IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.7, JULY 2014 633

An Empirical Study of Refactoring
Challenges and Benefits at Microsoft

Miryung Kim, Member, IEEE, Thomas Zimmermann, Member, IEEE, and
Nachiappan Nagappan, Member, IEEE

Abstract—It is widely believed that refactoring improves software quality and developer productivity. However, few empirical studies
quantitatively assess refactoring benefits or investigate developers’ perception towards these benefits. This paper presents a field
study of refactoring benefits and challenges at Microsoft through three complementary study methods: a survey, semi-structured
interviews with professional software engineers, and quantitative analysis of version history data. Our survey finds that the refactoring
definition in practice is not confined to a rigorous definition of semantics-preserving code transformations and that developers perceive
that refactoring involves substantial cost and risks. We also report on interviews with a designated refactoring team that has led a multi-
year, centralized effort on refactoring Windows. The quantitative analysis of Windows 7 version history finds the top 5 percent of
preferentially refactored modules experience higher reduction in the number of inter-module dependencies and several complexity
measures but increase size more than the bottom 95 percent. This indicates that measuring the impact of refactoring requires multi-

dimensional assessment.

Index Terms—Refactoring, empirical study, software evolution, component dependencies, defects, churn

1 INTRODUCTION

IT is widely believed that refactoring improves software
quality and developer productivity by making it easier to
maintain and understand software systems [1]. Many believe
that a lack of refactoring incurs technical debt to be repaid in
the form of increased maintenance cost [2]. For example,
eXtreme programming claims that refactoring saves devel-
opment cost and advocates the rule of refactor mercilessly
throughout the entire project life cycles [3]. On the other
hand, there exists a conventional wisdom that software engi-
neers often avoid refactoring, when they are constrained by
alack of resources (e.g., right before major software releases).
Some also believe that refactoring does not provide immedi-
ate benefit unlike new features or bug fixes [4].

Recent empirical studies show contradicting evidence on
the benefit of refactoring as well. Ratzinger et al. [5] found
that, if the number of refactorings increases in the preceding
time period, the number of defects decreases. On the other
hand, Weifigerber and Diehl found that a high ratio of refac-
toring is often followed by an increasing ratio of bug reports
[6], [7] and that incomplete or incorrect refactorings cause
bugs [8]. We also found similar evidence that there exists a
strong correlation between the location and timing of API-
level refactorings and bug fixes [9].

These contradicting findings motivated us to conduct a
field study of refactoring definition, benefits, and challenges

e M. Kim is with the Department of Electrical and Computer Engineering at
the University of Texas at Austin.

o T. Zimmermann and N. Nagappan are with Microsoft Research at
Redmond.

Manuscript received 25 Mar. 2013; revised 3 Jan. 2014; accepted 16 Mar.
2014. Date of publication 17 Apr. 2014; date of current version 18 July 2014.
Recommended for acceptance by W.F. Tichy.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TSE.2014.2318734

in a large software development organization and investigate
whether there is a visible benefit of refactoring a large system.
In this paper, we address the following research questions:
(1) What is the definition of refactoring from developers’ per-
spectives? By refactoring, do developers indeed mean behav-
ior-preserving code transformations that modify a program
structure [1], [10]? (2) What is the developers’ perception
about refactoring benefits and risks, and in which contexts do
developers refactor code? (3) Are there visible refactoring
benefits such as reduction in the number of bugs, reduction
in the average size of code changes after refactoring, and
reduction in the number of component dependencies?

To answer these questions, we conducted a survey with
328 professional software engineers whose check-in com-
ments included a keyword “refactor™”. From our survey par-
ticipants, we also came to know about a multi-year
refactoring effort on Windows. Because Windows is one of
the largest, long-surviving software systems within Micro-
soft and a designated team led an intentional effort of sys-
tem-wide refactoring, we interviewed the refactoring team
of Windows. Using the version history, we then assessed
the impact of refactoring on various software metrics such
as defects, inter-module dependencies, size and locality of
code changes, complexity, test coverage, and people and
organization related metrics.

To distinguish the impact of refactoring versus regular
changes, we define the degree of preferential refactoring—
applying refactorings more frequently to a module, relative
to the frequency of regular changes. For example, if a module
is ranked at the fifth in terms of regular commits but ranked
the third in terms of refactoring commits, the rank difference
is 2. This positive number indicates that, refactoring is prefer-
entially applied to the module relative to regular commits.
We use the rank difference measure specified in Section 4.4
instead of the proportion of refactoring commits out of all

0098-5589 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

634 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.7, JULY 2014

commits per module, because the preferential refactoring
measure is less sensitive to the total number of commits
made in each module. We then investigate the relationship
between preferential refactoring and software metrics. In
terms of a threshold, we contrast the top 5 percent preferen-
tially refactored modules against the bottom 95 percent,
because the top 5 percent modules cover most refactoring
commits—over 90 percent. We use both bivariate correlation
analysis and multivariate regression analysis to investigate
how much different development factors may impact the
decision to apply refactoring and how these factors contribute
to reduction of inter-module dependencies and defects [11].
Our field study makes the following contributions:

e The refactoring definition in practice seems to differ
from a rigorous academic definition of behavior-
preserving program transformations. Our survey partic-
ipants perceived that refactoring involves substantial
cost and risks, and they needed various types of tool
support beyond automated refactoring within IDEs.

e The interviews with a designated Windows refactor-
ing team provide insights into how system-wide
refactoring was carried out in a large organization.
The team led a centralized refactoring effort by con-
ducting an analysis of a de-facto dependency struc-
ture and by developing custom refactoring support
tools and processes.

e To collect refactoring data from version histories, we
explore two separate methods. First, we isolate refac-
toring commits based on branches relevant to refac-
toring tasks. Second, we analyze check-in comments
from version histories based on the refactoring
related keywords identified from our survey.

e The top 5 percent of preferentially refactored mod-
ules decrease the number of dependencies by a fac-
tor of 0.85, while the rest increases it by a factor of
1.10 compared to the average number of dependency
changes per modules.

e The top 5 percent of preferentially refactored mod-
ules decrease post-release defects by 7 percent less
than the rest, indicating that defect reduction cannot
be contributed to the refactoring changes alone. It is
more likely that the defect reduction in Windows 7 is
enabled by both refactoring and non-refactoring
changes in the modified modules.

e We also collect data and conduct statistical analysis
to measure the impact of refactoring on the size and
locality of code changes, test coverage metrics, and
people and organization related metrics, etc. The
study results indicate that the refactoring effort was
preferentially focused on the modules that have rela-
tively low churn measures, have higher test block
coverage and relatively few developers worked on
in Windows Vista. Top 5 percent of preferentially
refactored modules experience a greater rate of
reduction in certain complexity measures, but
increases LOC and crosscutting changes more than
other modules.'

1. A module unit in Windows isa .d11 or .exe component and its
definition appears in Section 4.

While there are many anecdotes about the benefit of
refactoring, few empirical studies quantitatively assess
refactoring benefit. To the best of our knowledge, our
study is the first to quantitatively assess the impact of
multi-year, system-wide refactoring on various software
metrics in a large organization. Consistent with our inter-
view study, refactoring was preferentially applied to mod-
ules with a large number of dependencies and preferential
refactoring is correlated with reduction in the number of
dependencies. Preferentially refactored modules have
higher test adequacy and they experience defect reduction;
however, this defect reduction cannot be attributed to the
role of refactoring changes alone according to our regres-
sion analysis. Preferentially refactored modules experience
higher reduction in several complexity measures but
increase size more than the bottom 95 percent. This indi-
cates that measuring the impact of refactoring requires
multi-dimensional assessment.

Based on our study, we propose future research direc-
tions on refactoring—we need to provide various types of
tool support beyond automated refactorings in IDEs, such
as refactoring-aware code reviews, refactoring cost and ben-
efit estimation, and automated validation of program cor-
rectness after refactoring edits. As the benefit of refactoring
is multi-dimensional and not consistent across various met-
rics, we believe that managers and developers can benefit
from automated tool support for assessing the impact of
refactoring on various software metrics.

2 A SURVEY OF REFACTORING PRACTICES

In order to understand refactoring practices at Microsoft, we
sent a survey to 1,290 engineers whose change comments
included the keyword “refactor™” in the last two years in five
Microsoft products: Windows Phone, Exchange, Windows,
office communication and services (OCS), and Office. We
purposely targeted the engineers who are already familiar
with the terms, refactor, refactoring, refactored, etc., because
our goal is to understand their own refactoring definition
and their perception about the value of refactoring. The sur-
vey consisted of 22 multiple choice and free-form questions,
which were designed to understand the participant’s own
refactoring definition, when and how they refactor code,
including refactoring tool usage, developers’ perception
toward the benefits, risks, and challenges of refactoring.

Table 1 shows a summary of the survey questions. The
full list is available as a technical report [12]. We analyzed
the survey responses by identifying the topics and key-
words and by tagging individual responses with the identi-
fied topics. The first author did a two pass analysis by first
identifying emerging categories and next by tagging indi-
vidual answers using the categories. Suppose that a devel-
oper answered the following to the question, “Based on your
own experience, what are the risks involved in refactoring?” We
then tagged the answer with categories, regression bugs and
build breaks, merge conflicts, and time taken from other tasks,
which emerged from the participant’s answer.

“Depending on the scope of the refactoring, it can be easy to
unintentionally introduce subtle bugs if you aren’t careful,
especially if you are deliberately changing the behavior of the
code at the same time. Other risks include making it difficult to

KIM ET AL.: AN EMPIRICAL STUDY OF REFACTORING CHALLENGES AND BENEFITS AT MICROSOFT

TABLE 1
Summary of Survey Questions (The Full List Is Available as a Technical Report [12])

Background What is your role in your team (i.e., developer, tester, program manager, team lead, dev manager, etc.)? (multiple choice)
Which best describes your primary work area? (multiple choice)
How many years have you worked in software industry? (simple answer)
Which programming languages are you familiar with? (multiple choice)
Definition How do you define refactoring? (open answer, max characters: 2000)
Which keywords do you use or have you seen being used to mark refactoring activities in change commit messages? (open answer,
max characters: 2000)
How does the abstraction level of Fowler’s refactorings such as “Extract Method” and “Use Base Type Whenever Possible” match
the kinds of refactorings that you often perform? (open answer, max characters: 2000)
Context How many hours per month roughly do you spend on refactoring? (min number 0 to max number 160)
How often do you perform refactoring? (multiple choice: daily, weekly, monthly, yearly, seldom, never)
In which situations do you perform refactorings? (open answer, max characters: 2000)
Value- What benefits have you observed from refactoring? (open answer, max characters: 2000)
Perception What are the challenges associated with performing refactorings? (open answer, max characters: 2000)
Based on your own experience, what are the risks involved in refactoring? (open answer, max characters: 2000)
How strongly do you agree or disagree with each of the following statements? (scale: strongly agree, agree, neither agree or disagree,
disagree, strongly disagree, no response)
® Refactoring improves program readability
® Refactoring introduces subtle bugs
® Refactoring breaks other people’s code
® Refactoring improves performance
® Refactoring makes it easier to fix bugs. . .
Tools What tools do you use during refactoring? (open answer: max characters: 2000)

What percentage of your refactoring is done manually as opposed to using automated refactoring tools? (min number 0 to max
number 100)

The following lists some of the types of refactorings. Please indicate whether you know these refactorings or used them before.
[multiple choice: (1) usually do this both manually and using automated tools (2) usually do this manually, (3) usually do this
using automated tools, (4) know this refactoring type but don’t use it, (5) don’t know this refactoring type.]
® Rename, Extract Method, Encapsulate Field, Extract Interface, Remove Parameters, ...

These refactoring types were selected from Fowler’s catalog.

How strongly do you agree or disagree with each of the following statements? (scale: strongly agree, agree, neither agree or disagree,
disagree, strongly disagree, no response)

o [interleave refactorings with other types of changes that modify external program behavior.

® Refactorings supported by a tool differ from the kind of refactorings I perform manually.

® Refactorings that I apply are higher level changes than the ones supported by tools.

o How do you ensure program correctness after refactoring? ...

Only a few statements are shown in this paper for presentation purposes.

If you would like to be informed about the results of this research, please enter your alias in the following box. (max characters:
256)

If you would be willing to participate in a follow-up interview (15 minutes) to share your perspective and anecdotes on refactoring
at Microsoft, please enter your alias in the following box. (max characters: 256)

If you have any other comments on this survey, please write them in the following text box. (max characters: 2000)

635

merge changes from others (especially troublesome because
larger refactoring typically takes a significant amount of time
during which others are likely to make changes to the same
code), and making it difficult for others to merge with you (effec-
tively spreading out the cost of the merge to everyone else who
made changes to the same code).”

In total, 328 engineers participated in the survey. Eighty
three percent of them were developers, 16 percent of them
were test engineers, 0.9 percent of them were build engi-
neers, and 0.3 percent of them were program managers. The
participants had 6.35 years of experience at Microsoft and
9.74 years of experience in software industry on average
with a familiarity with C++, C, and C#.

2.1 What Is a Refactoring Definition in Practice?

When we asked, “how do you define refactoring?”, we
found that developers do not necessarily consider that
refactoring is confined to behavior preserving transforma-
tions [10]. Seventy-eight percent define refactoring as code
transformation that improves some aspects of program
behavior such as readability, maintainability, or perfor-
mance. Forty-six percent of developers did not mention
preservation of behavior, semantics, or functionality in their

refactoring definition at all. This observation is consistent
with Johnson’s argument [13] that, while refactoring pre-
serves some behavior, it does not preserve behavior in all
aspects. The following shows a few examples of refactoring
definitions by developers.?

“Rewriting code to make it better in some way.”

“Changing code to make it easier to maintain. Strictly
speaking, refactoring means that behavior does not change,
but realistically speaking, it usually is done while adding
features or fixing bugs.”

When we asked, “how does the abstraction level of Martin
Fowler's refactorings or refactoring types supported by
Visual Studio match the kinds of refactoring that you per-
form?”, 71 percent said these basic refactorings are often a
part of larger, higher-level effort to improve existing software.
Forty-six percent of developers agree that refactorings sup-
ported by automated tools differ from the kind of refactor-
ings they perform manually. In particular, one developer
said, the refactorings listed in Table 1 form the minimum

2.In the following, each italicized, indented paragraph corre-
sponds to a quote from answers to our survey (Section 2) or inter-
views (Section 3).

636 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.7, JULY 2014

granular unit of any refactoring effort, but none are worthy
of being called refactoring in and of themselves. The refac-
torings she performs are larger efforts aimed at interfaces
and contracts to reduce software complexity, which may
utilize any of the listed low-level refactoring types, but have
a larger idea behind them. As another example, a partici-
pant said,

“These (Fowler’s refactoring types or refactoring types sup-
ported by Visual Studio) are the small code transformation tasks
often performed, but they are unlikely to be performed alone.
There’s usually a bigger architectural change behind them.”

These remarks indicate that the scope and types of code
transformations supported by refactoring engines are often
too low-level and do not directly match the kinds of refac-
toring that developers want to make.

2.2 What Are the Challenges Associated
with Refactoring?

When we asked developers, “what are the challenges asso-
ciated with doing refactorings at Microsoft?”, 28 percent of
developers pointed out inherent challenges such as working
on large code bases, a large amount of inter-component
dependencies, the needs for coordination with other devel-
opers and teams, and the difficulty of ensuring program
correctness after refactoring. Twenty-nine percent of devel-
opers also mentioned a lack of tool support for refactoring
change integration, code review tools targeting refactoring
edits, and sophisticated refactoring engines in which a user
can easily define new refactoring types. The difficulty of
merging and integration after refactoring often discourages
people from doing refactoring [14]. Version control systems
that they use are sensitive to rename and move refactoring,
and it makes it hard for developers to understand code
change history after refactorings. The following quotes
describe the challenges of refactoring change integration
and code reviews after refactoring:

“Cross-branch integration was the biggest problem [15]. We
have this sort of problem every time we fix any bug or refactor
anything, although in this case it was particularly painful
because refactoring moved files, which prevented cross-branch
integration patches from being applicable.”

“It (refactoring) typically increases the number of lines/files
involved in a check-in. That burdens code reviewers and
increases the odds that your change will collide with some-
one else’s change.”

Many participants also mentioned that, when a regres-
sion test suite is inadequate, there is no safety net for check-
ing the correctness of refactoring. Thus, it often prevents
from developers to initiate refactoring effort.

“If there are extensive unit tests, then (it's) great, (one) would
need to refactor the unit tests and run them, and do some san-
ity testing on scenarios as well. If there are no tests, then (one)
need to go from known scenarios and make sure they all work.
If there is insufficient documentation for scenarios, refactoring
should not be done.”

In addition to these inherent and technical challenges of
refactoring reported by the participants, maintaining back-
ward compatibility often discourages them from initiating
refactoring effort.

70.10%
" 61.10% 61.10%
58.30% 54 209 8-30% 56.70% 53 90% 53.90% 56.40%
37.10%
o ° 1] o [T 14 4 - L2
E 2 E_ & g2 2 3 3 285088
c 2 29] o2] £ Ec 88950 £ ¢
] 39 2 £ E 32 §3 gs8<yeg sk
o« = g € g o 2 =) 3 S£28c% 9F
s g < & g P = 28 S5>0£0 &5
g & g & £ 3 § &gsg3* ¢
%] £ a 2 =]
& = SE&

Fig. 1. The percentage of survey participants who know individual refac-
toring types but do those refactorings manually.

According to self-reported data, developers do most
refactoring manually and they do not use refactoring tools
despite their awareness of refactoring types supported by
the tools. When we asked, “what percentage of your refac-
toring is done manually as opposed to using automated
refactoring tools?”, developers said they do 86 percent of
refactoring manually on average. Surprisingly 51 percent of
developers do all 100 percent of their refactoring manually.
Fig. 1 shows the percentages of developers who usually
apply individual refactoring types manually despite the
awareness and availability of automated refactoring tool
support. Considering that 55 percent of these developers
reported that they have automated refactoring engines
available in their development environments, this lack of
usage of automated refactoring engines is very surprising.
With an exception of rename refactoring, more than a half
of the participants said that they apply those refactorings
manually, despite their awareness of the refactoring types
and availability of automated tool support. This result is
aligned with Vakilian et al. [16]. Our survey responses indi-
cate that the investment in tool support for refactoring must
go beyond automated code transformation, for example,
tool support for change integration, code reviews after
refactoring, validation of program correctness, estimation of
refactoring cost and benefit, etc.

“I'd love a tool that could estimate the benefits of refactoring.
Also, it'd be awesome to have better tools to help figure out
who knows a lot about the existing code to have somebody to
talk to and how it has evolved to understand why the code was
written the way it was, which helps avoid the same mistakes.”

“I hope this research leads to improved code understanding
tools. I don’t feel a great need for automated refactoring tools,
but I would like code understanding and visualization tools to
help me make sure that my manual refactorings are valid.”

“What we need is a better validation tool that checks correct-
ness of refactoring, not a better refactoring tool.”

2.3 What Are the Risks and Benefits of Refactoring?
When we asked developers, “based on your experience,
what are the risks involved in refactorings?”, they reported
regression bugs, code churns, merge conflicts, time taken
from other tasks, the difficulty of doing code reviews after
refactoring, and the risk of over-engineering. Fig. 2 summa-
rizes the percentage of developers who mentioned each par-
ticular risk factor. Note that the total sum is over 100 percent
as one developer could mention more than one risk factor.

KIM ET AL.: AN EMPIRICAL STUDY OF REFACTORING CHALLENGES AND BENEFITS AT MICROSOFT

N
w
@
-
°
B

20.25%

10.13% 10.76%
9.18% 0 7.91%

6.65%

637

11.15%
. 6.89%
Lea% || . —

« @ . 2

€ €52 o]] o 3
5 62] L., S s
= ‘@ o = © B 2 =3
S a© 5 < 85 03 [S o
3 € o v ES < S =
[S £ B @
@32 Es 2 E3
ga3 B & e 53

0, 0,
3.48% 3.48% 1.90%

Fig. 2. The risk factors associated with refactoring.

Seventy-six percent of the participants consider that refac-
toring comes with a risk of introducing subtle bugs and
functionality regression; 11 percent say that code merging is
hard after refactoring; and 24 percent mention increased
testing cost.

“The primary risk is regression, mostly from misunderstand-
ing subtle corner cases in the original code and not accounting
for them in the refactored code.”

“Quer-engineering—you may create an unnecessary architec-
ture that is not needed by any feature but all code chunks have
to adapt to it.”

“The value of refactoring is difficult to measure. How do you
measure the value of a bug that never existed, or the time saved
on a later undetermined feature? How does this value bubble
up to management? Because there’s no way to place immediate
value on the practice of refactoring, it makes it difficult to jus-
tify to management.”

When we asked, “what benefits have you observed from
refactoring?”, developers reported improved maintainabil-
ity, improved readability, fewer bugs, improved perfor-
mance, reduction of code size, reduction of duplicate code,
improved testability, improved extensibility & easier to add
new feature, improved modularity, reduced time to market,
etc, as shown in Fig. 3.

When we asked, “in which situations do you perform
refactorings?” developers reported the symptoms of code
that help them decide on refactoring (see Fig. 4). Twenty-
two percent mentioned poor readability; 11 percent men-
tioned poor maintainability; 11 percent mentioned the diffi-
culty of repurposing existing code for different scenarios
and anticipated features; 9 percent mentioned the difficulty
of testing code without refactoring; 13 percent mentioned
code duplication; 8 percent mentioned slow performance;

43.30%

29.90%
27.15%

18.56%

improved
readability
fewer bugs
improved
code size
reduction
testability
feature
improved
modularity

-°=
]
>
o £
2
a8
£ £
- @
£

performance

duplicate code

reduction

easier to add

reduced time

to market

Fig. 3. Various types of refactoring benefits that developers experienced.

S~ c Q = " [
F F Q é‘] Q 9 - G 3 o
= = 8a = B S £ S8% = 8

v o © 2
2 8% g3 & & EE =T ®WE o 3
° c =) i = 2 = < S @ o 9
5 5 3¢ f 3 w8 g “5 2 g
o 8) = 2 t 2 he %
e £ & & o 5
g T

Fig. 4. The symptoms of code that help developers initiate refactoring.

5 percent mentioned dependencies to other teams” modules;
and 9 percent mentioned old legacy code that they need to
work on. Forty-six percent of developers said they do refac-
toring in the context of bug fixes and feature additions, and
57 percent of the responses indicate that refactoring is
driven by immediate concrete, visible needs of changes that
they must implement in a short term, rather than potentially
uncertain benefits of long-term maintainability. In addition,
more than 95 percent of developers do refactoring across all
milestones and not only in MQ milestones—a period desig-
nated to fix bugs and clean up code without the responsibil-
ity to add new features. This indicates the pervasiveness of
refactoring effort. According to self-reported data, develop-
ers spend about 13 hours per month working on refactoring,
which is close to 10 percent of their work, assuming devel-
opers work about 160 hours per month.

3 INTERVIEWS WITH THE WINDOWS REFACTORING
TEAM

In order to examine how the survey respondents’ percep-
tion matches reality in terms of refactoring and to investi-
gate whether there are visible benefits of refactoring, we
decided to conduct follow-up interviews with a subset of
the survey participants and to analyze the version history
data. In terms of a subject program, we decided to focus on
Windows, because it is the largest, long-surviving software
system within Microsoft and because we learned from our
survey that a designated refactoring team has led an inten-
tional, system-wide refactoring effort for many years.

We conducted one-on-one interviews with six key mem-
bers of this team. The following describes the role of inter-
view participants. The interviews with the participants
were audio-recorded and transcribed later for analysis. The
first author of this paper led all interviews. The first author
spent two weeks to categorize the interview transcripts in
terms of refactoring motivation, intended benefits, process,
and tool support. She then discussed the findings with the
sixth subject, (a researcher who is familiar with the Win-
dows refactoring project and collaborated with the refactor-
ing team) to check her interpretation.

Architect (90 minutes).

Architect / Development Manager (30 minutes).
Development Team Lead (75 minutes).
Development Team Lead (85 minutes).
Developer (75 minutes).

Researcher (60 minutes).

638 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.7, JULY 2014

The interview study results are organized by the ques-
tions raised during the interviews.

“What motivated your team to lead this refactoring effort?”
The refactoring effort was initiated by a few architects who
recognized that a large number of dependencies at the mod-
ule level could be reduced and optimized to make modular
reasoning of the system more efficient, to maximize parallel
development efficiency, to avoid unwanted parallel change
interference, and to selectively rebuild and retest subsys-
tems effectively.

“If X percent of the modules are at a strongly connected compo-
nent and you touch one of those things and you have to retest X
percent of the modules again. ..”

“How did you carry out system-wide refactor-
ings on a very large system?” The refactoring team
analyzed the de-facto module level dependency structure
before making refactoring decisions. After the initial
analysis of module level dependencies, the team came
up with a layered architecture, where individual mod-
ules were assigned with layer numbers, so that the par-
tial ordering dependency relationships among modules
could be documented and enforced. To help with the
analysis of de-facto dependency structure, the team used
a new tool called MaX [17]. MaX not only computes
module level dependencies but also can distinguish
benign dependency cycles within a layer from undesir-
able dependencies that go from low-level layers to the
layers above. The refactoring team consulted other teams
about how to decompose existing functionality into a set
of logical sub-groupings (layers).

“Our goal was actually (A) to understand the system, and to
develop a layered model of the system; and (B) to protect the
model programmatically and automatically. So by developing
a mathematical model of the entire system that is based on layer
numbers and associating modules with a layer number, we
could enforce a partial ordering—that’s what we call it, the
layer map.”

The team introduced quality gate checks, which prevented
developers from committing code changes that violate the
layer architecture constraints to the version control system.
The refactoring team then refactored the existing system by
splitting existing modules into sub-component modules or
by replacing existing modules with new modules.

They created two custom tools to ease migration of exist-
ing modules to new modules. Similar to how Java allows cre-
ation of abstract classes which later can be bound to concrete
subclasses, the team created a technology that allows other
teams to import an empty header module for each logical
group of API family, which can be later bound to a concrete
module implementation depending on the system configura-
tion. Then a customized loader loads an appropriate target
module implementation instead of the empty header module
during the module loading time. This separates API con-
tracts from API implementations, thus avoiding inclusion of
unnecessary modules in a different execution environment,
where only a minimal functionality instead of a full function-
ality is desired. The above technology takes care of switching
between two different API implementations during load
time, but does not take care of cases where the execution of

two different API implementations must be weaved care-
fully during runtime. To handle such cases, the team system-
atically inserted program changes to existing code. Such
code changes followed a special coding style guideline for
better readability and were partially automated by stub code
generation functionality.

In summary, we found that the refactoring effort had the
following distinctive characteristics:

e Theteam’s refactoring decisions were made after sub-
stantial analysis of a de-facto dependency structure.

o The refactoring effort was centralized and top
down—the designated team made software
changes systematically, integrated the changes to
a main source tree, and educated others on how
to use new APIs, while preventing architectural
degradation by others.

e Therefactoring was enabled and facilitated by devel-
opment of custom refactoring support tools and pro-
cesses such as MaX and quality gate check.

4 QUANTITATIVE ANALYSIS OF WINDOWS 7
VERSION HISTORY

To examine whether the refactoring done by this team had a
visible benefit, we analyze Windows 7 version history data.
We first generate hypotheses based on our survey and inter-
view study findings. We then conduct statistical analysis
using the software metrics data collected from version
histories.

4.1 Study Hypotheses

As software functionality varies for different projects and the
expertise level of developers who work on the projects varies
across different organizations, our study goal is to contrast
the impact and characteristics of refactoring changes against
that of non-refactorings in the same organization and the
same project. In other words, we compare the characteristics
of refactoring vs. non-refactoring versus all changes, noted
as refactoring churn, non-refactoring churn, and regular churn (i.
e., the union of refactorings and non-refactorings).

We generate study hypotheses based on our qualitative
study findings. These hypotheses are motivated by our sur-
vey and interviews, as well as the refactoring literature. The
hypotheses are described in Table 2 and the following sub-
sections discuss our data collection and analysis method
and corresponding findings.

e HI (Dependency). We investigate the relationship
between refactoring and dependency because our
interview study indicates that the primary goal of
Windows refactoring is to reduce undesirable inter-
module dependencies (i.e., the number of neighbor
modules connected via dependencies).

e H2 (Defect). We investigate the relationship between
refactoring and defect because many of our survey
participants perceive that refactoring comes with a
risk of introducing defects and regression bugs.

e H3 (Complexity). The hypotheses on complexity are
motivated by prior studies on technical debt [18],
[19], [20], [21], [22], [23].

KIM ET AL.: AN EMPIRICAL STUDY OF REFACTORING CHALLENGES AND BENEFITS AT MICROSOFT 639
TABLE 2
A Summary of Study Hypotheses and Results

Modularity H1.A: Refactoring was preferentially applied to the modules with a large number of inter-module dependencies. Confirmed
H1.B: Preferential refactoring is correlated to changes in the number of inter-module dependencies. Confirmed

Defect H2.A: Refactoring was not preferentially applied to the modules with a large number of post-release defects. ~ Confirmed
H2.B: Preferential refactoring is correlated to reduction in the number of defects. Rejected

Complexity HB3.A: Refactoring was preferentially made to the modules with high complexity. Rejected
H3.B: Preferential refactoring is correlated with reduction in complexity. Rejected

Size H4.A: Refactoring was preferentially applied to the modules with large size and preferential refactoring is Rejected
correlated with size reduction.

Churn H4.B: Refactoring was preferentially applied to the modules where a large number of edits or commits, and Rejected
preferential refactoring is correlated with the decrease in churn measures.

Locality H4.C: Refactoring was preferentially applied to the modules where logical changes tend to be crosscutting and Rejected
scattered, and preferential refactoring is correlated with the decrease in the number of crosscutting changes.

Developer and Organization Hb5.A: Refactoring was preferentially applied to the modules touched by a large number of developers. Rejected
H5.B: Refactoring was preferentially applied to the modules that are not cohesive in terms of organizational ~ Confirmed
contributions.

H5.C: Refactoring was preferentially applied to the modules that are diffused in terms of organizations and Confirmed
developer contribution.

Test Coverage Hé: Refactoring was preferentially applied to the modules with high test adequacy. Confirmed

Layer H7: Preferential refactoring is correlated with reduction in the layer number. Rejected

e H4 (Size, Churn and Locality). The hypotheses on size,
churn, and locality are motivated by the fact that
developers often initiate refactoring to improve
changeability and maintainability [24] and that
crosscutting concerns pose challenges in evolving
software systems [25], [26], [27], [28].

e Hb5 (Developer and Organization). The hypotheses on
organizational characteristics are motivated by the
fact that the more people who touch the code, the
higher the chance of code decay and the higher need
of coordination among the engineers, calling for
refactoring of the relevant modules [29].

e H6 (Test Coverage). We investigate the hypothesis on
test adequacy because our survey respondents said,
“If there are extensive unit tests, then (it’s) great. If there
are no tests or there is insufficient documentation for test
scenarios, refactoring should not be done.”

e H7 (Layer). We investigate the hypothesis on a lay-
ered architecture to confirm our interview findings
that the refactoring team split core modules and
moved reusable functionality from upper layers to
lower layers to repurpose Windows for different exe-
cution environments.

4.2 Data Collection: Identifying Refactoring
Commits

To identify refactoring events, we use two separate methods
respectively. First, we identify refactoring-related branches
and isolate changes from those branches. Second, we iden-
tify refactoring related keywords and mine refactoring com-
mits from Windows 7 version history by searching for these
keywords in the commit logs [30].

Refactoring branch identification. In many development
organizations, changes are made to specific branches and
later merged to the main trunk. For example, the Windows
refactoring team created certain branches to apply refactor-
ing exclusively. So we asked the team to classify each
branch as a refactoring versus non-refactoring branch. We
believe that our method of identifying refactorings is reli-
able because the team confirmed all refactoring branches
manually and reached a consensus about the role of those
refactoring branches within the team.

During Windows 7 development, 1.27 percent of
changes are changes made to the refactoring branches

owned by the refactoring team; 98.73 percent of changes
are made to non-refactoring branches. The number of
committers who worked on the refactoring branches is
2.04 percent, while the number of committers on non-
refactoring branches is 99.84 percent. Please note that the
sum of the two is greater than 100 percent because some
committers work both on refactoring branches and non-
refactoring branches. 94.64 percent of modules are
affected by at least one change from the refactoring
branches, and 99.05 percent of modules are affected by
at least one change from non-refactoring branches. In
our study, refactored modules are modules where at
least one change from the refactoring branches is com-
piled into. For example, if the refactoring team made
edits on the refactoring branches to split a single Vista
module into three modules in Windows 7, we call the
three modules as refactored modules in Windows 7.

Mining commit logs. To identify refactoring from ver-
sion histories, we look for commit messages with certain
keywords. In our survey, we asked the survey partici-
pant, “which keywords do you use or have you seen being
used to mark refactoring activities in change commit mes-
sages? Based on the responses, we identify a list of top
ten keywords that developers use or have seen being
used to mark refactoring events: refactor (254), clean-up
(42), rewrite (22), restructure (15), redesign (15), move (15),
extract (11), improve (9), split (7), reorganize (7), rename (7)
out of 328 responses. By matching the keywords against
the commit messages, we detected refactoring commits
from version histories.

According to this method, 5.76 percent of commits are
refactoring, while 94.29 percent of commits are non-refac-
toring. The number of committers for the refactoring
changes is 50.74 percent, while the number is 98.56 percent
for non-refactoring. 95.07 percent of modules are affected
by at least one refactoring commit, and 99.92 percent of
modules are affected by at least one non-refactoring.

4.3 Data Collection: Software Metrics
This section discusses our data collection method for defect,
dependency, and developers metrics. For other categories,
Table 3 clarifies how the data are collected.

Dependencies. For our study, we analyzed dependen-
cies at a module level. Here, a module refers to an

640

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.7, JULY 2014

TABLE 3
Software Metrics to Be Used for Data Collection and Statistical Analysis

Size lines of code (LOC), # of classes, # of parameters, # of local variables, # of functions, # of blocks
Churn total churn—added, deleted, and modified LOC

frequency—+# edits or # check-ins that account for churn

relative churn as normalized values obtained during the development process

of changed files
Complexity fan in, fan out, cyclomatic complexity [31], inheritance depth, nested block depth

coupling—coupling through member variables, function parameters, classes defined locally in class member function
bodies, immediate base classes, and return type

Organization and People

(people)
(cohesiveness of ownership)

(diffusion of contribution)

engineers (NOE)—The number of engineers who wrote/contributed code to a module.
ex-engineers (NOEE)—The number of engineers who no longer work in the organization.

depth of master ownership (DMO)—The level in the organization structure of an organization at which the ownership
of a module is determined/attributed to a particular engineer.

percentage of organization contributing to development (PO) —the ratio of the number of people reporting at the
DMO level owner relative to the master owner organization size.

level of organizational code ownership (OCO)—the percent of edits from the organization that contains the module
owner of if there is no owner, then the organization that made the majority of the edits to that module

overall organization ownership (OOW)—the ratio of the percentage of people at the DMO Ievel making edits to a
module relative to total engineers editing the module

organization intersection factor (OIF)—a measure of the number of different organizations that contribute to the grater
than 10% of edits

The seven organization and people measures are from Nagappan et al.’s study on the relationship between the
organizational structure and software quality [32].

Test Coverage

block coverage—A basic block is a set of contiguous instructions in the physical layout of a module that has exactly
one entry point and one exit point. Calls, jumps, and branches mark the end of a block. A block typically consists
of multiple machine-code instructions. The number of blocks covered during testing constitutes the block coverage
measure.

arc (branch) coverage—Arcs between blocks represent the transfer of control between basic blocks due to conditional
and unconditional jumps, as well as due to control falling through from one block to another. Similar to block coverage
the proportion of arcs covered in a module constitute the arc coverage.

Defect

post-release failures—the count of the number of fixes that were mapped back to components after the products were

released for a time period of the first six months.

executable file (COM, EXE, etc.) or a dynamic-link
library file (DLL) shipped with Windows. Modules are
assembled from several source files and typically form a
logical unit, e.g., user32.d1ll may provide programs
with functionality to implement graphical user interfaces.
This module unit is typically used for program analysis
within Microsoft and the smallest units to which defects
are accurately mapped. A software dependency is a
directed relation between two pieces of code such as
expressions or methods. There exist different kinds of
dependencies: data dependencies between the definition
and use of values and call dependencies between the
declaration of functions and the sites where they are
called. Microsoft has an automated tool called MaX [17]
that tracks dependency information at the function level,
including calls, imports, exports, RPC, COM, and Regis-
try access. MaX generates a system-wide dependency
graph from both native x86 and .NET managed modules.
MaX is used for change impact analysis and for integra-
tion testing [17]. For our analysis, we generated a sys-
tem-wide dependency graph with MaX at the function
level. Since modules are the lowest level of granularity
to which defects can be accurately mapped back to, we
lifted this graph up to the module level in a separate
post-processing step.

Defects. Microsoft records all problems that are reported
for Windows in a database. In this study, we measured the
changes in the number of post-release defects—defects lead-
ing to failures that occurred in the field within six months
after the initial releases of Windows Vista or Windows 7.
We collected all problem reports classified as non-trivial (in
contrast to enhancement requests [33]) and for which the
problem was fixed in a later product update. The location of
the fix is used as the location of the post-release defect. To
understand the impact of Windows 7 refactoring, we

compared the number of dependencies and the number of
post-release defects at the module level between Windows
Vista and Windows 7.

Developers and organization. We use committer informa-
tion extracted from version control systems. Based on the
Windows product organization’s structure and committer
information, we measure seven metrics that represent the
number of contributors, the cohesiveness of ownership, and
the diffusion of contribution used by Nagappan et al. These
metrics are summarized in Table 3 and the detailed descrip-
tion and data collection method of these measures are avail-
able elsewhere [32].

4.4 Analysis Method: Preferential Refactoring

To distinguish the role of refactoring versus regular
changes, we define the degree of preferential refactoring—
applying refactorings more frequently to a module, relative
to the frequency of regular changes.

ﬁo measure the degree of preferential refactoriryg\
for each module m, we use the following rank
difference measure, defined as:

all_commit_rank(m)—ref_commit_rank(m) (1)

where all_commit_rank(m) is the rank of module
m among all modified modules in terms of the
commit count and ref_commit_rank(m) is the
rank of module m among all modified modules
Ql terms of the refactoring commit count. /

This notion of preferential refactoring is used through-
out the later sections to distinguish the impact of

KIM ET AL.: AN EMPIRICAL STUDY OF REFACTORING CHALLENGES AND BENEFITS AT MICROSOFT

641

TABLE 4
The Relationship between Windows 7 Refactoring and Various Software Metrics

Vista

A (Vista, Windows?)

Metric top 5% bottom 95% p-value | top 5% bottom 95% p-value
Modularity

Neighbors 1.07 1.00 0.00 ‘ -0.85 1.10 0.00
Defect

Post release failures 0.91 1.00 0.00 ‘ -0.93 -1.00 0.00
Complexity

C1. Fan in 0.67 1.02 0.72 -1.18 -0.99 0.01
C2. Fan out 0.69 1.02 0.79 -1.12 -0.99 0.02
C3. Cyclomatic complexity [31] 0.77 1.01 0.75 -0.16 1.06 0.04
C4. Inheritance depth 0.57 1.02 0.23 -0.62 -1.02 0.47
C5. Coupling through

C5.1. member reads 0.78 1.01 0.51 0.09 1.05 0.02
C5.2. member writes 0.95 1.00 0.11 0.04 1.05 0.18
C5.3. function parameters 0.58 1.02 0.12 0.72 1.01 0.13
C54. type declarations in local 0.77 1.01 0.11 0.40 1.03 0.21
functions

C5.5. immediate base classes 0.63 1.02 0.23 -0.63 -1.02 0.90
C5.6. return type 0.54 1.02 0.30 -0.48 -1.03 0.96
Size

S1. LOC 0.80 1.01 0.79 1.24 -0.99 0.02
S2. # of classes 0.65 1.02 0.26 -0.69 -1.02 0.52
S3. # of parameters 0.75 1.01 0.63 -1.06 -1.00 0.09
S4. # of local variables 0.78 1.01 0.66 0.61 1.02 0.86
S5. # of function 0.71 1.01 0.68 -0.77 -1.01 0.52
S6. # of blocks 0.76 1.01 0.69 0.32 1.04 0.23
Churn

Chl. total churn 0.12 1.05 0.00 -0.02 -1.05 0.00
Ch2. relative churn 0.40 1.03 0.00 -0.02 -1.05 0.00
Ch3. # of check-ins 0.30 1.04 0.00 -0.35 -1.03 0.03
Ch4. # changed files 0.30 1.04 0.00 -0.18 -1.04 0.04
Locality

L1. # files per check-in 0.91 1.04 0.89 1.73 0.96 0.00
People

O1. NOE 0.53 1.02 0.00 -0.08 -1.05 0.79
0O2. NOEE 0.67 1.02 0.02 -0.79 -1.01 0.88
Cohesiveness of contribution

0O3. DMO -0.44 1.08 0.00 -1.60 1.14 0.00
04. PO 0.70 1.02 0.02 4.53 -1.29 0.36
05. OCO 62% 1.02 0.00 0.05 1.05 0.06
Diffusion of contribution

06. OOW 0.59 1.02 0.00 0.92 1.00 0.89
0O7. OIF 1.02 0.99 0.42 1.86 0.95 0.00
Test adequacy

T1. block coverage 1.13 0.99 0.00 -1.13 -0.99 0.13
T2. arc coverage .13 0.99 0.00 -1.18 -0.99 0.06
Layer

L1. layer numbers 1.01 1.00 083 | 0.35 1.03 0.09

Statistically significant test results (p-value < 0.05) are marked in yellow background.

refactoring versus regular changes. For example, if a
module is ranked at the fifth in terms of regular commits
but ranked the third in terms of refactoring commits, the
rank difference is two. This positive number indicates
that, refactoring is preferentially applied to the module
relative to regular commits. We use the rank difference
measure Eq. (1), instead of the proportion of refactoring
commits out of all commits per module, defined as
refactoring_commit_count(m) 1,6051;5e this proportion measure is
all_commit_count(m)

very sensitive to the total number of commits made to
each module and because the modules with very few
changes pose a significant noise.

We then sort the modules based on the rank differ-
ence in descending order and contrast the characteristics
of the top 5 percent group against the characteristics of
the bottom 95 percent group. The reason why we choose
a particular threshold of top 5 percent instead of top

n percent is that the top 5 percent modules with most
refactoring commits account for 90 percent of all refac-
toring commits—in other words, the top 5 percent group
represents concentrated refactoring effort.

4.5 Hypothesis H1. Dependencies

To investigate H1.A, for each module in Vista, we mea-
sure Neighbors, the number of neighbor modules con-
nected via dependencies. We then contrast the average
inter-module dependencies of the top 5 percent preferen-
tially refactored modules versus that of bottom 95 percent
of preferentially refactored modules in Vista. These
results are summarized in Table 4. The second column
and the third column report the relative ratio of a soft-
ware metric with respect to the average metric value in
Vista for the top 5 percent and bottom 95 percent groups
respectively. The fourth column reports the p-value

642 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.7, JULY 2014

of the Wilcoxon test. Statistically significant test results
(p-value < 0.05) are marked in yellow background. Our
results indicate that the top 5 percent most preferentially
refactored modules have 7 percent more inter-module
dependencies on average than the average modified
module in Vista, while the bottom 95 percent have
almost the same number of inter-module dependencies
as the average modified module. In other words, devel-
opers did preferentially applied refactorings to the modules
with a higher number of inter-module dependencies in
Vista. A two-sided, unpaired Wilcoxon (Mann Whitney)
test indicates that the top 5 percent group is statistically
different from the bottom 95 percent in terms of its
inter-module dependency coverage (p-value: 0.0026).

To investigate H1.B, we contrast the changes in the
metric value for the top 5 percent group versus the bot-
tom 95 percent group. The changes in a metric are then
normalized with respect to the absolute average delta of
the software metric among all modified modules. Sup-
pose that the top 5 percent of most preferentially refac-
tored modules decreased the value of a software metric
by 5 on average, while the bottom 95 percent increased
the metric value by 10 on average. On average, a modi-
fied module has increased the metric value by 9.25. We
then normalize the decrease in the top 5 percent group
(=5) and the increase in the bottom 95 percent group
(4+10) with respect to the absolute value of the average
change (9.25) average of all modified modules, resulting
in —0.54 and +1.08 respectively.

Using this method, we measure the impact of preferen-
tial refactoring on the changes in inter-module dependen-
cies. The result indicates that the top 5 percent of
preferentially refactored modules decreased the number of
inter-module dependencies by a factor of 0.85, while the
bottom 95 percent of preferentially refactored modules
increased the number of inter-module dependencies by a
factor of 1.10 with respect to the average change of all modi-
fied modules. The Wilcoxon test indicates that the trend is
statistically significant (p-value: 0.000022).

We conclude that, preferential refactoring is correlated
with the decrease of inter-module dependencies. This is
consistent with our interviews with the Windows refac-
toring team that their goal is to reduce undesirable inter-
module dependencies.

4.6 Hypothesis H2. Defect

Similar to the analysis of contrasting the top 5 percent group
vs. the bottom 95 percent group in Section 4.5, we investi-
gate the relationship between preferential refactoring treat-
ment and defects. The results in Table 4 indicate that the top
5 percent group has 9 percent fewer post-release defects
than the rest in Vista, confirming that refactoring was not
necessarily preferentially applied to the modules with a
high number of defects.

Further, the top 5 percent group decreased post-release
defects by a factor of 0.93, while the bottom 95 percent
group decreased by a factor of 1.00 with respect to the
average change in defect counts. In other words, the top
5 percent group is correlated with the reduction of post-
release defects, but less so, compared to the rest. This

result indicates that the cause of defect reduction cannot
be attributed to refactoring changes alone. It is possible
that the defect reduction is enabled by other events in
those refactored modules as well.

4.7 Hypothesis H3. Complexity

We use the same method of contrasting the top 5 percent
versus bottom 95 percent. Table 4 summarizes the results.
Top 5 percent of most preferentially refactored modules
tend to have lower complexity measures in Vista compared
to the bottom 95 percent. However, this distinction is not
statistically significant, according to the Wilcoxon test,
rejecting the hypothesis H3.A.

Top 5 percent group reduces fan-in, fan-out, and
cyclomatic complexity measures more than the rest. For
example, if we assume that an average modified module
has 100 fan-ins in Windows Vista, the top 5 percent
group covers 67, while the bottom 95 percent covers 102
fan-ins. The member read based coupling (C5.1)
increases much less for the top 5 percent, compared to
the rest. The results are statistically significant (p-value
< 0.05). However, for other complexity metrics, the same
trend does not hold or is not statistically significant. In
summary, we found that, the Windows refactoring effort
did not reduce various complexity measures consistently.

4.8 Hypothesis H4. Size, Churn, and Locality

We investigate the relationship between refactoring and
size, churn, and locality respectively. The hypotheses H4.A,
H4.B and H4.C are motivated by the fact that developers
often initiate refactoring to improve changeability and
maintainability [24] and that crosscutting concerns pose
challenges in evolving software systems [25], [26], [27], [28].
We use the same study method of contrasting the top 5 per-
cent versus the bottom 95 percent described in Section 4.5.

Regarding H4.A, the top 5 percent has smaller size
metrics than the rest in Vista. This indicates that refac-
toring changes were not preferentially applied to the
modules with large size. Furthermore, the top 5 percent
increased size more in terms of LOC, while the rest
decreased their module size. In other words, preferential
refactoring did not play any role in decreasing various
size measures, rejecting H4.A.

Regarding H4.B, in contrast to our original hypothesis,
the top 5 percent group consistently has lower churn meas-
ures in Vista, compared to the rest. In other words, the less
frequent changes are in Vista, the more likely they are to
receive preferential refactoring treatment during Windows
7 development. One possible explanation is that developers
might have determined that the modules to be refactored
are problematic and that making too many changes to them
could impede the stability of the system. Thus, to preserve
stability, they may have applied fewer changes inten-
tionally. The churn measures in the top 5 percent group
decrease less, compared to the rest. The less frequent refac-
torings are, the greater the decrease in churn measurements,
rejecting H4.B.

Regarding H4.C, to measure the degree of crosscutting
changes, we measure the average number of modified files
per check-in. Our results indicate that preferential

KIM ET AL.: AN EMPIRICAL STUDY OF REFACTORING CHALLENGES AND BENEFITS AT MICROSOFT 643

refactoring is applied to the modules with lower degree of
crosscutting changes in Vista, and the modules which
received preferential refactoring treatment tend to increase
crosscutting changes more than other modules in Windows
7 (173 versus 96 percent), rejecting H4.C. We believe that
the increase in the crosscutting changes is caused by refac-
torings themselves, which tend to be more scattered than
regular changes (on average refactorings touched 20 percent
more files than regular changes).

4.9 Hypothesis H5. Developer and Organization

The more people who touch the code, the higher the
chance of code decay, and there could be a higher need
for coordination among the engineers [29]. Such coordi-
nation needs may call for refactoring of the relevant
modules. We hypothesize that refactoring could reduce
the number of engineers who worked on the modules by
aligning the modular structure of the system with the
team structure [34], [35], [36]. To check these hypotheses,
we study the cohesiveness and diffusion measures of
ownership and contribution. The less cohesive and local
the contributions are, it may call for more refactoring
effort, while diffusive ownership could impede the effort
of initiating refactoring.

Table 4 summarizes the results. Regarding the hypothe-
ses H5.A, the NOE and NOEE measures are lower in the
top 5 percent than the rest, indicating that the refactoring
effort was preferentially made to the modules where a
fewer number of developers worked on. This is contrary to
our initial hypothesis. One possible explanation is that the
refactored modules are crucial, important modules and for
these modules typically only a tight small group of develop-
ers were allowed to check-in code changes.

The cohesiveness of contribution measures (DMO, PO,
and OCO) are lower in the top 5 percent than the rest in
Vista, validating H5.B. The refactoring effort was preferen-
tially made to the modules with lower cohesiveness in terms
of contribution. However, we did not find any distinctive
trends in terms of changes in those measures before and
after refactoring.

Regarding the hypothesis H5.C, the diffusion measure
(OOW) is lower in the top 5 percent than the rest in
Vista. However, we did not find any distinctive trends
in terms of changes in those measures before and after
refactoring.

4.10 Hypothesis H6. Test Coverage

We investigate the following hypothesis about refactoring
and test adequacy, because our survey indicates that, when
a regression test suite is inadequate, it could prevent devel-
opers from initiating refactoring effort. Developers perceive
that there is no safety net for checking the correctness of
refactoring edits when the test adequacy is low. Table 4
summarizes the results. The block and arc test coverages for
the top 5 percent of most preferentially refactored modules
are indeed higher than the rest.

4.11 Hypothesis H7. Layers

The layer data in Windows is a means of quantifying the
architectural constraints of the system. Simplistically

speaking, the lowest level is the Windows kernel and the
highest level is the UI components. The goal of assigning
layer numbers to modules is to prevent reverse depen-
dencies. In other words, modules in level 0 are more
important than say level 25 for the reliability of the sys-
tem as modules at level n can depend only on the mod-
ules of level n — 1 and below only. We investigate H7 to
confirm our interview findings that the refactoring team
split core modules and moved reusable functionality
from an upper layer to a lower layer to repurpose Win-
dows for different execution environments.

The top 5 percent and the bottom 95 percent of most pref-
erentially refactored modules have similar average layer
numbers (1.01 and 1.00 respectively in Table 4). The differ-
ence is not statistically significant. In contrast to the inter-
viewees’ understanding, the refactoring was not
preferentially applied to modules with a high layer number.
Further, the layer number increase for the top 5 percent
group is less than the increase of the bottom 95 percent.

4.12 Multivariate Regression Analysis

To identify how much and which factors may impact a
refactoring investment decision (or selection of the modules
to apply refactorings preferentially), we use multivariate
regression analysis.

To select independent variables for multivariate regres-
sion, we first measure the Spearman rank correlation
between the rank difference and individual software met-
rics before refactoring. We use the metrics from Vista, as
they represent the characteristics before the refactoring effort
was made

cor(all_commit_rank(m) — re f_commit_rank(m),
. (2)

metric_vista(m)).
If the correlation is a positive number close to 1, it implies
that preferentially refactored modules tend to have a higher
metric value before refactoring. If the correlation is near
zero, it implies that there exists no correlation between pref-
erential refactoring and the metric.

We then select all metrics with significant correlations at
p < 0.0001, even if the correlations values do not appear to
be very high. We use the lower p-value to account for multi-
ple hypothesis testing (Bonferroni Correction) [37]. We con-
struct an initial model where a dependent variable is a rank
difference per module, and independent variables are {# of
files per check-in, # of sources, # of incoming dependencies,
OCO, OOW, relative churn, NOE, # of changed files, # of
defects, total churn, NOEE, NOE, and # of check-ins}. Then
we use a forward and backward stepwise regression to
reduce the number of variables in the model.

The final model is described in Table 5. The rows repre-
sent the selected variables and the cells represent coefficient,
standard errors, and t-values. The results indicate that the
locality of change, the number of dependent modules (sour-
ces), the number of defects, and the number of developers
who worked on the modules are significant factors for pref-
erential refactoring. As discussed in previous sections, fac-
tors such as complexity, size, and test adequacy do not play
much roles in the decision of refactoring investment.

644 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.7, JULY 2014

TABLE 5
Multivariate Regression Analysis for Preferential Refactoring
Estimate Std. Error t value

(Intercept) 193.09 47.50 4.07
files per check-in 19.38 5.81 3.34
of sources 0.53 0.14 3.81

OOwW -2.25 0.45 -5.01
of edits by engineers 0.12 0.02 6.02
defects -10.92 3.87 -2.82
NOE -2.00 0.39 -5.07
of check-ins -0 4

.22 0.04 -5.44
Software metrics are measured for Vista before refactoring effort.

To investigate how other factors may contribute to reduc-
tion of defects and dependencies, we use multivariate
regression analysis. Using the same method described, we
select all metrics that have significant correlations with pref-
erential refactoring at p < 0.0001 to build an initial model.
Then we use a forward and backward stepwise regression
to reduce the number of variables in the model. In addition
to these selected variables, we use several independent vari-
ables: (1) preferential refactoring, as measured by the rank
differences, (2) refactoring churn and churn, as measured by
the number of refactoring commits and all commits, and (3)
refactoring ratio as measured by #-% #riiﬁ];ﬁ’;;fl commits

In Table 6, column Adefects describes a regression
model for the changes in the number of defects, i.e.,
de fects_windowsT(m) — defects_vista(m). Column A depen-
dencies describes a regression model for the changes in the
number of inter-module dependencies. Each cell describes a
coefficient for a selected independent variable. The resulting
model for Adefects indicates that one of the most important
factors for defect reduction is the number of previous
defects in Vista. The higher the number of defects in Vista,
the higher the decrease of defects in Windows 7 (coefficient,
—0.965). Another important factor is the amount of refactor-
ing churn, indicated by # of refactoring commits (coeffi-
cient, —0.072). This result indicates that, among many
metrics, refactoring churn is likely to play a significant role
in reducing the number of defects.

Similarly, the resulting model for Adependencies indi-
cates that important factors include the number of previous
defects in Vista and the amount of refactoring churn
(coefficients —0.182 and —0.130 respectively).

4.13 Results of Keyword Based Identification
of Refactoring Commits

In addition to the designated refactoring team, other devel-
opers in the Windows also apply refactoring to the system.
To understand the impact of such refactoring, we identify
refactoring changes by matching refactoring keywords
against commit messages described in Section 4.2.

Refactoring commits found wusing a branch-based
method overlap with refactoring commits found using a
keyword-based method. When normalizing the absolute
number of commits, suppose that the total number of
commits is X. The number of refactoring commits identi-
fied based on keywords is Y = 0.058X. The number of
refactoring commits identified based on branches is
Z =0.013X. The overlap between refactoring commits
identified using both methods is 0.004.X, which is 0.006Y
or 0.279Z. The absolute number of commits is normal-
ized for presentation purposes.

TABLE 6
Multivariate Regression Analysis Results for the Changes in
Defects and Dependencies

Adefects Adependencies
(Intercept) -0.109 4.985
rank differences 0.001 -0.001
of all commits 0.009 0.001
of refactoring commits -0.072 -0.130
refactoring ratio 0.000 0.000
incoming dependencies 0.000 0.001
of sources -0.003 -0.062
OOW -0.014
relative churn 0.000
of edits by engineers 0.000
of changed files 0.000 0.001
defects -0.965 -0.182
total churn 0.000 0.000
NOE -0.024 -0.024

Table 7 presents the same information as Table 4, and the
only difference between the two is that Table 7 uses a
branch-based isolation method, while Table 4 uses a key-
word-based method. According to the results of Table 4, the
refactoring team’s effort was preferentially applied to the
modules with a relative high number of inter-module depen-
dencies, low post-release defects, low churn measures, and
high organization cohesiveness metrics. The team effort is
correlated with a relatively higher degree of reduction in
inter-module dependencies and certain complexity meas-
ures. On the other hand, the refactoring effort indicated by
the keyword method focused on the modules with a relative
low number of inter-module dependencies, low post-release
defects, low complexity measures, low churn measures,
small sizes, and high organization cohesiveness metrics.

Since refactorings identified by a keyword method
and a branch isolation method are both correlated with
reduction in inter-module dependencies, complexity met-
rics, and churn measures, these reduction trends are
unlikely to be enabled by the refactoring team’s effort
alone. Instead, both the refactoring made by individual
developers in Windows 7 and the designated refactoring
team are likely to have contributed to the reduction of
these metrics.

4.14 Discussion

Table 2 summarizes the study results of refactoring commits
found by the branch method.

e Refactoring was preferentially applied to the mod-
ules with a large number of dependencies. Preferen-
tial refactoring is correlated with reduction in the
number of dependencies. These findings are
expected and not surprising because interview par-
ticipants stated the goal of system-wide refactoring
is to reduce undesirable inter-module dependencies.
However, we believe that there is a value in validat-
ing intended benefits using version history analysis.

e DPreferential refactoring is correlated with the reduc-
tion of post-release defects, but less so, compared to
the rest. This indicates that the cause of defect
reduction cannot be attributed to refactoring
changes alone.

e Refactoring was not preferentially applied to the
modules with high complexity. Preferentially refac-
tored modules experience a higher rate of reduction

KIM ET AL.: AN EMPIRICAL STUDY OF REFACTORING CHALLENGES AND BENEFITS AT MICROSOFT

645

TABLE 7
The Relationship between Refactoring Identified by a Keyword Based Method and Various Software Metrics

Vista

A (Vista, Windows?)

Metric top 5% bottom 95% p-value | top 5% bottom 95% p-value
Modularity

Neighbors 0.92 1.00 0.13 ‘ -0.46 1.08 0.01
Defect

Post release failures 0.94 1.00 0.00 ‘ -0.96 -1.00 0.00
Complexity

C1. Fan in 0.44 1.03 0.02 -0.73 -1.01 0.31
C2. Fan out 0.48 1.03 0.03 -0.71 -1.02 0.36
C3. Cyclomatic complexity [31] 0.51 1.03 0.02 -0.22 1.06 0.00
C4. Inheritance depth 0.36 1.03 0.01 -0.49 -1.03 0.60
C5. Coupling through

C5.1. member reads 0.54 1.02 0.40 0.58 1.02 0.03
C5.2. member writes 0.69 1.02 0.60 -0.11 1.06 0.01
C5.3. function parameters 0.21 1.04 0.00 0.41 1.03 0.01
C5.4. type declarations in local 0.26 1.04 0.00 0.31 1.04 0.00
functions

C5.5. immediate base classes 0.42 1.03 0.01 -0.52 -1.02 0.77
C5.6. return type 0.26 1.04 0.01 -0.31 -1.04 0.06
Size

S1. LOC 0.54 1.02 0.03 -0.94 -1.00 0.14
S2. # of classes 0.42 1.03 0.00 -0.48 -1.03 0.75
S3. # of parameters 0.54 1.02 0.03 -0.91 -1.00 0.13
S4. # of local variables 0.54 1.02 0.09 0.18 1.04 0.31
S5. # of function 0.47 1.03 0.02 -0.65 -1.02 0.44
S6. # of blocks 0.50 1.03 0.01 0.10 1.05 0.00
Churn

Chl. total churn 0.22 1.04 0.00 -0.15 -1.04 0.01
Ch2. relative churn 0.62 1.02 0.01 0.91 -1.10 0.01
Ch3. # of check-ins 0.29 1.04 0.00 -0.27 -1.04 0.00
Ch4. # changed files 0.36 1.03 0.00 -0.33 -1.04 0.03
Locality

L1. # files per check-in 0.55 1.02 0.00 -0.92 -1.00 0.68
People

O1. NOE 0.57 1.02 0.00 0.58 -1.08 0.76
0O2. NOEE 0.63 1.02 0.02 -0.70 -1.02 0.66
Cohesiveness of contribution

0O3. DMO -0.16 1.06 0.20 -1.71 1.14 0.00
0O4. PO 1.53 0.97 0.00 -7.28 -0.67 0.00
O5. OCO 1.01 1.00% 0.64 -1.26 1.12 0.00
Diffusion of contribution

06. OOW 1.12 0.99 0.33 -9.06 1.53 0.00
O7. OIF 0.94 1.00 0.02 2.49 0.92 0.00
Test adequacy

T1. block coverage 1.05 1.00 0.07 -1.27 -0.99 0.01
T2. arc coverage 1.06 1.00 0.09 -1.29 -0.98 0.01
Layer

L1. layer numbers 1.01 1.00 083 | 0.35 1.03 0.09

Statistically significant test results (p-value < 0.05) are marked in yellow background.

in certain complexity measures, but increase LOC
and crosscutting changes more than the rest of mod-
ules. This implies that managers may need auto-
mated tool support for monitoring the impact of
refactoring in a multi-dimensional way.

e Refactoring was preferentially applied to the mod-
ules with high test coverage. This is consistent with
the survey participants’ view that test adequacy
affects developers’ likelihood to initiate refactoring.

5 THREATS TO VALIDITY

Internal validity. Our findings in Section 3 indicate only cor-
relation between the refactoring effort and reduction of the

number of inter-module dependencies and post-release
defects, not causation—there are other confounding factors
such as the expertise level of developers that we did not
examine. It is possible that the changes to the number of
module dependencies and post-release defects in Windows
7 are caused by factors other than refactoring such as the
types of features added in Windows 7.

Construct validity. Construct validity issues arise when
there are errors in measurement. This is negated to an extent
by the fact that the entire data collection process of failures
and VCS is automated. When selecting target participants
for refactoring, we searched all check-ins with the keyword
“refactor™ based on the assumption that people who used
the word know at least approximately what it means.

646 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.7, JULY 2014

The definition of refactoring from developers’ perspec-
tives is broader than behavior-preserving transformations,
and the granularity of refactorings also varies among the
participants. For example, some survey participants refer to
Fowler’s refactorings, while a large number of the partici-
pants (71 percent) consider that refactorings are often a part
of larger, higher-level effort to improve existing software.
We do not have data on how many of the survey partici-
pants participated in large refactorings vs. small refactor-
ings as such question was not a part of the survey. In our
Windows case study, we focused on system-wide refactoring,
because such refactoring granularity seems to be aligned
with the refactoring granularity mentioned by a large num-
ber of the survey participants.

To protect confidential information, we used standard
normalizations. All analyses were performed on the actual
values and the normalization was done for the presentation
purposes only to protect confidential information.

External validity. In our case, we came to know about a
multi-year refactoring effort in Windows from several sur-
vey participants and to leverage this best possible scenario
where intentional refactoring was performed, we focused
on the case study of Windows. As opposed to formal experi-
ments that often have a narrow focus and an emphasis on
controlling context variables, case studies test theories and
collect data through observation in an unmodified setting.

Our study about Windows 7 refactoring may not general-
ize to other refactoring practices, because the Windows
refactoring team had a very specific goal of reducing unde-
sirable inter-module dependencies and therefore may not
be applicable where refactoring efforts have a different or
less precise goal. The hypothesis H7 assumes that the soft-
ware system has a layered architecture. Thus it may not be
applicable to systems without a layered architecture.
Because the Windows refactoring is a large scale, system-
wide refactoring, its benefit may differ from other small
scale refactorings that appear in Fowler’s catalog.

While we acknowledge that our case study on Windows
may not generalize to other systems, most development
practices are similar to those outside of Microsoft. Further-
more, developers at Microsoft are highly representative of
software developers all over the world, as they come from
diverse educational and cultural backgrounds.” We believe
that lifting the veil on the Windows refactoring process
and quantifying the correlation between refactoring and
various metrics could be valuable to other development
organizations. To facilitate replication our study outside
Microsoft, we published the full survey questions as a tech-
nical report [12].

6 RELATED WORK

Refactoring definition. While refactoring is defined as a
behavior-preserving code transformation in the academic
literature [10], the de-facto definition of refactoring in prac-
tice seems to be very different from such rigorous defini-
tion. Fowler catalogs 72 types of structural changes in
object oriented programs but these transformations do not

3. Global diversity and inclusion http://www.microsoft.come/
about/diversity/en/us/default.aspx.

necessarily guarantee behavior preservation [1]. In fact,
Fowler recommends developers to write test code first
before, since these refactorings may change a program’s
behavior. Murphy-Hill et al. analyzed refactoring logs and
found that developers often interleave refactorings with
other behavior-modifying transformations [38], indicating
that pure refactoring revisions are rare. Our survey in Sec-
tion 2 also finds that refactoring is not confined to low-
level, semantics-preserving transformations from devel-
opers’ perspectives.

Quantitative assessment of refactoring benefits. While sev-
eral prior research efforts have conceptually advanced our
understanding of the benefit of refactoring through meta-
phors, few empirical studies assess refactoring benefits
quantitatively. Sullivan et al. first linked software modular-
ity with option theories [39]. A module provides an option
to substitute it with a better one without symmetric obliga-
tions, and investing in refactoring activities can be seen as
purchasing options for future adaptability, which will pro-
duce benefits when changes happen and the module can
be replaced easily. Baldwin and Clark [40] argued that the
modularization of a system can generate tremendous value
in an industry, given that this strategy creates valuable
options for module improvement. Ward Cunningham
drew the comparison between debt and a lack of refactor-
ing: a quick and dirty implementation leaves technical debt
that incur penalties in terms of increased maintenance costs
[21]. While these projects advanced conceptual under-
standing of refactoring impact, they do not quantify the
benefits of refactoring.

Xing and Stroulia found that 70 percent of structural
changes in Eclipse’s evolution history are due to refac-
torings and existing IDEs lack support for complex refac-
torings [41]. Dig and Johnson studied the role of
refactorings in API evolution, and found that 80 percent
of the changes that break client applications are API-
level refactorings [42]. While these studies focused on
the frequency and types of refactorings, they did not
focus on how refactoring impacts inter-module depen-
dencies and defects. MacCormack et al. [43] defined
modularity metrics and used these metrics to study evo-
lution of Mozilla and Linux. They found that the rede-
sign of Mozilla resulted in an architecture that was
significantly more modular than that of its predecessor.
However, unlike our study on Windows, their study
merely monitored design structure changes in terms of
modularity metrics without identifying the modules
where refactoring changes are made.

Several research projects automatically detect the
symptoms of poor software design—coined as code smells
by Fowler [1]. Guéhéneuc and Albin-Amiot detect inter-
class design defects [44] and Marinescu identifies design
flaws using software metrics [45]. Izurieta and Bieman
detect accumulation of non design-pattern related code
[19]. Guo et al. define domain-specific code smells [46]
and investigate the consequence of technical debt [20].
Wong et al. [47] identify modularity violations—recurring
discrepancies between which modules should change
together and which modules actually change together
according to version histories. While these studies corre-
late the symptoms of poor design with quality

KIM ET AL.: AN EMPIRICAL STUDY OF REFACTORING CHALLENGES AND BENEFITS AT MICROSOFT 647

measurements such as the number of bugs, these studies
do not directly investigate the consequence of refactor-
ing—purposeful actions to reverse or mitigate the symp-
toms of poor design.

Conflicting evidence on refactoring benefit. Kataoka et al.
[18] proposed a refactoring evaluation method that com-
pares software before and after refactoring in terms of
coupling metrics. Kolb et al. [23] performed a case study
on the design and implementation of existing software
and found that refactoring improves software with
respect to maintainability and reusability. Moser et al.
[48] conducted a case study in an industrial, agile envi-
ronment and found that refactoring enhances quality
and reusability related metrics. Carriere et al’s case
study found the average time taken to resolve tickets
decreases after re-architecting the system [49]. Ratzinger
et al. developed defect prediction models based on soft-
ware evolution attributes and found that refactoring
related features and defects have an inverse correlation
[5]—if the number of refactoring edits increases in the
preceding time period, the number of defects decreases.
These studies indicated that refactoring positively affects
productivity or quality measurements.

On the other hand, several research efforts found con-
tradicting evidence that refactoring may affect software
quality negatively. Weifigerber and Diehl found that
refactoring edits often occur together with other types of
changes and that refactoring edits are followed by an
increasing number of bugs [6]. Kim et al. found that the
number of bug fixes increases after API refactorings [9].
Nagappan and Ball found that code churn—the number
of added, deleted, and modified lines of code—is corre-
lated with defect density [50]—since refactoring often
introduces a large amount of structural changes to the
system, some question the benefit of refactoring. Gorg
and Weifigerber detected errors caused by incomplete
refactorings by relating API-level refactorings to the cor-
responding class hierarchy [6].

Because manual refactoring is often tedious and error-
prone, modern IDEs provide features that automate the
application of refactorings [51], [52]. However, recent
research found several limitations of tool-assisted refactor-
ings as well. Daniel et al. found dozens of bugs in the refac-
toring tools in popular IDEs [53]. Murphy-Hill et al. found
that refactoring tools do a poor job of communicating errors
and programmers do not leverage them as effectively as
they could [38]. Vakilian et al. [16] and Murphy et al. [54]
found that programmers do not use some automated refac-
torings despite their awareness of the availability of auto-
mated refactorings.

These contradicting findings on refactoring benefits
motivate our survey on the value perception about refactor-
ing. They also motivate our analysis on the relationship
between refactoring and inter-module dependencies and
defects.

Refactoring change identification. A number of existing
techniques address the problem of automatically inferring
refactorings from two program versions. These techniques
compare code elements in terms of their name [41] and
structure similarity to identify move and rename refactor-
ings [55]. Prete et al. encode Fowler’s refactoring types in

template logic rules and use a logic query approach to auto-
matically find complex refactorings from two program ver-
sions [56]. This work also describes a survey of existing
refactoring reconstruction techniques. Kim et al. use the
results of API-level refactoring reconstruction to study the
correlation between API-level refactorings and bug fixes [9].
While it is certainly possible to identify refactorings using
refactoring reconstruction techniques, in our Windows 7
analysis, we identify the branches that a designated refac-
toring team created to apply and maintain refactorings
exclusively and isolate changes from those branches. We
believe that our method of identifying refactorings is reli-
able as a designated team confirmed all refactoring
branches manually and reached a consensus about the role
of those refactoring branches within the team.

Empirical studies on windows. Prior studies on Windows
focused on primarily defect prediction. Nagappan and
Ball investigated the impact of code churn on defect den-
sity and found that relative code churn measures were
indicators of code quality [50]. Zimmermann and Nagap-
pan built a system wide dependency graph of Windows
Server 2003. By computing network centrality measures,
they observed that network measures based on depen-
dency structure were 10 percent more effective in defect
prediction, compared to complexity metrics [57]. More
recently, Bird et al. observed that socio-technical network
measures combined with dependency measures were
stronger indicators of failures than dependency measures
alone [58]. Our current study is significantly different
from these prior studies by distinguishing refactoring
changes from mnon-refactoring changes and by focusing on
the impact of refactoring on inter-module dependencies
and defects. In addition, this paper uses a multivariate
regression analysis to investigate the factors beyond
refactoring churn that could have affected the changes in
the defects and inter-module dependencies.

7 CONCLUSIONS AND FUTURE WORK

This paper presents a three-pronged view of refactoring in a
large software development organization through a survey,
interviews, and version history data analysis. To investigate
a de-facto definition and the value perception about refac-
toring in practice, we conducted a survey with 328 profes-
sional software engineers. Then to examine whether the
survey respondents’ perception matches reality and
whether there are visible benefits of refactoring, we inter-
viewed six engineers who led the Windows refactoring
effort and analyzed Windows 7 version history data.

Our study finds the definition of refactoring in prac-
tice is broader than behavior-preserving program transforma-
tions. Developers perceive that refactoring involves
substantial cost and risks and they need various types of
refactoring support beyond automated refactoring within
IDEs. Our interview study shows how system-wide
refactoring was carried out in Windows. The quantitative
analysis of Windows 7 version history shows that refac-
toring effort was focused on the modules with a high
number of inter-module dependencies and high test ade-
quacy. Consistent with the refactoring goal stated by the
interview participants, preferentially refactored modules

648 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.40, NO.7, JULY 2014

indeed experienced higher reduction in the number of
inter-module dependencies than other changed modules.
While preferentially refactored modules experience a
higher rate of reduction in certain complexity measures,
they increase LOC and crosscutting changes more than
the rest. As the benefit of refactoring is multi-dimen-
sional and not consistent across various metrics, we
believe that managers and developers can benefit from
automated tool support for monitoring the impact of
refactoring on various software metrics.

ACKNOWLEDGMENTS

The authors thank Galen Hunt, Tom Ball, Chris Bird, Mike
Barnett, Rob DeLine, and Andy Begel for their insightful
comments. Thanks to the Microsoft Windows refactoring
team for their help in understanding the data. Thanks to
many managers and developers who volunteered their time
to participate in our research. Miryung Kim performed a
part of this work, while working at Microsoft Research. This
work was in part supported by National Science Foundation
under the Grants CCF-1149391, CCF-1117902, and CCF-
1043810, and by Microsoft SEIF award.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code. Read-
ing, MA, USA: Addison-Wesley, 2000.

[2] L. A. Belady and M. Lehman, “A model of large program devel-
opment,” IBM Syst. |., vol. 15, no. 3, pp. 225-252, 1976.

[3] K. Beck, Extreme Programming Explained, Embrace Change. Reading,
MA, USA: Addison-Wesley, 2000.

[4] W. Opdyke, Refactoring, Reuse & Reality, Lucent Technologies,
Murray Hill, NJ, USA, 1999.

[5] J. Ratzinger, T. Sigmund, and H. C. Gall, “On the relation of refac-
torings and software defect prediction,” in Proc. ACM Int. Working
Conf. Mining Softw. Repositories, 2008, pp. 35-38.

[6] P. Weifsgerber and S. Diehl, “Are refactorings less error-prone
than other changes?” in Proc. ACM Int. Workshop Mining Softw.
Repositories, 2006, pp. 112-118.

[7] P. Weifigerber and S. Diehl, “Identifying refactorings from source-
code changes,” in Proc. 21st IEEEJACM Int. Conf. Autom. Softw.
Eng., 2006, pp. 231-240.

[8] C. Gorg and P. Weiligerber, “Error detection by refactoring
reconstruction,” in Proc. Int. Workshop Mining Softw. Repositories,
2005, pp. 1-5.

[91 M. Kim, D. Cai, and S. Kim, “An empirical investigation into the
role of refactorings during software evolution,” in Proc. ACM
IEEE 33rd Int. Conf. Softw. Eng., 2011, pp. 151-160.

[10] T.Mens and T. Tourwe, “A survey of software refactoring,” IEEE
Trans. Softw. Eng., vol. 30, no. 2, pp. 126139, Feb. 2004.

[11] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction. New York,
NY, USA: Springer-Verlag, 2001.

[12] M. Kim, T. Zimmermann, and N. Nagappan, “Appendix to a field
study of refactoring rationale, benefits, and challenges at micro-
soft,” Microsoft Res., Tech. Rep. MSR-TR-2012-4, Redmond, WA,
USA, 2012.

[13] R. Johnson, “Beyond behavior preservation,” Microsoft Faculty
Summit 2011, Invited Talk, Jul. 2011.

[14] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Proactive detec-
tion of collaboration conflicts,” in Proc. 19th ACM SIGSOFT Symp.
13th Eur. Conf. Found. Softw. Eng., 2011, pp. 168-178. [Online].
Available: http://doi.acm.org/10.1145/2025113.2025139

[15] C. Bird and T. Zimmermann, “Assessing the value of branches
with what-if analysis,” in Proc. ACM SIGSOFT 20th Int. Symp.
Found. Softw. Eng., 2012, pp. 45:1-45:11. [Online]. Available:
http:/ /doi.acm.org/10.1145/2393596.2393648

[16] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and R.
E.Johnson, “Use, disuse, and misuse of automated refactorings,” in
Proc. 34th Int. Conf. Softw. Eng., Jun. 2012, pp. 233-243.

[17] A. Srivastava, J. Thiagarajan, and C. Schertz, “Efficient Integration
testing using dependency analysis,” Microsoft Res., Tech. Rep.
MSR-TR-2005-94, Redmond, WA, USA, 2005.

[18] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, “A quantitative
evaluation of maintainability enhancement by refactoring,” in
Proc. Int. Conf. Softw. Maintenance, 2002, pp. 576-585.

[19] C. Izurieta and J. M. Bieman, “How software designs decay: A
pilot study of pattern evolution,” in Proc. 1st Int. Symp. Empirical
Softw. Eng. Meas., 2007, pp. 449-451.

[20] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin, F. Q. B. Da
Silva, A. L. M. Santos, and C. Siebra, “Tracking technical debt—an
exploratory case study,” in Proc. 27th IEEE Int. Conf. Softw. Mainte-
nance, Sep. 2011, pp. 528-531.

[21] W. Cunningham, “The wycash portfolio management system,” in
Addendum Proc. Object-Oriented Programm. Syst., languages, Appl.,
1992, pp. 29-30.

[22] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E.
Lim, A. MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman,
K. Sullivan, and N. Zazworka, “Managing technical debt in soft-
ware-reliant systems,” in Proc. ACM FSE/SDP Workshop Future
Softw. Eng. Res., 2010, pp. 47-52. [Online]. Available: http://doi.
acm.org/10.1145/1882362.1882373

[23] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi, (Mar. 2006).
Refactoring a legacy component for reuse in a software product
line: A case study: Practice articles. . Softw. Maintenance Evol.
[Online]. 18, pp. 109-132. Available: http://dl.acm.org/citation.
cfm?id=1133105.1133108

[24] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of
refactoring challenges and benefits,” in Proc. ACM SIGSOFT
20th Int. Symp. Found. Softw. Eng., 2012, pp. 50:1-50:11. [Online].
Available: http://doi.acm.org/10.1145/2393596.2393655

[25] P. Tarr, H. Ossher, W. Harrison, and]. Stanley M. Sutton, “N
degrees of separation: Multi-dimensional separation of concerns,”
in Proc. 21st Int. Conf. Softw. Eng., 1999, pp. 107-119.

[26] G.Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,].-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in Proc.
Eur. Conf. Object-Oriented Programm., 1997, vol. 1241, pp. 220-242.
[Online]. Available: citeseer.ist.psu.edu/kiczales97aspectoriented.
html

[27] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C. Mur-
phy, N. Nagappan, and A. V. Aho, “Do crosscutting concerns
cause defects?” IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 497-515,
Jul. 2008.

[28] R.J. Walker, S. Rawal, and J. Sillito, “Do crosscutting concerns
cause modularity problems?” in Proc. ACM SIGSOFT 20th Int.
Symp. Found. Softw. Eng., 2012, pp. 49:1-49:11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393654

[29] F.P. Brooks, The Mythical Man-Month: Essays on Software Engineer-
ing. Reading, MA, USA: Addison-Wesley, Aug. 1975. [Online].
Available: http:/ /www.amazon.com/exec/obidos/redirect?
tag=citeulike07-20&path=ASIN /0201835959

[30] E. Murphy-Hill, A. P. Black, D. Dig, and C. Parnin, “Gathering
refactoring data: A comparison of four methods,” in Proc. 2nd
ACM Workshop Refactoring Tools, 2008, pp. 1-5.

[31] T.]J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng.,
vol. 2, no. 4, pp. 308-320, Jul. 1976.

[32] N. Nagappan, B. Murphy, and V. Basili, “The influence of organi-
zational structure on software quality: An empirical case study,” in
Proc. 30th ACM Int. Conf. Softw. Eng., 2008, pp. 521-530. [Online].
Available: http://doi.acm.org/10.1145/1368088.1368160

[33] G. Antoniol, K. Ayari, M.Di Penta, F. Khomh, and Y.-G.
Guéhéneuc, “Is it a bug or an enhancement?: A text-based
approach to classify change requests,” in Proc. ACM Conf. Center
Adv. Stud. Collaborative Res.: Meeting Minds, 2008, pp. 304-318.

[34] M. E. Conway, “How do committees invent?” Datamation, vol. 14,
no. 4, pp. 28-31, 1968.

[35] J. Herbsleb and R. Grinter, “Architectures, coordination, and dis-
tance: Conway’s law and beyond,” IEEE Softw., vol. 16, no. 5,
pp- 63-70, Sep./Oct. 1999.

[36] S. Bailey, S. Godbole, C. Knutson, and J. Krein, “A decade of con-
way’s law: A literature review from 2003-2012,” in Proc. 3rd Int.
Workshop Replication Empir. Softw. Eng. Res., Oct. 2013, pp. 1-14.

[37] P. Dalgaard, Introductory Statistics with R, 2nd ed. New York, NY,
USA: Springer-Verlag, 2008.

[38] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor,
and how we know it,” in Proc. 31st Int. Conf. Softw. Eng., 2009,
pp. 287-297.

KIM ET AL.: AN EMPIRICAL STUDY OF REFACTORING CHALLENGES AND BENEFITS AT MICROSOFT 649

[39] K. Sullivan, P. Chalasani, S. Jha, and V. Sazawal, Software Design as
an Investment Activity: A Real Options Perspective in Real Options and
Business Strategy: Applications to Decision Making. London, UK.
Risk Books, Nov. 1999.

C. Y. Baldwin and K. B. Clark, Design Rules: The Power of Modular-
ity. Cambridge, MA, USA: MIT Press, 1999.

Z. Xing and E. Stroulia, “UMLDIff: An algorithm for object-ori-
ented design differencing,” in Proc. 20th IEEEJACM Int. Conf.
Autom. Softw. Eng., 2005, pp. 54-65.

D. Dig and R. Johnson, “The role of refactorings in API evolution,”
in Proc. 21st IEEE Int. Conf. Softw. Maintenance, 2005, pp. 389-398.
A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the
structure of complex software designs: An empirical study of
open source and proprietary code,” Manage. Sci., vol. 52, no. 7,
pp- 1015-1030, 2006.

Y. -G. Guéhéneuc and H. Albin-Amiot, “Using design patterns
and constraints to automate the detection and correction of inter-
class design defects,” in Proc. 39th Int. Conf. Exhib. Technol. Object-
Oriented Languages Syst., 2001, pp. 296-305. [Online]. Available:
http://dl.acm.org/ citation.cfm?id=882501.884740

R. Marinescu, “Detection strategies: Metrics-based rules for
detecting design flaws,” in Proc. 20th IEEE Int. Conf. Softw. Mainte-
nance, 2004, pp. 350-359. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1018431.1021443

Y. Guo, C. Seaman, N. Zazworka, and F. Shull, “Domain-specific
tailoring of code smells: An empirical study,” in Proc. 32nd ACM/
IEEE Int. Conf. Softw. Eng.—Vol. 2, 2010, pp. 167-170. [Online].
Available: http://doi.acm.org/10.1145/1810295.1810321

S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software
modularity violations,” in Proc. ACM IEEE 33rd Int. Conf. Softw.
Eng., 2011, pp. 411-420.

R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi, “Does refactor-
ing improve reusability?” in Proc. 9th Int. Conf Reuse Off-the-Shelf
Compon., 2006, pp. 287-297.

J. Carriere, R. Kazman, and I. Ozkaya, “A cost-benefit framework
for making architectural decisions in a business context,” in Proc.
32nd ACM/IEEE Int. Conf. Softw. Eng., 2010, pp. 149-157.

N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proc. 27th ACM Int. Conf. Softw.
Eng., 2005, pp. 284-292.

W. G. Griswold, “Program restructuring as an aid to software
maintenance,” Ph.D. dissertation, Dept. Comput. Sci. Eng., Univ.
Washington, Seattle, WA, USA, 1991.

D. Roberts, J. Brant, and R. Johnson, “A refactoring tool for small-
talk,” Theory Practice Object Syst., vol. 3, no. 4, pp. 253263, 1997.

B. Daniel, D. Dig, K. Garcia, and D. Marinov, “Automated testing
of refactoring engines,” in Proc. 6th Joint Meet. Eur. Softw. Eng.
Conf. ACM SIGSOFT Symp. Found. Softw. Eng., 2007, pp. 185-194.
G. C. Murphy, M. Kersten, and L. Findlater. (2006, Jul.). How are
Java software developers using the eclipse IDE? IEEE Softw.
[Online]. 23(4), pp. 76-83. Available: http://dx.doi.org/10.1109/
MS.2006.105

D. Dig and R. Johnson, “Automated detection of refactorings in
evolving components,” in Proc. Eur. Conf. Object-Oriented Pro-
gramm., 2006, pp. 404—428.

K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim, “Template-
based reconstruction of complex refactorings,” in Proc. IEEE Int.
Conf. Softw. Maintenance, Sep. 2010, pp. 1-10.

T. Zimmermann and N. Nagappan, “Predicting defects using net-
work analysis on dependency graphs,” in Proc. 30th Int. Conf.
Softw. Eng., 2008, pp. 531-540. [Online]. Available: http://doi.
acm.org/10.1145/1368088.1368161

C. Bird, N. Nagappan, H. Gall, B. Murphy, and P. Devanbu,
“Putting it all together: Using socio-technical networks to pre-
dict failures,” in Proc. 20th Int. Symp. Softw. Rel. Eng., 2009,
pp- 109-119. [Online]. Available: http://dx.doi.org/10.1109/
ISSRE.2009.17

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Miryung Kim received the BS degree in com-
puter science from the Korea Advanced Institute
of Science and Technology in 2001. She
received the PhD in computer science & engi-
neering from the University of Washington in
2008 and then joined the faculty at the University
of Texas at Austin, where she is currently an
assistant professor. Her research interests
include the area of software engineering, with a
focus on improving developer productivity in
evolving software systems. She received a Goo-
gle Faculty Research Award in 2014, US National Science Foundation
CAREER Award in 2011, a Microsoft Software Engineering Innovation
Foundation Award in 2011, an IBM Jazz Innovation Award in 2009, and
ACM SIGSOFT Distinguished Paper Award in 2010. She is a member of
the IEEE.

Thomas Zimmermann received the PhD degree
from Saarland University in 2008. He is a
researcher in the Research in Software Engi-
neering (RIiSE) group at Microsoft Research Red-
mond, an adjunct assistant professor at the
University of Calgary, and an affiliate faculty at
the University of Washington. His research inter-
ests include empirical software engineering, min-
ing software repositories, computer games,
recommender systems, development tools, and
social networking. He is best known for his
research on systematic mining of version archives and bug databases to
conduct empirical studies and to build tools to support developers and
managers. He received ACM SIGSOFT Distinguished Paper Awards in
2007, 2008, and 2012. He is a member of the IEEE.

Nachiappan Nagappan received the PhD
degree from North Carolina State University in
2005. He is a principal researcher in the
Research in Software Engineering (RiSE)
group at Microsoft Research Redmond. His
research interests include software reliability,
software metrics, software testing, and empiri-
cal software processes. His interdisciplinary
research projects span the spectrum of soft-
ware analytics ranging from intelligent soft-
ware design for games, identifying data center
reliability to software engineering optimization for energy in mobile
devices. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

