chart.VerticalPlot”)
-accesses(”Shape.dotted”, ”chart.VerticalPlot.draw(Graph,Shape)”)
+method(”chart.plot.VerticalPlot.draw(Graph)”, ”draw”, ”chart.plot.VerticalPlot”) -method(”chart.HorizontalPlot.draw(Graph, Shape)”,
”draw”, ”chart.HorizontalPlot”)
-accesses(”Shape.dotted”, ”chart.HorizontalPlot.draw(Graph,Shape)”)
+method(”chart.plot.HorizontalPlot.draw(Graph)”, ”draw”, ”chart.plot.HorizontalPlot”)
-type(”chart.HorizontalAxis”, ”HorizontalAxis”, ”chart”)
+type(”chart.axis.HorizontalAxis”, ”HorizontalAxis”, ”chart.axis”)
-method(”chart.HorizontalAxis.height()”, ”height”, ”chart.HorizontalAxis”)
+method(”chart.HorizontalAxis.getHeight()”, ”getHeight”, ”chart.axis.HorizontalAxis”)
-method(”chart.ChartFactory.createAreaChart(Data)”, ”createAreaChart”, ”chart.ChartFactory”)
+method(”chart.ChartFactory.createAreaChart(Data, boolean)”, ”createAreaChart”, ”chart.ChartFactory”)
+calls(”chart.ChartFactory.createAreaChart(Data, boolean)”, ”chart.Chart.setToolTip(boolean)”)
-method(”chart.ChartFactory.createPieChart(PieData)”, ”createPieChart”, ”chart.ChartFactory”)
+method(”chart.ChartFactory.createPieChart(PieData, boolean)”, ”createPieChart”, ”chart.ChartFactory”)
+calls(”chart.ChartFactory.createPieChart(PieData, boolean)”, ”chart.Chart.setToolTip(boolean)”)
(d) ∆FB’ after removing fact-level differences caused by rename refactorings
-accesses(”Shape.dotted”, ”chart.VerticalPlot.draw(Graph, Shape)”)
-accesses(”Shape.dotted”, ”chart.HorizontalPlot.draw(Graph, Shape)”)
+calls(”chart.Chart.createAreaChart(Data, boolean)”, ”chart.Chart.setToolTip(boolean)”
+calls(”chart.Chart.createPieChart(PieData, boolean)”, ”chart.Chart.setToolTip(boolean)”
(e) Inferred LSdiff change-rules
∀ m, t, past method(m, ”draw”, t) ∧ past extends(t, ”Plot”) ⇒ deleted accesses (m, ”Shape.dotted”)
∀ m, n, past method(m, n, ”ChartFactory”) ⇒ added calls(m, ”Chart.setToolTip()”
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of the seed generation algorithm on the rule-inference
process.

4.1.2 Rule Inference
Generating Candidate Rules. For each seed match [x, y],
we build a set of candidate rules in three steps. A can-
didate rule may include one or more transformations
t1, . . . , ti such that y = ti(. . . t1(x)). This representation
allows our algorithm to find a match [x, y] where x
undergoes multiple transformations to become y.
First, we compare x and y to find a set of transfor-

mations T= {t1, t2, . . ., ti} such that ti(. . . t2(t1(x))) = y.
For example, a seed [chart.VerticalAxis.height(),
chart.plot.VerticalAxis.getHeight()] produces
the power set of packageRename(x, chart, chart.plot) and
procedureRename(x, height, getHeight).
We then conjecture scope expressions from a seed

match [x, y]. We divide x’s full name into a set of tokens
starting with capital letters. For each subset of the tokens,
we replace every token with a wild-card operator to
create a candidate scope expression. As a result, when
x consists of n tokens, we generate a set of 2n scope
expressions based on x. For the preceding example seed,
our algorithm finds S ={*.*.*(*), chart.*.*(*), chart.Vertical*.*(*),
. . ., *.*Axis.height(), . . ., chart.VerticalAxis.height()}.
We generate a candidate rule with scope expression s

and compound transformation t for each (s, t) in S×2T .
We refer to the resulting set of candidate rules, each of
which is a generalization of a seed match, as CR.
Evaluating and Selecting Rules. Our goal is to select a
small subset of candidate rules in CR that explain a large
number of matches. While selecting a set of candidate
rules, candidate rules are allowed to have only a limited
number of exceptions.
The inputs are a set of candidate rules (CR), a domain

(D = O − N ), a codomain (C = N ), and an exception
threshold (0 ≤ ε < 1, default ε=0.34). The outputs are a
set of selected candidate rules (R), and a set of found
matches (M ). For a candidate rule r, “for all x in scope,
t1(x)∧...∧ti(x)”:
1) r has a match [a, b] if a ∈ scope, t1, ..., ti are
applicable to a, and ti(...t1(a)) = b.

2) a match [a, b] conflicts with a match [a′, b′] if a = a′

and b %= b′

3) r has a positive match [a, b], given D, C, and M ,
if [a, b] is a match for r, [a, b] ∈ D×C, and none of
the matches in M conflict with [a, b]

4) r has a negative match (an exception) [a, b], if it is
a match for r but not a positive match for r.

5) r is a valid rule if the number of its positive
matches is at least (1 − ε) times the number of its
matches.

Our algorithm greedily selects one candidate rule at
each iteration such that the selected rule maximally
increases the total number of matches. Initially, we set
both R and M to the empty set. In each iteration, for
every candidate rule r ∈ CR, we compute r’s matches

and check whether r is valid. Then, we select a valid
candidate rule s that maximizes |M ∪ P |, where P
is s’s positive matches. After selecting s, we update
CR := CR− {s}, M := M ∪P , and R := R ∪ {(s, P, E)},
where P and E are s’s positive and negative matches,
respectively. After updating, we continue to the next
iteration. The iteration terminates when no remaining
candidate rules can explain any additional matches.
Because the candidate rule investigation order is set by
the algorithm, the output R for given CR, D, and C is
deterministic. The naı̈ve version of this greedy algorithm
has O(|CR|2 × |D|) time complexity. This means that
generating more seeds leads to more candidate rules,
and thus a longer running time; however, it can also
increase the accuracy of found matches (see Section 5).
OptimizationHeuristics.We implemented an optimized
version of this algorithm based on two observations.
First, if a candidate rule r can add n additional matches
to M at the ith iteration, r cannot add more than n
matches on any later iteration. By storing n, we can
skip evaluating r on any iteration where we have al-
ready found a better rule s that can add more matches
than r. Second, candidate rules have a subsumption
structure because the scopes can be subsets of other
scopes (e.g., *.*.*(*Axis) ⊂ *.*.*(*)). The pseudo code of our
optimized algorithm is described in Algorithm 1. It starts
with the most general candidate rule for each set of
transformations and generates more candidate rules on
demand. It has the same worst case complexity as the
naı̈ve algorithm: O(|CR|2 × |D|). However, its empirical
performance is much better. This can be seen by an
approximation of the common case, in which only one
rule needs be expanded to investigate its children’s rules
at each level of the subsumption lattice: O(|logn(CR)|2×
|D|), where n is the number of tokens in seed.left. The
optimized algorithm remains a heuristic and may not
find the smallest number of rules.
Post Processing. To convert a set of candidate rules
to a set of change-rules, for each transformation t we
find all candidate rules that contain t, and then create a
new scope expression by combining these rules’ scope
expressions. Next, we find exceptions to this new rule
by enumerating negative matches of the candidate rules
and checking if the transformation t fails to hold for each
match.

4.2 LSdiff Change-Rule Inference
This section describes a change-rule inference algorithm
for the second kind of rules described in Section 3.2. Sec-
tion 4.2.1 describes how facts about code elements and
structural dependences are extracted from each program
version in order to compute structural differences. This
section also discusses how the initial set of differences
are pruned using the results of inferred renamings in or-
der to compute change facts. Section 4.2.2 describes how
the algorithm systematically enumerates and evaluates
candidate rules.
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Algorithm 1: API rule inference algorithm
Input: S, /* a set of seed matches */
ε, /* an exception threshold */1.1
D, /* domain: extractMethodHeaders(P1) −1.2

extractMethodHeaders(P2) */
C /* codomain: extractMethodHeaders(P2) */1.3
Output: R, /* a set of selected rules */
M /* a set of found matches */1.4
R := ∅, M := ∅, CR := ∅;1.5
/* Create an initial set of rules */
foreach seed ∈ S do1.6

2T := extractTransformations (seed);1.7
foreach trans ∈ 2T do1.8

scope:= findTheMostGeneralScope (seed.left,1.9
trans);
rule:= createNewRule (scope, trans);1.10
CR := CR ∪ {rule};1.11

end1.12
end1.13
cont := true;1.14
while cont do1.15

n := |M |;1.16
/* select the best rule */
N := 0, s := null;1.17
foreach rk ∈ CR do1.18

if (numRemainingPositive (rk) > N) ∧ (isValid (rk,1.19
D, C, M, ε)) then

N = numRemainingPositive (rk);1.20
s = rk;1.21

end1.22
end1.23
/* If an invalid rule rk in CR can find

more than N matches, expand its
children rules. */

toBeRemoved := ∅; toBeAdded := ∅;1.24
foreach rk ∈ CR do1.25

if numRemainingPositive (rk)=0 then1.26
toBeRemoved := toBeRemoved ∪ {rk};1.27

end1.28
else if (numRemainingPositive (rk) > N) ∧ (isValid1.29
(rk, D, C, M, ε))= false then

toBeRemoved := toBeRemoved ∪ {rk};1.30
children = createChildrenRules (rk,N);
foreach c ∈ children do1.31

if (isValid (c, D, C, M, ε)) ∧1.32
(numRemainingPositive (c) > N) then

N := numRemainingPositive (c); s := c;1.33
end1.34

end1.35
toBeAdded := toBeAdded ∪ children;1.36

end1.37
end1.38
/* Add toBeAdded to CR and remove

toBeRemoved from CR. */
CR := CR ∪ toBeAdded;1.39
CR := CR − toBeRemoved;1.40
R := R ∪ {s };1.41
CR := CR − {s };1.42
M := M ∪ s.positive;1.43
if (|M|=n) then1.44

cont := false;1.45
end1.46

end1.47

4.2.1 Identification of Structural Differences (∆FB)
This section describes how structural differences are
computed from two input program versions P1 and P2.
In our original prototype published in 2009 [39], we
used JQuery [40] to compute FB1 and FB2 (fact-base
representations of P1 and P2). We then applied a set
differencing operator between them to compute ∆FB,
assuming that code elements can be mapped by their
fully qualified names between FB1 and FB2.
To avoid re-processing of unmodified files, we devel-

oped our own incremental fact-extraction analysis based
on the Eclipse Java Development Toolkit (JDT)’s AST
analysis. It uses the knowledge of change-sets at a file
level and parses only modified and added files in the
new program version. For each deleted file, it simply
retrieves the associated facts and marks them deleted.
Some code elements may produce change facts, even if
their source files are not modified. For example, suppose
that class C extends class B, which extends class A, and
class A declares a method m. When a method m is added
to B, C’s lookup for m changes from A.m to B.m, even
though the source file containing class C has not been
modified. We derive such inheritance-related differences
from both the subtyping and member declaration facts in
the old program version and in the initially computed
∆FB. We also handle a few other rare cases caused by
moving or renaming code elements. For instance, when
class C is moved from packageA to packageB, all classes
that instantiate C and import both packages will change
their structural dependences, even though they have
no textual modifications. The fact extractor detects such
cases via pattern matching on ∆FB and re-processes the
affected files.
Resolving fact-level differences caused by code re-
naming. The fact extractor uses the results of API
change-rule inference to prune out spurious fact-level
differences caused by code renaming and moving. Con-
sider the example in Table 2. Recall that our API-
matching tool in Section 4.1 identifies method-header
level matches between two versions by leveraging sim-
ilarity in names. Moving classes HorizontalAxis and
VerticalAxis from package chart to chart.axis causes
several fact-level additions and deletions. Based on
the inferred rule: for all x:chart.*Axis.*(*), packageRename(x,
chart, chart.axis), we derive that class chart.HorizontalAxis
maps to chart.axis.HorizontalAxis and that class
chart.VerticalAxis maps to chart.axis.VerticalAxis.
Based on these matches, we filter out fact-level additions
and deletions such as deleted type(”chart.HorizontalAxis”) and
added type(”chart.axis.HorizaontalAxis”). Table 2 (d) shows ∆FB
after filtering out the facts in Table 2 (c) using the
renaming-rules shown in Table 2 (b).

4.2.2 Rule Inference
Our goal is to infer rules, each of which corresponds to a
high-level systematic change and thus explains a group
of added and deleted facts. This step takes the three fact-
bases (FBo, FBn, and ∆FB) and outputs inferred rules
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and remaining unmatched facts in ∆FB. The remaining
unmatched facts in ∆FB are shown to developers as is,
since the algorithm could not discover systematic change
patterns that could explain those facts.
Three input parameters define which rules are consid-

ered for output: (1) m, the minimum number of facts a
rule must match, (2) a, the minimum accuracy of a rule,
where accuracy = # matches / (# matches + # exceptions),
and (3) k, the maximum number of literals in a rule’s
antecedent. A rule is considered valid if the number of
matches and exceptions is within the range set by these
parameters.
Our algorithm is a bounded-depth search algorithm

that enumerates rules up to a certain length. The depth
is determined by k. Increasing k allows our algorithm
to find more contextual information from FBo and FBn.
Evaluating all possible rules with k literals in the an-
tecedent has the same effect as examining surrounding
contexts that are roughly k dependence hops away from
changed code fragments. Our algorithm enumerates
rules incrementally by extending rules of length i to
create rules of length i + 1. In each iteration, we extend
the ungrounded rules from the previous iteration by
appending each possible literal to the antecedent of the
rules. Then, for each ungrounded rule, we try all possible
constant substitutions for its variables. After selecting
valid rules in this iteration, we winnow out the selected
rules’ matches from U (a set of unmatched facts in ∆FB)
and proceed to the next iteration.
Some rules are always true, regardless of change con-

tent, and do not provide any specific information about
code change. For example, deleting a package deletes all
contained types in the package, and deleting a method
implies deleting all structural dependences involving the
method. To prevent learning such rules, we have written
30 default winnowing rules by hand—they are described
elsewhere [41]. Using these rules, we winnow out the
facts from U in the beginning of our algorithm.
For the rest of this section, we explain two subrou-

tines in detail: (1) extending ungrounded rules from the
previous iteration, and (2) generating a set of partially
grounded rules from an ungrounded rule. The inference
algorithm is summarized in Algorithm 2.
Subroutine 1. Extending Ungrounded Rules. For each
ungrounded rule from the previous iteration, we iden-
tify all possible predicates that can be appended to
its antecedent. For each of those predicates, we create
a set of candidate literals by enumerating all possible
variable assignments. After we create a new rule by
appending each candidate literal to the ungrounded
rule’s antecedent, we check two conditions: (1) we have
not already generated an equivalent rule, and (2) the
rule matches at least m facts in U . If the rule has fewer
than m matches, we discard it because adding a literal
to its antecedent or grounding its variables to constants
can find only fewer matches. If the two conditions are
met, we add the ungrounded rule to the list of new
ungrounded rules.

Algorithm 2: LSdiff rule inference algorithm
Input: FBo, /* a fact-base of an old program

version */
∆FB, /* fact-level differences between FBo2.1

and FBn */
m, /* the minimum number of facts a rule2.2

must match to be selected */
a, /* the minimum accuracy of a rule */2.3
k, /* the maximum number of literals in a2.4

rule’s antecedent */
β /* beam search window size */2.5
Output: L /* a set of valid learned rules */
R := ∅, L := ∅, U := ∆FB;2.6
U := reduceDefaultWinnowingRules (∆FB, FBo) ;2.7
foreach i = 0 . . . k do2.8

if (i = 0) then2.9
R := ∅;2.10
foreach p ∈ DELTA PREDICATES do2.11

l:= createLiteral(p, freshvariables());2.12
r:= new Rule();2.13
r.setConsequent(l);2.14
if |r.matches| ≥ m then2.15

R := R ∪ {r};2.16
end2.17

end2.18
end2.19
else2.20

NR := ∅;2.21
foreach r ∈ R do2.22

foreach p ∈ ANTECEDENT PREDICATES do2.23
bindings :=2.24
enumerateBindingsForPredicate (r, p)
foreach b ∈ bindings do

r:= new Rule(r);2.25
r.addAntecedentLiteral(l);2.26
if |r.matches| ≥ m ∧ !(r ∈ NR) then2.27

NR := NR ∪ {r};2.28
end2.29

end2.30
end2.31
R := NR;2.32

end2.33
end2.34
foreach r ∈ R do2.35

NR:= ∅;2.36
S = new Stack();2.37
S.push(r);2.38
while !S.isEmpty() do2.39

pr = S.pop();2.40
foreach variable ∈ pr.remainingVariables() do2.41

constants := getReplacementConstants(pr,2.42
variable);
foreach constant ∈ constants do2.43

n = substitute(pr, variable, constant) if2.44
|n.matches| ≥ m ∧ accuracy(n) ≥ a then

NR := NR ∪ {n };2.45
end2.46
if n.remainingVariables.size() > 0 then2.47

S.push(n)2.48
end2.49

end2.50
end2.51

end2.52
G := NR;2.53
foreach g in G do2.54

if isValid (g) then2.55
L :=L ∪ {g};2.56
U :=U − {g.matches};2.57

end2.58
end2.59

end2.60
R :=selectRules (R, β);2.61

end2.62
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Subroutine 2. Generating Partially Grounded Rules.
To create partially grounded rules from an ungrounded
rule, we consider each variable in turn and try substi-
tuting each possible constant for it as well as leaving it
alone. At each step within this process, we evaluate the
rule on the fact-bases using Tyruba, a Prolog-like logic
programming engine [42] to check how many matches it
finds in U . If it finds fewer than m matches, we discard
the rule and do not explore further substitutions, as more
specific rules can find only fewer matches than m.
Rules may still have overlapping matches. To avoid

outputting rules that cover the same set of facts in the
∆FB, we select a subset of the rules using the greedy
version of the SET-COVER algorithm [43]. In this step,
we use the same ranking order as in our beam search.
We then output the selected rules and the remaining
unmatched facts in ∆FB.
Optimization Heuristics. We implemented two opti-
mization options that limit the size of rule search space
and input fact-bases to improve the performance of rule
inference:
1) Beam search. To tame the exponential growth of
rule search space, we save only the best β number
of ungrounded rules and pass them to the next
iteration [44].

2) Reducing the scope of contextual facts. Since dis-
tant contextual facts are unlikely to contribute to
finding shared structural characteristics of modi-
fied code, we prune contextual facts beyond a hop
distance of k.

In addition, we allow the user to select the level of
abstraction for facts in ∆FB. Facts lower than the selected
level of granularity are aggregated into modified * facts.
For instance, when operating at a type granularity, all
added method and deleted method facts from the same class
are aggregated into a single modified type fact.

5 EVALUATION OF API CHANGE-RULES
We applied our API change-rule inference approach
to three open source Java projects, which have release
archives on sourceforge.net. JFreeChart is a library for
drawing different types of charts, JHotDraw is a GUI
framework for technical and structured graphics, and
jEdit is a cross-platform text editor. On average, releases
are separated by a two-month gap in JFreeChart and
a nine-month gap in JHotDraw and jEdit. To demon-
strate our tool’s effectiveness in cases where existing
approaches produce overwhelmingly large results, we
purposefully use version pairs at a release granularity.
The main purpose of our evaluation is to measure how

concisely a set of rules explain method-header matches.
To measure conciseness improvement, we measure a
M/R ratio = |M|

|Rules| , where Rules are API change-rules
identified by our approach and M represents a set of
method matches explained by these change rules. A
high M/R ratio means that using rules instead of plain
matches significantly reduces the size of results.

Fig. 1. Recall and precision vs. percentage of found
matches

To measure the accuracy of found method matches,
we need the ground truth—a set of correct matches.
It is impossible to achieve the correct set of “ground
truth” without asking the original developers of the
subject programs, who are unavailable. We approxi-
mated the ground truth by constructing an evaluation
data set (E) in two steps. First, we used our algo-
rithm on each version pair in both directions. While
our approach finds only n-to-1 matches in a forward
direction, it can find 1-to-n matches when it is run
backwards. Thus, this process could find additional
matches, such as method-header matches represent-
ing API deprecation and replacement (e.g. Foo.foo() $→
deprecated Foo.foo() and Foo.foo() $→Foo.bar(). For the
JFreeChart data set, we also added the matches found by
UMLDiff to E [4]. Thus, E could include method-level
matches whose names are not similar but have similar
reference relationships (e.g., type usages, method-calls,
field-accesses, etc.) [4]. Next, we manually inspected all
matches in E to remove incorrect ones, by consulting the
content of the corresponding method bodies as needed.
Using the resulting data set, E, we measured precision,
the percentage of our matches that are correct ( |E∩M|

|M| ),
and recall, the percentage of correct matches that our
tool finds ( |M∩E|

|E| ). The higher the precision measure
is, the lower the number of false positives. The higher
the recall measure is, the lower the number of false
negatives.
Section 5.1 presents the evaluation of API change-rules

in terms of conciseness and accuracy. In Section 5.2, we
describe the impact of varying a similarity threshold (γ)
and an exception threshold (ε). Then, in Section 5.3, we
describe the evaluation of seven similarity measures for
seed generation.

5.1 API-Matching Conciseness and Usefulness
Table 3 summarizes results for the three projects. We use
default thresholds (γ=0.7 and ε=0.34) for all experiments.
|O| and |N | are the number of methods in an old version
and a new version respectively. |O ∩ N | is the number
of methods whose name and signature did not change.
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TABLE 3
Rule-based matching results

JFreeChart (www.jfree.org/JFreeChart)
The actual release numbers are prefixed with 0.9.

Versions |O| |N | |O ∩ N | Rule Match Prec. Recall M/R Time (min.)
4→5 2925 3549 1486 178 1198 0.92 0.92 6.73 21.01
5→6 3549 3580 3540 5 6 1.00 1.00 1.20 <0.01
6→7 3580 4078 3058 23 465 1.00 0.99 20.22 1.04
7→8 4078 4141 0 30 4057 1.00 0.99 135.23 43.06
8→9 4141 4478 3347 187 659 0.91 0.90 3.52 22.84
9→10 4478 4495 4133 88 207 0.99 0.93 2.35 0.96
10→11 4495 4744 4481 5 14 0.79 0.79 2.80 <0.01
11→12 4744 5191 4559 61 113 0.78 0.79 1.85 0.40
12→13 5191 5355 5044 10 145 1.00 0.99 14.50 0.11
13→14 5355 5688 5164 41 134 0.94 0.86 3.27 0.43
14→15 5688 5828 5662 9 21 0.90 0.70 2.33 0.01
15→16 5828 5890 5667 17 77 0.97 0.86 4.53 0.32
16→17 5890 6675 5503 102 285 0.91 0.86 2.79 1.30
17→18 6675 6878 6590 10 61 0.90 1.00 6.10 0.08
18→19 6878 7140 6530 98 324 0.93 0.95 3.31 1.67
19→20 7140 7222 7124 4 14 1.00 1.00 3.50 <0.01
20→21 7222 6596 4454 71 1853 0.99 0.98 26.10 62.99
MED 0.94 0.93 3.50 0.43
MIN 0.78 0.70 1.20 0.00
MAX 1.00 1.00 135.23 62.99

JHotDraw (www.jhotdraw.org)
5.2→5.3 1478 2241 1374 34 82 0.99 0.83 2.41 0.11
5.3→5.41 2241 5250 2063 39 104 0.99 0.98 2.67 0.71
5.41→5.42 5250 5205 5040 17 17 0.82 1.00 1.00 0.07
5.42→6.01 5205 5205 0 19 4641 1.00 1.00 244.26 27.07
MED 0.99 0.99 2.54 0.41
MIN 0.82 0.83 1.00 0.07
MAX 1.00 1.00 244.26 27.07

jEdit (www.jedit.org)
3.0→3.1 3033 3134 2873 41 63 0.87 1.00 1.54 0.13
3.1→3.2 3134 3523 2398 97 232 0.93 0.98 2.39 1.51
3.2→4.0 3523 4064 3214 102 125 0.95 1.00 1.23 0.61
4.0→4.1 4064 4533 3798 89 154 0.88 0.95 1.73 0.90
4.1→4.2 4533 5418 3799 188 334 0.93 0.84 1.78 4.46
MED 0.93 0.98 1.73 1.21
MIN 0.87 0.84 1.23 0.61
MAX 0.95 1.00 2.39 4.46

Running time is measured on a Quad-Core Intel Xeon
processor running on a Mac Pro, and is described in
minutes. The precision of our tool is generally high, in
the range of 0.78 to 1.00. Recall is in the range 0.70 to
1.00, with median values higher than 0.90 for all three
subjects.
The M/R ratio shows significant variance across dif-

ferent release pairs in the three subjects. The low end of
the range is at or just over 1 for each subject, representing
cases where each rule represents roughly a single match.
The high end of the range varies from 2.39 (for jEdit)
to nearly 244.26 (for JHotDraw). We observed that most
matches are actually found by a small portion of rules
(recall our algorithm finds rules in descending order of
the number of matches). Figure 1 plots the cumulative
distribution of matches for the version pairs with the
median M/R ratio from each of the three projects. The
x axis represents the percentage of rules found after
each iteration, and the y axis represents the recall and
precision of matches found up to each iteration.
In all three cases, the top 20% of the rules find over

55% of the matches, and the top 40% of the rules find
over 70% of the matches. In addition, as the precision
plots show, the matches found in early iterations tend
to be correct matches evidenced by a systematic change
pattern. The fact that many matches are explained by a

few rules is consistent with the view that a single con-
ceptual change often involves multiple low-level trans-
formations. This confirms that leveraging a systematic
change structure is a good matching approach.
Our tool handled the major refactorings in the subject

programs quite well. For example, from release 0.9.4 to
0.9.5 of JFreeChart, when nearly half of the methods can-
not be matched by name, our tool finds many package-
level splits and low-level API changes. For example, the
following change pattern is not found by UMLDiff [4],
as UMLDiff simply enumerates individual return type
refactorings one by one.

for all x:int renderer.*.draw*(*, Graph, Rect)
returnReplace(x, int, AxisState)
Interpretation: All methods with a name “renderer.*.draw*(*,
Graph, Rect)” changed their return type from int to AxisState.
The M/R ratio was extremely high from release 0.9.7

to 0.9.8 of JFreeChart and from release 5.42 to 6.01 of
JHotDraw due to domain renamings: JFreeChart’s do-
main was renamed from com.jrefinery to org.jfree

and JHotDraw’s domain was renamed from ch.ifa to
org.jhotdraw.
Our approach also found rules that summarize mul-

tiple related refactorings, which no existing refactoring
reconstruction tools summarize as a single change. For
example, for all x: chart.*Axis.height() procedureRename(x, height,



KIM et al.: A THIRD REVISION SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JAN 2012 12

getHeight) represents multiple method renamings. These
changes cannot be summarized as a single refactoring by
existing refactoring reconstruction techniques, because
the scope of change is the classes that end with the name
Axis and not the entire program.
Evaluation of Rule Exceptions. In order to assess
whether the identified rule exceptions can help devel-
opers prevent inconsistent edits, we manually inspected
all rules with exceptions in JFreeChart. In 16 version pairs
of JFreeChart, there were 49 rules with exceptions in total.
From the inspection, we categorized them into three
categories: (1) inconsistent edits which lead to bugs, (2)
inconsistent edits that are benign yet suspicious and
noteworthy, and (3) false positive inconsistent edits.
Out of 49 rules, 14 were inconsistent edits that led

to bugs—they were corrected by developers in later
versions, or they were obvious errors such as a sub-
class’ method no longer overriding a renamed ab-
stract method. For example, in JFreeChart 0.9.4→0.9.5,
a developer renamed addTitle to addSubtitle in class
JFreechart and subsequently renamed addTitle in two
of its subclasses; however, the developer misspelled one
to addSubitle in the JThermometer class. This bug was
corrected in a later version. 22 out of 49 rules were
benign, inconsistent edits, yet suspicious and worth-
while to note. For example, 17 methods changed their
input signatures from AxisLocation to RectangleEdge,
but one method did not change similarly. As another
example, all classes with the name *Category*Dataset

moved from package org.jfree.data to sub-package
org.jfree.data.category except CategoryTableXYDataset.
13 out of 49 rules were false positive identifications of
inconsistent edits. For example, we identified a wrong
rule, in turn accidentally classifying a correct match
(setVerticalLabel *→ setVerticalTickLabels), as an ex-
ception.
This evaluation shows that the rule exceptions can

indeed help developers find bugs and prevent in-
consistent edits. It can also help developers raise
appropriate design rationale questions about compo-
nent organization during peer code reviews, such as
“Why wasn’t CategoryTableXYDataset moved when all other
CategoryDataset classes moved to the data.category sub-
package?”
Example of Unmatched Methods. Since our approach
relies heavily on method name similarity and systematic
renaming patterns, it cannot find matches that do not
bear any textual similarity. For example, our approach
cannot detect that TriangleFigure.polygon is renamed
to Triangle.getPolygon since the token-level name-
similarity between the two methods is very low. Further-
more, our approach cannot find 1-to-n matches, which
are useful for describing replacement of a deprecated
API. For example, Drawing.orphanAll(Vector) should
have been mapped to both Drawing.orphanAll(Vector)

(deprecated) and Drawing.orphanAll(FigureEnumeration)

in JHotDraw 5.2→5.3.

Fig. 2. Impact of seed threshold γ

5.2 Impact of Thresholds

Seed Threshold (γ). Our rule-based API-matching re-
sults, in part, depend on the quantity and quality of
seeds. The seed threshold specifies the similarity re-
quired for a match to be considered in an initial set of
seed matches.
Figure 2 shows how our algorithm behaves when

we change the seed threshold γ for all version pairs
in JFreeChart. The precision and recall measures are
weighted-average measures. We varied γ from 0.9 to
0.5 and measured recall of seeds, precision, recall, and
the ratio of rejected seeds to the total number of seeds.
When γ is set high, in the range of 0.9 to 0.8, the name
matching technique finds a relatively small number of
seeds, but the seeds tend to be all good seeds. So,
our algorithm rejects very few seeds and leverages the
good seeds to quickly reach a recall of 0.65 to 0.85.
However, the recall is still below 0.85 as the seeds do not
contain enough transformations. As γ decreases, more
seeds are produced and a higher percentage of them
are bad seeds that our algorithm later rejects. Using
a low threshold (<0.6) generally leads to higher recall
(above 0.9). However, it lowers precision and increases
the running time, as there are more candidate rules based
on bad seeds. For the results in Figure 2, we observed a
roughly linear increase in running time, from a total of
9 minutes (γ=0.9) to 115 minutes (γ=0.5), for all version
pairs.
Exception Threshold (ε). We experimented with three
exception thresholds: 0.25, 0.34, and 0.5 on all version
pairs of JFreeChart. Using a low threshold increases
running time from 7.54 minutes to 10.44 minutes, on
average, and slightly decreases the M/R ratio from
14.33 to 14.12, on average. Surprisingly, we found that
changing exception thresholds does not affect precision
and recall much—the recall measure remained at 0.91
and the precision slightly decreased from 0.94 to 0.93.
We suspect that this is because there are few rules with
exceptions.
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TABLE 4
Performance of similarity measures for seed generation

(varying γ from 0.6 to 0.95 in steps of 0.05)

Similarity Measure F measure
Min Max Med

Method-Header Level Similarity Measures
(original): weighted token LCS 0.095 0.870 0.395
(1) bi-gram 0.075 0.779 0.287
(1’) tri-gram 0.120 0.613 0.362
(2) weighted LCS and ISC 0.004 0.169 0.059
(3) Levenshtein distance 0.051 0.581 0.228

Method-Body Level Similarity Measures
(4) method body size 0.001 0.007 0.002
(5) method body content 0.067 0.371 0.194
(6) combined method signature and body 0.252 0.823 0.481

5.3 Various Textual Similarity Measures for Seed
Generation
Since our algorithm heavily depends on the quality and
quantity of seed matches, we have implemented six
additional textual similarity measures for comparison
against the similarity measure from our initial publica-
tion [45]:
1) N-gram based Dice’s Coefficient [46]: the number
of common n-grams within two strings, used by
Fluri et al. [11] and Xing and Stroulia [4].

2) Weighted LCS and ISC: a weighted longest com-
mon subsequence count and intersection set count
at the character level, used by S. Kim et al. [8].

3) Levenshtein Distance: a normalized edit distance
in terms of delete, insert, and substitute operations,
used by Fluri et al. [11].

4) Method Body Size: a normalized measure of size
difference between two method bodies, used by
Demeyer et al. [19].

5) Method Body Content: Dice’s coefficient and Lev-
enshtein distance-based similarity at the method
body level [46].

6) Combined Method Signature and Body Similarity:
an equal-weighted combination of the weighted n-
gram method-header similarity and Dice’s coeffi-
cient method body similarity.

To understand how well these similarity measures alone
match entities across program versions, we evaluated the
performance of seven similarity measures against the set
of manually labeled matches. Using the JFreeChart data
set, we varied the threshold (γ) from 0.6 to 0.95 in steps
of 0.05 and calculated the F-measure of the precision
and recall values for each measure. The F-measure is a
measure of accuracy: F = 2×precision×recall

precision+recall .
Table 4 presents the minimum, maximum, and median

F-measure of the different similarity measures. Without
considering method body content, the original weighted
token similarity measure (original) had the best overall
performance, with the weighted bi-gram Dice’s Coeffi-
cient measure (2) ranking the second. When considering
method body content, the combined method signature
and body similarity (6) takes the top spot.

6 EVALUATION OF LSDIFF CHANGE-RULES
Section 6.1 discusses a focus group study and Section 6.2
describes comparisons between LSdiff and an existing
approach.

6.1 Focus Group Study
To understand our target users’ perspectives on LSdiff,
we conducted a focus group study with professional
software engineers from a large E-commerce company.
A focus group study is typically carried out in an early
stage of product development to gather target users’
opinions on new products, concepts, or messages.
The goal of the focus group was to answer: (1) In

which task contexts do programmers need to understand
code changes? (2) What are difficulties of using program
differencing tools such as diff? and (3) How can LSdiff
complement existing uses of program differencing tools?
With the help of a liaison at the company, we identified

a target group consisting of software development en-
gineers (including those in testing), technical managers,
and software architects. A screening questionnaire asked
the target group about their programming and software
industry experience, their familiarity with Java, how
frequently they use diff and diff-based version control
systems, and the size of code bases that they regularly
work with. All five participants had primary devel-
opment responsibilities; each had industry experience
ranging from 6 to over 30 years; each used related tools
at least weekly; and each reviewed code changes daily
except one who reviewed only weekly.
The hands-on trial in the focus group used a sample

LSdiff output on the CAROL project, revision 430. We
chose this change because it is a conceptually simple
change based on dispersed textual modifications of 723
lines across 9 files. LSdiff identified the systematic nature
of the change, inferring 16 rules and 11 facts. The LSdiff
output is presented in an HTML format, which is similar
to what is shown in the screen snapshot of the LSdiff
Eclipse plug-in [47] (see Figure 3).
During the focus group, the first author worked as

the moderator of the focus group discussion. We audio-
taped the discussion and had a note-taker transcribe
the conversation. The appendices I, J, and K in the first
author’s dissertation [41] describe the complete screener
questionnaire, discussion guide, and the full transcript
of the focus-group discussions, respectively.
The study found that programmers often use diffwhen

reviewing other engineers’ code changes or when resolv-
ing a problem report. When the program’s execution
behavior is different from their expectation or when
investigating unfamiliar code, programmers examine the
evolutionary context of the involved code: how the code
changed over time and why it was changed. If they could
develop an ideal program differencing tool, they would
like to see program-wide, explicit, semantic relationships
between different changed files. Many complained that
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Fig. 3. Overview based on LSdiff rules

diff’s file-based organization is inadequate for reason-
ing about related changes. Though organizing changes
based on containment hierarchy information—for exam-
ple, Eclipse diff’s tree view—is useful to some degree,
they believe it is still inadequate for global changes such
as a refactoring that affects multiple files.
The participants believed that LSdiff can be used in

the situations where they are already using diff, such as
during code reviews and, in particular, when there is a
large amount of changes. One testing engineer said he
would like to use LSdiff to understand the evolution of
the component that he is writing test cases for [48], [49].
The participants believed that LSdiff’s ability to discover
exceptions can help programmers find missing updates
and better understand design decisions.
“This ’except’ thing is great, because there’s always the

situation that you are thinking, ‘why is this one different?’”
The participants thought that the change overview

based on the inferred rules would reduce change in-
vestigation time. Programmers can start from rules and
drill down to details in a top-down manner as opposed
to reading changed lines file by file without having the
context of what they are reviewing.
“I guess it is much a higher level of abstraction. . . You may

start with the summary of changes and dive down to detail using
a tool like diff. Diff will print out details and this will give you
overall things. It is complementary in different levels. ”
The participants were concerned that LSdiff does

not identify cross-language systematic changes such as
changing a Java program and subsequently changing
XML configuration files. Some were concerned that LSd-
iff would not provide much additional benefits for non-
systematic, random, or small changes and that LSdiff
may find uninteresting systematic changes.
Overall, our focus group participants were very pos-

itive about LSdiff and asked us when they could use
it for their work. They believed that LSdiff can help

programmers reason about related changes effectively, as
opposed to reading diff outputs without having a high-
level context.

6.2 Empirical Assessment of Change-Rules
We applied LSdiff to two open source projects, CAROL
and dnsjava, and to LSdiff itself. We selected these
programs because their medium code size (up to 30
KLOC) allowed us to manually analyze changes in
these programs in detail. We did not use the same
subject program pairs described in Section 5.1 because
the API change-rule evaluation purposely targets a large
number of method deletions and additions, while the
evaluation of LSdiff targets small programs to limit the
size of the rule search space. CAROL is a library that
allows clients to use different remote method invocation
implementations. From its version control system, we
selected 10 version pairs with check-in comments that
indicated non-trivial changes. Its size ranged from 10,800
to 29,050 LOC and from 90 to 190 files. dnsjava is an
implementation of domain name services in Java. From
its release archive, we selected 29 version pairs. Its
program size ranged from 5,080 to 14,500 LOC and
from 40 to 83 files. We also selected LSdiff’s 10 versions
pairs—revisions that were at least 8 hours apart and
committed by different authors. Its program size ranged
from 15,651 to 16,897 LOC and from 93 to 101 files.
Comparison with Structural Delta. We compared LS-
diff’s result (LD) with ∆FB because ∆FB represents
what an existing program differencing approach would
produce at the same abstraction level. The goal of this
comparison is to answer the following questions:
(1) How often do individual changes form systematic

change patterns? LSdiff is based on the observation that
high-level changes are often systematic at a code level.
To understand how often this observation holds true in
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practice, we measured coverage, the percentage of facts
in ∆FB explained by inferred rules: # of facts matched
by rules / ∆FB. For example, when 10 rules explain 90
out of 100 facts in ∆FB, the coverage of rules is 90%.
(2) How concisely does LSdiff describe structural dif-

ferences by inferring rules in comparison to an existing
differencing approach that computes differences without
any structure? We measured conciseness improvement:
∆FB / (# rules + # facts). For example, when 4 rules
and 16 remaining facts explain all 100 facts in ∆FB, LD
improves conciseness by a factor of 5.
(3) How much contextual information does LSdiff

find from unchanged code fragments? We believe that
analyzing the entire snapshot of both versions, instead
of only deleted and added text, can discover relevant
contextual information, reducing a developer’s burden
of examining the code surrounding deleted or added
text. We measured how many additional facts LSdiff finds
by analyzing all three fact-bases as opposed to only ∆FB:
# facts in FBo that are mentioned by the rules but are not
contained in ∆FB.
Table 5 shows the results for the three data sets. These

results are generated using default parameter settings:
m=3, a=0.75, and k=2 because these default thresholds
tend to produce good results according to our evalu-
ation. Rule shows the number of inferred rules, and
Fact shows the number of remaining facts in ∆FB not
explained by any inferred rules. On average, 75% of
facts in ∆FB are covered by inferred rules; this implies
that 75% of structural differences form higher-level, sys-
tematic change patterns. Inferring rules improves the
conciseness measure by a factor of 9.3 on average. LSdiff
finds an average of 9.7 more contextual facts than ∆FB.
Restriction of Rule Styles.While our algorithm system-
atically enumerates all possible candidate rules, certain
styles of rules have a stronger meaning than others. For
example, inheritance, call, and access based dependence
relationships have a stronger meaning than containment-
based relationships: ”all setPort methods that called
foo(int) in the old version were deleted” is more in-
formative than “all setPort methods were deleted.” As
another example, rules with constants are more specific
and thus easier to understand: “all int type fields were
deleted” and “all port fields with type int were deleted”
may explain the same set of change facts, but the latter
is easier to understand than the former.
To understand how the rule style restriction affects the

end results, we have devised three different schemes:
Option A—use our default algorithm described in Sec-
tion 4.2, Option B—restrict at least one of the antecedent
predicates to inheritance, method call, or field access
predicates, and Option C—further restrict Option B by
imposing at least one constant to appear in each predi-
cate. Our case study on the CAROL version pair 429-430
shows the following results.
Using Option A, 16 rules were inferred and 11 change

facts are not covered by any of the inferred rules. Using
Option B, 16 rules were inferred and 12 change facts are

TABLE 5
Comparison with ∆FB

FBo FBn ∆FB Rule Fact Cvrg. Csc. Add’tl.
Carol

Min 3080 3452 15 1 3 59% 2.3 0.0
Max 10746 10610 1812 36 71 98% 27.5 19.0
Median 9615 9635 97 5 16 87% 5.8 4.0
Avg 8913 8959 426 10 20 85% 9.9 5.5

dnsjava
Min 3109 3159 4 0 2 0% 1.0 0.0
Max 7200 7204 1500 36 201 98% 36.1 91.0
Median 4817 5096 168 3 24 88% 4.8 0.0
Avg 5144 5287 340 8 37 73% 8.4 14.9

LSdiff
Min 8315 8500 2 0 2 0% 1.0 0.0
Max 9042 9042 396 6 54 97% 28.9 12.0
Median 8732 8756 142 1 11 91% 9.8 0.0
Avg 8712 8783 172 2 17 68% 11.2 2.3
Median 6650 6712 132 2 17 89% 7.3 0.0
Avg 6632 6732 302 7 27 75% 9.3 9.7

not covered by any of the inferred rules. We found that
this restriction reduces the rule search space significantly,
from 358 ungrounded rules to 180 ungrounded rules,
yet the total number of rules in the final result does
not change much. Many rules cover overlapping sets of
change facts, and thus are filtered by our SET-COVER
post processing step. However, in terms of quality, the
rules produced with Option B tend to be more interest-
ing because they describe dependence similarity among
changed code rather than containment similarity. When
using Option C, our algorithm finds 18 rules and the
remaining 33 change facts are not covered by any of the
inferred rules. We found that abandoning rules with no
constants in each predicate forced our algorithm to infer
specific rules and reduce its coverage.
Varying Threshold Parameters. The input parameters
m (the minimum number of facts a rule must match), a
(the minimum accuracy), and k (the maximum number
of literals a rule can have in its antecedent) define which
rules should be considered in the output. To understand
how varying these parameters affect our results, we
varied m from 1 to 5, a from 0.5 to 1 in increments of
0.125, and k from 1 to 2. Table 6 shows the results of
varying these parameters for the CAROL data set.
When m is 1, all facts in ∆FB are covered by rules (by

definition). As m increases, fewer rules are found and
they cover fewer facts in ∆FB.
As a increases, a smaller proportion of exceptions is

allowed per rule; thus, our algorithm finds more rules
each of which covers a smaller proportion of the facts,
decreasing the conciseness and coverage measures. In
the case of a=0.5, the trend is slightly opposite because
the low accuracy criteria enabled our algorithm to find
more rules.
Changing k from 1 to 2 allows our algorithm to find

more rules and improves the additional information
measure from 0.4 to 5.5 by considering code fragments
that are further away from changed code. With our
current tool, we were not able to experiment with k
greater than 2 because the large rule search space led
to a very long running time.
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TABLE 6
Impact of varying input parameters a, m, and k

Rule Fact Cvrg. Csc. Ad’l. Time(Min)
1 39.6 0 100% 7.4 10.1 2.0
2 14.6 13.1 92% 10.6 7.4 11.2

m 3 9.9 20.4 85% 9.9 5.5 9.1
4 7.7 25.7 82% 9.1 5.4 8.7
5 5.7 30 80% 8.5 3.5 7.8
0.5 11.1 15.6 89% 10.6 2.1 6.8
0.625 9.7 17.2 88% 11.0 4.0 7.3

a 0.75 9.9 20.4 85% 9.9 5.5 9.0
0.875 10.8 24.2 78% 8.6 9.1 12.7
1 13.3 26.2 78% 7.9 12.5 16.5

k 1 7.5 33.8 78% 7.2 0.4 0.7
2 9.9 20.4 85% 9.9 5.5 9.1

(default parameters: a=0.75, m=3, k=2)

7 LIMITATIONS
Our change rule inference is limited to the abstraction
level of code elements and structural dependences in
Java, described in Table 1. It does not model features
such as exceptions thrown by a Java method nor its
access modifiers. As opposed to AST differencing, the
goal of LSdiff rule inference is to discover systematic
change patterns at the abstraction level described in
Table 1, but not to produce syntactic differences between
two full ASTs. Similarly, our API rule inference is limited
to method headers, and thus cannot capture renaming at
a field level. Though our fact extraction analysis handles
inner types, it does not handle anonymous classes with
type names. To extract change facts, we analyzed Java
source code using the Eclipse JDT AST syntax analysis
toolkit. In addition, when finding method calls facts, it
finds static method calls but does not account for dy-
namic dispatching, as determination of a run-time object
type requires precise alias analysis.
Our API change-rule inference heavily relies on seed

generation, which uses textual similarity to find seed
matches. Thus, it is prone to miss changes that in-
volve drastic renamings such as rename getStart to
getFirstMillisecond. A seed generation method that
looks up synonyms in a dictionary may find more seed
matches, overcoming this limitation [50].
Our API change-rules describe functional mappings

(n-to-1) from the method headers deleted in the old
version to the method headers added in the new version.
Thus, when a method foo is renamed to bar but is kept
as a deprecated method, our API-matching cannot find
a mapping from foo to bar.
While it is possible to construct a golden-standard

set by recording refactorings or requesting developers
to manually label matches, we inspected the results in-
house as the recorded refactoring scripts are unavailable
and it is prohibitively expensive for developers to man-
ually label all matches in the version history.
The current LSdiff algorithm has three limitations.

First, top-down rule-learning is inefficient in that it
searches a very large number of rules and then discards
most of them—for example, in one of the worst cases,

Fig. 4. Overlapping rules

it reported 36 rules after generating over 1 million and
finding about 4400 of them valid. This limitation comes
from the fact that the same phenomena can be explained
by a very large number of slightly different, yet equiva-
lent, patterns.
Consider the example in Figure 4. Suppose that there

exists a rule, “all Amethods in B’s subclasses deleted calls
to C.” When B implements the B1 interface and Amethods
were called by D, the algorithm may find another rule
that explains the same method-call deletions, “all meth-
ods that were called by D in B1’s subtypes deleted calls
to C.” This first limitation leads to the second limitation:
LSdiff’s output is often unstable because small changes
in the input programs or the order of rule-selection leads
to very different final outputs. Third, it does not group
related rules and facts to identify complex refactorings or
changes to design patterns. The first author’s follow-up
work, Ref-Finder, overcomes this limitation by defining
the structural constraints of each refactoring type as
template logic rules and uses a logic query approach to
infer concrete refactoring instances [24].
As described in Section 4, our approach takes input

parameters (thresholds), which must be tuned by de-
velopers. Though the use of threshold parameters is
common in programming differencing and refactoring
reconstruction, this has a practical implication because
the thresholds need to be tuned.

8 CONCLUSION
To help developers reason about software changes at a
high level, this article introduced a rule-based program
differencing approach that extracts high-level change
descriptions as logic rules. This rule-based approach is
instantiated at two abstraction levels: first at the method-
header level and then at the level of code elements and
their structural dependences.
This rule-based change inference approach has been

assessed both quantitatively and qualitatively through
its application to multiple open source projects and
through a focus group study with professional develop-
ers from a large E-commerce company. The participants’
comments show that our approach is promising, both
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as a complement to diff’s file-based approach and as
a way to help developers discover potential bugs by
identifying exceptions to inferred systematic changes.
The quantitative assessments show that our rule-based
approach produces concise results compared to other
refactoring reconstruction tools.
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[11] B. Fluri, M. Würsch, M. Pinzger, and H. C. Gall, “Change
distilling—tree differencing for fine-grained source code change
extraction,” IEEE Transactions on Software Engineering, vol. 33,
no. 11, p. 18, November 2007.

[12] I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source
code evolution using abstract syntax tree matching,” in MSR’05:
the Workshop on Mining Software Repositories, 2005, pp. 2–6.

[13] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Augustine,
“Dex: A semantic-graph differencing tool for studying changes
in large code bases,” in ICSM ’04: Proceedings of the 20th IEEE
International Conference on Software Maintenance. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 188–197.

[14] W. Yang, “Identifying syntactic differences between two pro-
grams,” Software – Practice & Experience, vol. 21, no. 7, pp. 739–755,
1991.

[15] T. Apiwattanapong, A. Orso, and M. J. Harrold, “A differencing
algorithm for object-oriented programs,” in ASE ’04: Proceedings
of the 19th IEEE International Conference on Automated Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 2–13.

[16] S. Horwitz, “Identifying the semantic and textual differences
between two versions of a program,” in PLDI ’90: Proceedings of
the ACM SIGPLAN 1990 conference on Programming language design
and implementation. New York, NY, USA: ACM, 1990, pp. 234–245.

[17] D. Jackson and D. A. Ladd, “Semantic diff: A tool for summariz-
ing the effects of modifications,” in ICSM ’94: Proceedings of the
International Conference on Software Maintenance. Washington, DC,
USA: IEEE Computer Society, 1994, pp. 243–252.

[18] O. C. Chesley, X. Ren, and B. G. Ryder, “Crisp: A debugging
tool for java programs,” in ICSM ’05: Proceedings of the 21st IEEE
International Conference on Software Maintenance. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 401–410.

[19] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding refactorings
via change metrics,” in OOPSLA ’00: Proceedings of the 15th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications. New York, NY, USA: ACM, 2000, pp.
166–177.

[20] L. Zou and M. W. Godfrey, “Using origin analysis to detect
merging and splitting of source code entities,” IEEE Transactions
on Software Engineering, vol. 31, no. 2, pp. 166–181, 2005.

[21] F. V. Rysselberghe and S. Demeyer, “Reconstruction of successful
software evolution using clone detection,” in IWPSE ’03: Pro-
ceedings of the 6th International Workshop on Principles of Software
Evolution. Washington, DC, USA: IEEE Computer Society, 2003,
p. 126.

[22] G. Antoniol, M. D. Penta, and E. Merlo, “An automatic approach
to identify class evolution discontinuities,” in IWPSE ’04: Pro-
ceedings of the Principles of Software Evolution, 7th International
Workshop. Washington, DC, USA: IEEE Computer Society, 2004,
pp. 31–40.

[23] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilin-
guistic token-based code clone detection system for large scale
source code.” IEEE Transactions on Software Engineering, vol. 28,
no. 7, pp. 654–670, 2002.

[24] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-
based reconstruction of complex refactorings,” in ICSM 2010: 2010
IEEE International Conference on Software Maintenance, 2010, pp. 1
–10.

[25] E. Visser, “Program transformation with Stratego/XT: Rules,
strategies, tools, and systems in StrategoXT-0.9,” Domain-Specific
Program Generation, vol. 3016, pp. 216–238, 2004.

[26] J. R. Cordy, “The TXL source transformation languages,” Science
of Computer Programming, vol. 61, no. 3, pp. 190–210, 2006.

[27] M. Boshernitsan, S. L. Graham, and M. A. Hearst, “Aligning
development tools with the way programmers think about code
changes,” in CHI ’07: Proceedings of the SIGCHI conference on
Human factors in computing systems. New York, NY, USA: ACM,
2007, pp. 567–576.

[28] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Document-
ing and automating collateral evolutions in Linux device drivers,”
in Eurosys ’08: Proceedings of the 3rd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2008. New York, NY, USA:
ACM, 2008, pp. 247–260.

[29] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining
version histories to guide software changes,” in ICSE ’04: Pro-
ceedings of the 26th International Conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 563–572.

[30] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: a
tool for change impact analysis of Java programs,” in OOPSLA
’04: Proceedings of the 19th annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications.
New York, NY, USA: ACM, 2004, pp. 432–448.

[31] J. Wloka, B. G. Ryder, and F. Tip, “JUnitMX - a change-aware
unit testing tool,” in ICSE ’09: Proceedings of the 31st International
Conference on Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 567–570.

[32] W. F. Opdyke and R. E. Johnson, “Refactoring: An aid in designing
application frameworks and evolving object-oriented systems,”
in SOOPPA2000: Proceedings of the Symposium on Object Oriented
Programming Emphasizing Practical Applications, 2000.

[33] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 2000.



KIM et al.: A THIRD REVISION SUBMITTED TO IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JAN 2012 18

[34] T. Mens and T. Tourwe, “A survey of software refactoring,” IEEE
Transactions on Software Engineering, vol. 30, no. 2, pp. 126–139,
2004.

[35] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin, “Aspect-oriented programming,” in
ECOOP’97: the 11th European Conference on Object-oriented Program-
ming, vol. 1241. Lecture Notes in Computer Science 1241, 1997,
pp. 220–242.

[36] P. Tarr, H. Ossher, W. Harrison, and J. Stanley M. Sutton, “N
degrees of separation: multi-dimensional separation of concerns,”
in ICSE ’99: Proceedings of the 21st International Conference on
Software Engineering. Los Alamitos, CA, USA: IEEE Computer
Society Press, 1999, pp. 107–119.

[37] S. Breu and T. Zimmermann, “Mining aspects from version
history,” in ICSE’06: Proceedings of the 28th International Conference
on Automated Software Engineering, 2006, pp. 221–230.

[38] W. Griswold, “Coping with crosscutting software changes using
information transparency,” in Reflection 2001: The Third Interna-
tional Conference on Metalevel Architectures and Separation of Cross-
cutting Concerns. Springer, 2001, pp. 250–265.

[39] M. Kim and D. Notkin, “Discovering and representing systematic
code changes,” in ICSE ’09: Proceedings of the 2009 IEEE 31st
International Conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 309–319.

[40] D. Janzen and K. D. Volder, “Navigating and querying code
without getting lost,” in AOSD’03: Proceedings of the International
Conference on Aspect Oriented Software Development, 2003, pp. 178–
187.

[41] M. Kim, “Analyzing and inferring the structure of code changes,”
Ph.D. dissertation, University of Washington, 2008.

[42] K. D. Volder, “Type-oriented logic meta programming,” Ph.D.
dissertation, Vrije Universiteit Brussel, 1998.

[43] E. Balas and M. W. Padberg, “Set Partitioning: A Survey,” SIAM
Review, vol. 18, pp. 710–760, 1976.

[44] S. Kok and P. Domingos, “Learning the structure of markov
logic networks,” in ICML ’05: Proceedings of the 22nd international
conference on Machine learning. New York, NY, USA: ACM, 2005,
pp. 441–448.

[45] M. Kim, D. Notkin, and D. Grossman, “Automatic inference of
structural changes for matching across program versions,” in
ICSE ’07: Proceedings of the 29th International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 333–343.

[46] L. R. Dice, “Measures of the amount of ecologic association
between species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[47] A. Loh and M. Kim, “Lsdiff: a program differencing tool to
identify systematic structural differences,” in ICSE ’10: Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineer-
ing. New York, NY, USA: ACM, 2010, pp. 263–266.

[48] B. Dagenais and M. P. Robillard, “Recommending adaptive
changes for framework evolution,” in ICSE ’08: Proceedings of the
30th International Conference on Software Engineering. New York,
NY, USA: ACM, 2008, pp. 481–490.
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APPENDIX
It is not possible to conduct a head to head comparison
of our approach with other refactoring reconstruction
techniques, because they are developed for different
purposes, such as updating client applications broken
due to API refactoring. Nevertheless, we compare a
set of method headers explained by our API change-
rules against method matches found by other tools to
show that our matches are roughly on par with other
approaches and that our approach, in turn, produces
more concise outputs in terms of change-rules based on
the matches.
In particular, our comparison focused on the following

six approaches:
1) Xing and Stroulia’s approach (XS) [4].
2) Weißgerber and Diehl’s approach (WD) [5].
3) S. Kim et al.’s approach (KPW) [8].
4) Wu et al.’s approach (WG) [6].
5) Nguyen et al.’s approach (NN) [7].
6) Dig et al.’s approach (DC) [9].
While our approach primarily leverages name similar-

ity to match corresponding method headers, the other
approaches use various content, name, and structure
similarity criteria to map methods between two program
versions. For other approaches, we used the results
produced with default thresholds set by the authors.
For example, we found XS’s results on their web site.3
Similarly, we found DC’s results on their web site.4
When comparing with DC’s results, we excluded the
matches derived from return type change refactorings
in our results, because such changes are not detected
by DC. WD and KPW results were sent to us by the
respective authors. The first author participated in de-
veloping the WG and NN approaches as a co-author. In
the case of WD, because it finds redundant refactoring
events for a single match, we compared our results
with both (1) all refactoring candidates (RCall) and (2)
only the top-ranked refactoring candidates (RCbest). We
also developed a tool that deduces method matches
from the refactorings inferred by XS and WD, because
these approaches find refactorings instead of method-
level matches.
When comparing the size of inferred changes, in our

approach we measured the number of rules. In XS,
WD, and DC, we measured the number of relevant
refactorings that explain method-level matches. In KPW,
WG, and NN, we measured the number of method
matches, as they do not output their results in terms of
refactorings. Our comparative evaluation was done all
at the method level and we did not consider the types
of refactorings that do not contribute to finding method
matches. For example, XS detects changes to method

3. http://webdocs.cs.ualberta.ca/∼stroulia/Zhenchang Xing Old
Home/jdevan.html
4. https://netfiles.uiuc.edu/dig/RefactoringCrawler/evaluations.

html

visibility and encapsulate field refactorings, but we did
not include those refactorings in our comparison.
For each common version pair, we categorized the

set of method-header level matches into three sets:
(A) matches found by both approaches, (B) matches
found by only our approach, and (C) matches found by
only their approach. We randomly sampled at least 50
matches from each set and manually inspected them.
Note that this random sampling was done for each
version pair, and thus the total number of inspected
matches is far greater than 150 matches per each subject
program. We then estimated the overall precision as
a weighted average of precision measures. Suppose
that, in JFreeChart: NN and our approach found 4249
matches in common with an estimated precision of
1.00; 395 matches are found by our tool only with an
estimated precision 0.32; and 264 matches are found
by NN only with an estimated precision of 0.59. We
estimated that our tool has an overall precision of
0.94=(1.00×4249+395×0.32)/(4249+395), while NN has
an overall 0.98 precision. We also estimated an overall
recall similarly; we estimated our tool has a recall of
0.97=(1.00×4249+395×0.32)/(4249×1.00+395×0.32+264×
0.59).
The comparison results are summarized in Table 7.

Our approach improves the conciseness of matching
results significantly without much sacrifice in preci-
sion and recall. The improvement in conciseness must
be carefully interpreted because other approaches were
developed for different purposes, such as migrating a
client application when libraries evolve, and thus their
primary goal is not about presenting refactoring results
in a concise manner. The following summarizes the
highlights of our detailed comparison:

• XS: Matches missed by XS often involve both re-
name and move refactorings. For example, it cannot
handle combinations of move and rename refac-
torings such as “move CrosshairInfo class from
chart to chart.plot package and rename it to
CrosshairState.” Matches missed by our tool often
had a very low name similarity.

• WD: WD missed many matches when compound
transformations were applied. Our tool missed some
matches because using γ=0.65 did not generate
enough seeds to find them.

• KPW: KPW missed many matches because it cannot
accept correct matches when their overall similarity
score is lower than a certain threshold. It also cannot
easily prune incorrect matches once their overall
similarity score is over a certain threshold and is
the highest among potential matches. On the other
hand, our algorithm tends to reject matches whose
transformation is an isolated incident, even if the
similarity score is high. Our tool’s incorrect matches
usually come from bad seeds that, coincidentally,
have similar names.

• WG: WG finds more matches than ours. The boost
in recall for WG comes from finding many-to-one
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TABLE 7
Comparison: number of matches, precision, recall, and size of result

Program Our Approach Other Approaches Improvement
Matches Rules Precision Recall Matches Refactorings Precision Recall Matches Size

Xing and Stroulia (XS)
JFreeChart (0.9.4-0.9.21) 9633 939 0.97 0.98 8883 4004 0.99 0.92 8% 77%

Weißgerber and Diehl (WD), RCAll
jEdit (2715 check-ins) 1488 906 0.98 0.93 1333 2133 0.86 0.73 12% 58%
Tomcat (5096 check-ins) 2984 1033 0.92 0.87 3608 3722 0.75 0.86 (17%) 72%

Weißgerber and Diehl (WD), RCBest
jEdit (2715 check-ins) 1488 906 0.98 0.96 1172 1218 0.93 0.72 27% 26%
Tomcat (5096 check-ins) 2984 1033 0.93 0.89 2907 2700 0.89 0.82 3% 62%

S. Kim et al. (KPW)
jEdit (1189 check-ins) 2009 1119 0.96 0.96 1430 N/A 0.98 0.70 40% 22%

ArgoUML (4683 check-ins) 4612 2127 0.95 0.95 3819 N/A 0.98 0.82 21% 44%
Nguyen et al. (NN)

JFreeChart (0.9.5-0.9.19) 4644 686 0.94 0.97 4433 N/A 0.98 0.97 4% 85%
JHotDraw (5.2-6.0b1) 3398 109 0.99 0.99 3400 N/A 0.99 0.99 (0.05%) 96%

Wu et al. (WG)
JFreeChart (0.9.11-0.9.12) 113 61 0.78 0.79 115 N/A 0.83 0.99 (2%) 66%

jEdit (4.1-4.2) 334 188 0.93 0.84 318 N/A 0.81 0.99 (36%) 40%
JHotDraw (5.2-5.3) 82 34 0.99 0.83 100 N/A 0.97 0.99 (22%) 47%

Dig et al. (DC)
JHotDraw (5.2-5.3) 78 34 0.99 0.83 24 24 1.00 0.26 71% (29%)

matches or simply deleted target methods, which
our approach does not model explicitly. Further-
more, by considering similarity in method-call re-
lationships, it can find matches when the method
headers do not bear any textual name similarity.

• NN: NN finds about the same number of matches
as ours, yet our approach significantly reduces the
size of the results using rule-based representations.
NN is similar to XS, sharing similar strengths and
limitations.

• DC: DC finds 1-to-n matches to account for
deprecated APIs, thus it can map orphanAll(Vector)

to both orphanAll(Vector) (deprecated) and
orphanAll(FigureEnumeration). Since its results are
intended to migrate clients broken due to API
refactoring, it produces results with high precision
yet its recall was lower than our approach.


